
Adaptive Selection of an Index in a Texture Cache

Chun-Ho Kim and Lee-Sup Kim
Department of Electrical Engineering and Computer Science,
KAIST (Korea Advanced Institute of Science and Technology)

E-mail: chkim@mvlsi.kaist.ac.kr, lskim@ee.kaist.ac.kr

Abstract

For a specified application, there is an opportunity to

improve cache performance by smart choosing of index
bits of a cache. A texture cache for texture mapping of 3D
computer graphics is an example. Texel(texture pixel)-
access characteristics for texture mapping are dependent
on the rasterization order of a polygon.

In this paper, we introduce A-index, a method to reduce
memory bandwidth required for fetching texture image
data by reducing cache miss through adaptive selection of
an index according to span direction of a rasterizer. By
designing a texture mapping hardware including a texture
cache, it is verified that the number of cache misses and
the number of total cycles are reduced by 21.6 % and
8.8 % for rendering of textured scenes. In addition, we
show that the number of cache misses in a texture cache
can be estimated more accurately by calculating intra-
span replacement when the proposed A-index is used.

1. Introduction

Computer graphics has become an important technique

in many applications such as CAD tools, game, film,
virtual reality and etc. Although many techniques are used
in 3D Computer Graphics, texture mapping is one of the
most successful and popular techniques in high-quality
image synthesis. Especially, texture mapping creates the
appearance of complexity without the tedium of modeling
and rendering every 3D detail of a surface [1]. Moreover,
texture mapping is a basis of other mapping techniques
such as shadow mapping, environment mapping, bump
mapping and etc. However, the greatest weakness of the
texture mapping is that it requires high memory bandwidth
to fetch the texture image data. The use of a cache is
important in improving processing speed of a system. A
well-tuned cache hierarchy and organization can induce
the increase of system performance and bandwidth saving
in a system bus.

So far, many researchers have proposed cache
architectures for texture mapping. In 1997, Zihad S.
Hakura [2] presented a paper about the design and analysis
of a texture cache. He proposed to use a cache for texture
mapping and analyzed the cache organization such as

cache size, line size and associativity. In 1998, Homan
Igehy [3] proposed to use caching in conjunction with pre-
fetching for hiding memory latency. Also, Michael Cox
[4] proposed to use multi-level texture caching for solving
the problem of cache size and bandwidth. Physically, he
used a two-level cache: a small L1 cache to directly
connect with a graphics accelerator and a large L2 cache
to reduce bandwidth requirement through less cache miss.
Besides, the capacity of bus bandwidth has been increased
as shown in the development of AGP 2/4/8X. Although
many researches have been done in the view of cache
hierarchy and organization, texture memory bandwidth is
still a critical issue in the design of a 3D graphics system.
The reason is that the bandwidth requirement is also
increasing by more texture usages and more sophisticated
filter methods which need more texels per pixel like
footprint assembly [5]. Meanwhile, there was an attempt
to improve cache performance by optimal selection of
index bits considering application set [6]. However, the
method has a weakness that the index bits are fixed for the
whole run time.

In this paper, we propose a new method to reduce
texture bandwidth requirement by reducing cache miss-
rate through adaptive selection of an index. We call it A-
index. By using the A-index, we can reduce cache miss by
changing cache index bits of a texture cache considering
data access characteristics. The key characteristics of
texture data access are that texture data are a 2D data and
access direction is not either horizontal or vertical but
randomly directed. Conventionally, the horizontal
coordinate of a texel has been used for the cache index.
However, we can use the horizontal or the vertical
coordinate of a texel as the cache index adaptively by
checking the trends of texel-access direction on the texture
image. The cache miss reduction obtained by using the A-
index diminishes pipeline stalls, bus bandwidth required
for texel fetch, and time for texture mapping. Also, the
saved bus bandwidth can lead more performance increase
due to the reduced bus contention. Therefore, we can
speed up rendering time in texture mapping by the A-index.
Besides, we decomposed cache miss into three parts based
on the triangle spans. We will show that we can estimate
cache performance through the decomposition and linear
approximation of the relation of the number of cache
misses and the number of intra-span replacements.

