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Abstract 
 
For a specified application, there is an opportunity to 

improve cache performance by smart choosing of index 
bits of a cache. A texture cache for texture mapping of 3D 
computer graphics is an example. Texel(texture pixel)-
access characteristics for texture mapping are dependent 
on the rasterization order of a polygon.  

In this paper, we introduce A-index, a method to reduce 
memory bandwidth required for fetching texture image 
data by reducing cache miss through adaptive selection of 
an index according to span direction of a rasterizer. By 
designing a texture mapping hardware including a texture 
cache, it is verified that the number of cache misses and 
the number of total cycles are reduced by 21.6 % and 
8.8 % for rendering of textured scenes. In addition, we 
show that the number of cache misses in a texture cache 
can be estimated more accurately by calculating intra-
span replacement when the proposed A-index is used. 
 
1. Introduction 

 
Computer graphics has become an important technique 

in many applications such as CAD tools, game, film, 
virtual reality and etc. Although many techniques are used 
in 3D Computer Graphics, texture mapping is one of the 
most successful and popular techniques in high-quality 
image synthesis. Especially, texture mapping creates the 
appearance of complexity without the tedium of modeling 
and rendering every 3D detail of a surface [1]. Moreover, 
texture mapping is a basis of other mapping techniques 
such as shadow mapping, environment mapping, bump 
mapping and etc. However, the greatest weakness of the 
texture mapping is that it requires high memory bandwidth 
to fetch the texture image data. The use of a cache is 
important in improving processing speed of a system. A 
well-tuned cache hierarchy and organization can induce 
the increase of system performance and bandwidth saving 
in a system bus. 

So far, many researchers have proposed cache 
architectures for texture mapping. In 1997, Zihad S. 
Hakura [2] presented a paper about the design and analysis 
of a texture cache. He proposed to use a cache for texture 
mapping and analyzed the cache organization such as 

cache size, line size and associativity. In 1998, Homan 
Igehy [3] proposed to use caching in conjunction with pre-
fetching for hiding memory latency. Also, Michael Cox 
[4] proposed to use multi-level texture caching for solving 
the problem of cache size and bandwidth. Physically, he 
used a two-level cache: a small L1 cache to directly 
connect with a graphics accelerator and a large L2 cache 
to reduce bandwidth requirement through less cache miss. 
Besides, the capacity of bus bandwidth has been increased 
as shown in the development of AGP 2/4/8X. Although 
many researches have been done in the view of cache 
hierarchy and organization, texture memory bandwidth is 
still a critical issue in the design of a 3D graphics system. 
The reason is that the bandwidth requirement is also 
increasing by more texture usages and more sophisticated 
filter methods which need more texels per pixel like 
footprint assembly [5]. Meanwhile, there was an attempt 
to improve cache performance by optimal selection of 
index bits considering application set [6]. However, the 
method has a weakness that the index bits are fixed for the 
whole run time. 

In this paper, we propose a new method to reduce 
texture bandwidth requirement by reducing cache miss-
rate through adaptive selection of an index. We call it A-
index. By using the A-index, we can reduce cache miss by 
changing cache index bits of a texture cache considering 
data access characteristics. The key characteristics of 
texture data access are that texture data are a 2D data and 
access direction is not either horizontal or vertical but 
randomly directed. Conventionally, the horizontal 
coordinate of a texel has been used for the cache index. 
However, we can use the horizontal or the vertical 
coordinate of a texel as the cache index adaptively by 
checking the trends of texel-access direction on the texture 
image. The cache miss reduction obtained by using the A-
index diminishes pipeline stalls, bus bandwidth required 
for texel fetch, and time for texture mapping. Also, the 
saved bus bandwidth can lead more performance increase 
due to the reduced bus contention. Therefore, we can 
speed up rendering time in texture mapping by the A-index. 
Besides, we decomposed cache miss into three parts based 
on the triangle spans. We will show that we can estimate 
cache performance through the decomposition and linear 
approximation of the relation of the number of cache 
misses and the number of intra-span replacements. 



2. Backgrounds 
 
2.1. Texture Mapping & Triangle Span 

 
In 3D computer graphics, surfaces of a 3D object are 

modeled into sum of triangles. Mapping of a 2D image 
onto the surface is texture mapping. The image mapped 
onto the surface is called a texture map and its individual 
element, texture pixel, is often called a texel. The texture 
mapping consists of two steps: the first is a transform from 
the 2D texture space to the 3D object space and the second 
is a transform from the 3D object space to the 2D screen 
space [7]. The composition of two transforms is denoted 
as a rational linear projective transform as shown in (1). 
The xs, ys and u, v are coordinate values of a pixel in the 
screen space and a corresponding texel in the texture space. 
And, a~ i are constants. 
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All the triangles composing a 3D object are 

decomposed into spans in a span rasterizer for screen 
viewing. Span means a set of consecutive horizontal pixels 
resided in a triangle. By mapping, a span is mapped into a 
random-directed straight line on a texture image as shown 
in Figure 1. This line conservation property is well 
explained in the following. When an arbitrary line in the 
screen space, BxAy ss += , is mapped into texture 
image space, a corresponding line, BuAv ′+′= , is 
obtained by substituting xs and ys in (1) and rearrangement.  
 