2. Backgrounds

2.1. Texture Mapping & Triangle Span

In 3D computer graphics, surfaces of a 3D object are

modeled into sum of triangles. Mapping of a 2D image
onto the surface is texture mapping. The image mapped
onto the surface is called a texture map and its individual
element, texture pixel, is often called a texel. The texture
mapping consists of two steps: the first is a transform from
the 2D texture space to the 3D object space and the second
is a transform from the 3D object space to the 2D screen
space [7]. The composition of two transforms is denoted
as a rational linear projective transform as shown in (1).
The xs, ys and u, v are coordinate values of a pixel in the
screen space and a corresponding texel in the texture space.
And, a~ i are constants.

ihvgu
fevdu

y
ihvgu
cbvau

x ss ++
++

=
++
++

= (1)

All the triangles composing a 3D object are

decomposed into spans in a span rasterizer for screen
viewing. Span means a set of consecutive horizontal pixels
resided in a triangle. By mapping, a span is mapped into a
random-directed straight line on a texture image as shown
in Figure 1. This line conservation property is well
explained in the following. When an arbitrary line in the
screen space, BxAy ss += , is mapped into texture
image space, a corresponding line, BuAv ′+′= , is
obtained by substituting xs and ys in (1) and rearrangement.

Figure 1. Mapping of triangle spans

2.2. Texture Cache & Triangle Span

The effectiveness of cache memory depends on locality

of reference in data accesses. Both spatial and temporal
localities are present in texture mapping [2]. Mip-map
filtering [8] increases spatial locality in texture access
since the level of the map is selected to closely match the
level-of-detail that is being drawn on the screen. That is,
due to the Mip-map filtering, one pixel movement in
screen space is nearly mapped to one texel movement in

texture space. One texture image can be mapped to several
polygons of single frame or consecutive frames. Therefore,
temporal locality in texel access is also present. In the
cases of bilinear or trilinear filtering, multiple texels are
needed for single pixel. It also contributes to temporal
locality because some of the multiple texels for a pixel are
apt to overlap with some texels for neighboring pixels.
Due to the locality of texture, we can use a texture cache
to improve system performance and to save the required
bandwidth in system bus.

A rendered scene can be decomposed into a set of
spans. Cache replacement can be divided based on the
triangle span. If cache replacement occurs between texels
residing in the same span, we call it intra-span
replacement. If replacement occurs between texels of two
different spans, we call it inter-span replacement. In cache
operation, there is one cache replacement when one cache
miss occurs excluding cold miss. So, cache miss can be
calculated by counting cache replacement occurring in the
cache. That is, total cache miss in a texture cache for
rendering a textured scene can be denoted as the
following :

 (2)

3. Adaptive Selection of an Index

3.1. Basic Idea

In a cache, address for cached data is divided into three
parts (tag, index, and offset) as shown in Figure 2. And,
LSBs of an address have been used for an index
traditionally. Meanwhile, 2D data for a texture image are
loaded in a horizontal line-scan order into memory and the
address of a texel consists of concatenation of a vertical(v)
coordinate (MSBs) and a horizontal(u) coordinate (LSBs).
Therefore, only the u-coordinate of a texel has been used
for a cache index. However, texel access pattern may be
any direction. Therefore, if we use u- or v-coordinate
value adaptively for a cache index according to the
direction of texel accesses, then we will obtain a more
efficient cache index than using only the u-coordinate
value for a cache index. In the texture mapping, texel-
access direction is dependent on the rasterization order and
many rasterization algorithms are based on the horizontal
span rasterizer. Therefore, a polygon is decomposed into a
set of horizontal line by a horizontal scan rasterizer.
Besides, the horizontal line is also mapped to a line on a
texture image. In this mapped line, if | u∆ | is greater than
| v∆ |, we call it u-major. Otherwise, we call it v-major
(shown in Figure 2(a)). If we get the access direction
information adaptively, we can use the information to

treplacemenspaninterR
treplacemenspanintraR

RRmisscoldmisscacheTotal

nteri

intra

interintra

−
−

++=

:
:

select adaptively the index bits from u-coordinates or v-
coordinates. When the mapped direction on a texture
image is u-major, we can obtain a more effective cache
index if we use u-index, using u-coordinate as a cache
index (shown in Figure 2(b)). That is, we can use wider
range of cache slots in this case. But, if we use v-index,
using a v-coordinate as a cache index, texels fetched from
memory will reside in fewer cache slots. Therefore, the
cache index will be ineffective and conflict miss will be
increased in this case. Oppositely, if we use v-index for the
case of v-major, we can obtain more effective cache
indexing and cache miss reduction. That is, wider cache
slots will be used for storing the texels resided on the
dotted line.

(a) Texel access direction and u/v-major

(b) Texel address and u/v-index

Figure 2. Adaptive selection of an index

To do the above operation, it is need to select u-major

or v-major adaptively. To decide whether texel-access
direction is u-major or v-major, we use history of texture
sampling points. That is, u/v-coordinates of the previous
texture sampling point are stored. For the decision,
coordinates of current and previous texture sampling
points are compared. That is, the decision is obtained from
moving direction of a texture sampling point. The decision
is made in the time of address generation and it is used to
select an index in the texture cache.

3.2. Hardware Design

To prove our idea, we designed a texture mapping

hardware including a texture cache by using Verilog-HDL.

From simulations, we compared cache miss count and
total cycles of the proposed indexing method to those of
the conventional method. We employed the values of the
papers [2, 3] for important design parameters such as line
size, way number, and cache size. Cache size is selected to
16 KB. Line size is selected to 64 bytes (4×4 texels)
according to the paper by Hakura [2]. In the paper, he
presented that square regions of texture are most effective
in exploiting spatial locality and a 4×4 block has the
lowest miss rate. The greater block size has the large miss
penalty and causes the working set size to become
unnecessarily large, leading to many capacity misses.
Contrarily, the smaller block size has less spatial locality
and causes high miss rate. Also, he presented that conflicts
between blocks at adjacent levels of the Mip-map can be
successfully eliminated with two-way set associative
cache. Therefore, we use a two-way set associativity in
texture cache design. As shown in Figure 3, texture unit
consists of five pipeline stages: Fetch, AddrGen,
TexelRead, Filter, and Blend.

Figure 3. Texture mapping H/W

The texture cache ought to be modified to support our
idea. It should be marked whether a cached data uses u-
index or v-index. Therefore, it is necessary to add a 1-bit
register per cache line for distinguishing u-index/v-index
in the cache write time. In addition, hit check operation
should be modified in order not to commit hit/miss
decision errors. In a conventional cache, hit check
operation is done by tag comparison of the cache line only
in a matched index. For our method, however, tag
comparison is needed twice as often as in the conventional
cache because hit may occur in one of two cache lines of
u-index and v-index. In the cache read time, only when the
index of the hit cache line coincides with the index of the
distinguishing register, final hit occurs. The modified part
in a cache for the A-index is depicted in hard lines in
Figure 4.

Figure 4. Cache modification for the A-index

(a) Conventional hit check

(b) Modified hit check for the A-index

Figure 5. Hit check data-path

In Figure 4, hit data is selected from four slots. Does it

mean that each way has two read ports? The answer is no.
The reason is that we can fix a cache index before a read
request by pre-comparing. As shown in Figure 5, tag
comparison and cache memory read operations are
processed in parallel in the conventional hit check.
However, the two operations are processed sequentially
for the pre-comparing during a single cycle in the case of
the modified hit check. That is, tag comparison is done to
select cache index first, then the cache line of the selected
index is read. This will extend logic depth for hit check.
However, it is not a problem since the logic is not in the
critical-path. The critical-path is present in the Filter or
Blend stage of the texture unit pipeline since a GPU is
running in much lower clock frequency than a CPU. Logic
depth of data-path in a GPU becomes much longer than in
a CPU. Meanwhile, the direction decision is processed by

simple comparison logic in the AddrGen stage shown in
Figure 3. Hardware overhead for the A-index is composed
of two parts: one is data-path for direction decision (1,500
gates) and the other is additional logic for the cache
modification (18,500 gates). Additional logics for the two
parts are about 20,000 gates. It is under 10 % of the whole
texture mapping unit excluding the 16 KB texture cache
which is about 220,000 gates when it is approximately
converted into gate count.