 
Figure 1. Mapping of triangle spans 

 
2.2. Texture Cache & Triangle Span 

 
The effectiveness of cache memory depends on locality 

of reference in data accesses. Both spatial and temporal 
localities are present in texture mapping [2]. Mip-map 
filtering [8] increases spatial locality in texture access 
since the level of the map is selected to closely match the 
level-of-detail that is being drawn on the screen. That is, 
due to the Mip-map filtering, one pixel movement in 
screen space is nearly mapped to one texel movement in 

texture space. One texture image can be mapped to several 
polygons of single frame or consecutive frames. Therefore, 
temporal locality in texel access is also present. In the 
cases of bilinear or trilinear filtering, multiple texels are 
needed for single pixel. It also contributes to temporal 
locality because some of the multiple texels for a pixel are 
apt to overlap with some texels for neighboring pixels. 
Due to the locality of texture, we can use a texture cache 
to improve system performance and to save the required 
bandwidth in system bus.  

A rendered scene can be decomposed into a set of 
spans. Cache replacement can be divided based on the 
triangle span. If cache replacement occurs between texels 
residing in the same span, we call it intra-span 
replacement. If replacement occurs between texels of two 
different spans, we call it inter-span replacement. In cache 
operation, there is one cache replacement when one cache 
miss occurs excluding cold miss. So, cache miss can be 
calculated by counting cache replacement occurring in the 
cache. That is, total cache miss in a texture cache for 
rendering a textured scene can be denoted as the 
following : 
 

  (2) 
 
 
 

 
3. Adaptive Selection of an Index 
 
3.1. Basic Idea 
 

In a cache, address for cached data is divided into three 
parts (tag, index, and offset) as shown in Figure 2. And, 
LSBs of an address have been used for an index 
traditionally. Meanwhile, 2D data for a texture image are 
loaded in a horizontal line-scan order into memory and the 
address of a texel consists of concatenation of a vertical(v) 
coordinate (MSBs) and a horizontal(u) coordinate (LSBs). 
Therefore, only the u-coordinate of a texel has been used 
for a cache index. However, texel access pattern may be 
any direction. Therefore, if we use u- or v-coordinate 
value adaptively for a cache index according to the 
direction of texel accesses, then we will obtain a more 
efficient cache index than using only the u-coordinate 
value for a cache index. In the texture mapping, texel-
access direction is dependent on the rasterization order and 
many rasterization algorithms are based on the horizontal 
span rasterizer. Therefore, a polygon is decomposed into a 
set of horizontal line by a horizontal scan rasterizer. 
Besides, the horizontal line is also mapped to a line on a 
texture image. In this mapped line, if | u∆ | is greater than 
| v∆ |, we call it u-major. Otherwise, we call it v-major 
(shown in Figure 2(a)). If we get the access direction 
information adaptively, we can use the information to 
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select adaptively the index bits from u-coordinates or v-
coordinates. When the mapped direction on a texture 
image is u-major, we can obtain a more effective cache 
index if we use u-index, using u-coordinate as a cache 
index (shown in Figure 2(b)). That is, we can use wider 
range of cache slots in this case. But, if we use v-index, 
using a v-coordinate as a cache index, texels fetched from 
memory will reside in fewer cache slots. Therefore, the 
cache index will be ineffective and conflict miss will be 
increased in this case. Oppositely, if we use v-index for the 
case of v-major, we can obtain more effective cache 
indexing and cache miss reduction. That is, wider cache 
slots will be used for storing the texels resided on the 
dotted line. 

 
(a) Texel access direction and u/v-major 

 

 
(b) Texel address and u/v-index 

 
Figure 2. Adaptive selection of an index 

 
To do the above operation, it is need to select u-major 

or v-major adaptively. To decide whether texel-access 
direction is u-major or v-major, we use history of texture 
sampling points. That is, u/v-coordinates of the previous 
texture sampling point are stored. For the decision, 
coordinates of current and previous texture sampling 
points are compared. That is, the decision is obtained from 
moving direction of a texture sampling point. The decision 
is made in the time of address generation and it is used to 
select an index in the texture cache. 
 
3.2. Hardware Design 

 
To prove our idea, we designed a texture mapping 

hardware including a texture cache by using Verilog-HDL. 