4. Simulations

We prove that the A-index has benefits in terms of

performance and bus bandwidth. From HDL simulations
using the hardware model explained in the above section
with some test scenes, we compared u-index, v-index, and
A-index in terms of cache miss counts and total cycles.
Rasterized fragments of test scenes, inputs for Verilog
simulations, were obtained from GATE [9], the graphics
architecture simulator programmed in C-language which
models overall graphics hardware architecture through a
modular approach and supports OpenGL. In addition, we
show that performance estimation of a cache is possible by
the relation between intra-span replacement and cache
miss. And, we compared estimation errors in the case of
using the u-index and the A-index.

4.1. Performance Improvement

We simulated the HDL model and measured cache

miss counts and total clock cycles with three test scenes
shown in Figure 6. Size of the scenes is 640×480 pixels.
Table 1 and 2 show the results. From the simulation
results, we can see that the A-index has smaller cache miss
and total cycles. Compared to the conventional index, u-
index, the A-index has improved performance about
21.6 % in cache miss and 8.8 % in total cycles. It is due to
the usage of wider cache slots obtained by changing the
cache index adaptively.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 6. Quake3 demo scenes

Table 1. Cache miss
Cache miss

u-index v-index A-index
Scene 1
Scene 2
Scene 3

56765
39747
50018

55739
38780
36493

44364
33263
37284

Average 48843 43671 38304

()xxHESwl

HESwSSl

KirR

K

i iphys

iphyeff
K

i effs

K

i iintra

,0max,

,

,,2,1,

1

1

1

≡⋅⋅−=

⋅⋅=−=

==

∑
∑
∑

=

=

=
L

Table 2. Total cycles
Total cycles

u-index v-index A-index
Scene 1
Scene 2
Scene 3

2461193
2165945
2793268

2548911
2243072
2604522

2210866
2015042
2539512

Average 2473469 2465502 2255140

We also demonstrate an influence of our idea on the

cache size. It is summarized in Figure 7. From the results,
we can see that it is possible to maintain or increase cache
performance with only a half-sized cache if we use the A-
index. As the cache becomes large, we get less gain. It is
due to the increased number of cache slots. As the number
of cache slots increases, occurrence of conflict miss is
reduced because increased index bits scatter cached data
into wider cache slots.

Figure 7. Cache miss in variable cache size

4.2. Performance Estimation

Miss-rate of a cache is one of the most important factors

in performance of the system using the cache. It is not
easy to estimate performance or cache miss of a texture
cache because a texture cache stores image data which is
deeply dependent on a rendering scene. Generally, it is
necessary to simulate the whole cache operations for a few
tens or hundred of test scenes to design a cache satisfying
the required cache miss. However, we can save the
simulation time if we can estimate cache miss by simple
calculations. Cache miss can be split into three parts based
on triangle spans as shown in (2). Here, we focus on the
intra-span replacement which gives us a clue to estimate
cache miss. It is possible to estimate cache miss by
calculating the intra-span replacement, Rintra, given by the
following:

 (3)

The intra-span replacement can be split into intra-span
replacements per span, ri’s. K is the number of spans, ls

and w mean span length and the number of ways. Seff and
Sphy are the number of effective cache slots for a given
span and physical cache slots per way. HE is a hashing
efficiency of a span and can be modeled by the length of
the touched blocks projected on the U or V coordinate
divided by the number of touched blocks. HE has a value
of 0~1 and means efficiency of the used indexing method.
Cache replacement is needed when conflict occurred.
Conflict occurring in a single span is explained well in
Figure 8. When span-length exceeds effective cache slots,
intra-span replacement occurs. If not, there is no intra-span
replacement. By (3), we can calculate the number of intra-
span replacement for a given scene.

Figure 8. Intra-span conflicts

(a) Teapot (b) Chess (c) Elephant

Figure 9. Test models

We investigated the relation of intra-span replacement
and cache miss obtained from HDL simulations on three
test models (shown in Figure 9) which have different
texel-access directions. We obtained data of 15 sample
points from 15 different camera positions for each test
model. The results are shown in Figure 10. By 45 points
from the three models, we obtained estimated linear
equations with the smallest RMS error in the cases of
using the u-index and the A-index respectively.

(a) u-index

(b) A-index

Figure 10. Estimated linear equations

We estimated the number of cache misses from the

estimated linear equations and measured estimation errors
about the three test models respectively. It is shown in
Table 3. From the results, we figure that it is reasonable to
approximate cache miss from intra-span replacement.
Especially, the A-index has smaller deviation in the
number of intra-span replacements than the u-index
according to texel-access direction. So, we can estimate
cache miss with smaller error by using the A-index rather
than the u-index, a conventional indexing method. In the
Teapot model, the u-index has a little smaller cache miss
than the A-index because the Teapot model is u-major
dominant. In other models, however, the A-index has
smaller cache miss. In the u-index, a projected angle of a
mapped span into a coordinate axis is 0 ~ 90° because the
projection is applied to only the u-axis, However, the
angle is bounded 0 ~ 45° in the A-index because the
projection can be applied to u-axis or v-axis. Therefore,
the value of the HE has smaller deviation in the A-index
than in the u-index. As a result, the A-index has smaller
cache miss and smaller estimation error than the u-index.

Table 3. Estimation errors
 u-index A-index

Teapot
1604 triangles,

12.0 pixs/triangle,
u-major dominant

Avg. $ miss
Est. $ miss
RMS error

%

3748.8
4639.1
999.4
26.7

3919.2
3885.9
348.5

8.9
Chess

8310 triangles,
5.6 pixs/triangle,
v-major dominant

Avg. $ miss
Est. $ miss
RMS error

%

3474.9
2487.2
1035.2

29.8

2090.3
2108.1
243.0
11.6

Elephant
4063 triangles,

18.1 pixs/triangle,
-

Avg. $ miss
Est. $ miss
RMS error

%

2229.2
2317.1
282.3
12.7

2091.2
2081.4
254.6
12.2

5. Conclusions

In this paper, we have proposed A-index, a method to
reduce memory bandwidth required for fetching texture

image data by reducing cache miss through adaptive
selection of an index according to the mapped direction of
a span. To prove our idea, we designed a texture mapping
hardware model including a texture cache. From cycle-
accurate HDL simulations, we examined the number of
cache misses and the number of total cycles for rendering
some test scenes. In the case of using the A-index, cache
miss and total cycles were saved by 21.6 % and 8.8 %
respectively. Also, it is possible to maintain or increase
cache performance with only a half-sized cache if the A-
index is used. By the decomposition of cache miss based
on triangle spans, we showed that it is possible to estimate
the number of cache misses in a texture cache by
calculating intra-span replacement. In addition, we found
that we can estimate cache miss more precisely with small
errors if the A-index is used.

Acknowledgment

This work was supported by SystemIC 2010 Project
and SAMSUNG Electronics.

References

[1] Paul S. Heckbert, “Survey of Texture Mapping”,

IEEE Computer Graphics and Applications
November 1986;56-67.

[2] Ziyad S. Hakura and Anoop Gupta, “The Design and
Analysis of a Cache Architecture for Texture
Mapping”, Proc. of the 24th International Symposium
on Computer Architecture May 1997;108-119.

[3] H. Igehy, M. Eldridge, and K. Proudfoot.
“Prefetching in a Texture Cache Architecture”,
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 1998.

[4] M. Cox, N. Bhandari, and M. Shantz, “Multi-level
Texture Caching for 3D Graphics Hardware”, Proc.
of the 25th International Symposium on Computer
Architecture, 1998.

[5] Andreas Schilling, Gunter Knittel, and Wolfgang
Straβer, “Texram: A Smart Memory for Texturing”,
IEEE Computer Graphics and Applications, 16(3), pp.
32-41, May 1996.

[6] Tony Givargis, “Improved Indexing for Cache Miss
Reduction in Embedded Systems”, Design
Automation Conf., pp. 875-880, June 2003.

[7] Alan Watt, 3D Computer Graphics, Addison-Wesley
Publishing Company, Second edition, 2000.

[8] Lance Williams, “Pyramidal Parametrics”, Computer
Graphics (Proc. SIGGRAPH 83), Vol. 17, No. 3,
pp.1-11, July 1983.

[9] Inho Lee, et al., “A Hardware-like High-level
Language Based Environment for 3D Graphics
Architecture Exploration”, ISCAS 2003, Tailland,
May, 2003.