From simulations, we compared cache miss count and 
total cycles of the proposed indexing method to those of 
the conventional method. We employed the values of the 
papers [2, 3] for important design parameters such as line 
size, way number, and cache size. Cache size is selected to 
16 KB. Line size is selected to 64 bytes (4×4 texels) 
according to the paper by Hakura [2]. In the paper, he 
presented that square regions of texture are most effective 
in exploiting spatial locality and a 4×4 block has the 
lowest miss rate. The greater block size has the large miss 
penalty and causes the working set size to become 
unnecessarily large, leading to many capacity misses. 
Contrarily, the smaller block size has less spatial locality 
and causes high miss rate. Also, he presented that conflicts 
between blocks at adjacent levels of the Mip-map can be 
successfully eliminated with two-way set associative 
cache. Therefore, we use a two-way set associativity in 
texture cache design. As shown in Figure 3, texture unit 
consists of five pipeline stages: Fetch, AddrGen, 
TexelRead, Filter, and Blend.  
 
 

 
 

Figure 3. Texture mapping H/W 
 

The texture cache ought to be modified to support our 
idea. It should be marked whether a cached data uses u-
index or v-index. Therefore, it is necessary to add a 1-bit 
register per cache line for distinguishing u-index/v-index 
in the cache write time. In addition, hit check operation 
should be modified in order not to commit hit/miss 
decision errors. In a conventional cache, hit check 
operation is done by tag comparison of the cache line only 
in a matched index. For our method, however, tag 
comparison is needed twice as often as in the conventional 
cache because hit may occur in one of two cache lines of 
u-index and v-index. In the cache read time, only when the 
index of the hit cache line coincides with the index of the 
distinguishing register, final hit occurs. The modified part 
in a cache for the A-index is depicted in hard lines in 
Figure 4. 



 
Figure 4. Cache modification for the A-index 

 

 
(a) Conventional hit check 

 
(b) Modified hit check for the A-index 

 
Figure 5. Hit check data-path 

 
In Figure 4, hit data is selected from four slots. Does it 

mean that each way has two read ports? The answer is no. 
The reason is that we can fix a cache index before a read 
request by pre-comparing. As shown in Figure 5, tag 
comparison and cache memory read operations are 
processed in parallel in the conventional hit check. 
However, the two operations are processed sequentially 
for the pre-comparing during a single cycle in the case of 
the modified hit check. That is, tag comparison is done to 
select cache index first, then the cache line of the selected 
index is read. This will extend logic depth for hit check. 
However, it is not a problem since the logic is not in the 
critical-path. The critical-path is present in the Filter or 
Blend stage of the texture unit pipeline since a GPU is 
running in much lower clock frequency than a CPU. Logic 
depth of data-path in a GPU becomes much longer than in 
a CPU. Meanwhile, the direction decision is processed by 

simple comparison logic in the AddrGen stage shown in 
Figure 3. Hardware overhead for the A-index is composed 
of two parts: one is data-path for direction decision (1,500 
gates) and the other is additional logic for the cache 
modification (18,500 gates). Additional logics for the two 
parts are about 20,000 gates. It is under 10 % of the whole 
texture mapping unit excluding the 16 KB texture cache 
which is about 220,000 gates when it is approximately 
converted into gate count. 
 
4. Simulations 

 
We prove that the A-index has benefits in terms of 

performance and bus bandwidth. From HDL simulations 
using the hardware model explained in the above section 
with some test scenes, we compared u-index, v-index, and 
A-index in terms of cache miss counts and total cycles. 
Rasterized fragments of test scenes, inputs for Verilog 
simulations, were obtained from GATE [9], the graphics 
architecture simulator programmed in C-language which 
models overall graphics hardware architecture through a 
modular approach and supports OpenGL. In addition, we 
show that performance estimation of a cache is possible by 
the relation between intra-span replacement and cache 
miss. And, we compared estimation errors in the case of 
using the u-index and the A-index. 

 
4.1. Performance Improvement 

 
We simulated the HDL model and measured cache 

miss counts and total clock cycles with three test scenes 
shown in Figure 6. Size of the scenes is 640×480 pixels. 
Table 1 and 2 show the results. From the simulation 
results, we can see that the A-index has smaller cache miss 
and total cycles. Compared to the conventional index, u-
index, the A-index has improved performance about 
21.6 % in cache miss and 8.8 % in total cycles. It is due to 
the usage of wider cache slots obtained by changing the 
cache index adaptively.  
 

   
(a) Scene 1       (b) Scene 2       (c) Scene 3 

Figure 6. Quake3 demo scenes 
 

Table 1. Cache miss 
Cache miss  

u-index v-index A-index 
Scene 1 
Scene 2 
Scene 3 

56765 
39747 
50018 

55739 
38780 
36493 

44364 
33263 
37284 

Average 48843 43671 38304 
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Table 2. Total cycles 
Total cycles  

u-index v-index A-index 
Scene 1 
Scene 2 
Scene 3 

2461193 
2165945 
2793268 

2548911 
2243072 
2604522 

2210866 
2015042 
2539512 

Average 2473469 2465502 2255140 
 
We also demonstrate an influence of our idea on the 

cache size. It is summarized in Figure 7. From the results, 
we can see that it is possible to maintain or increase cache 
performance with only a half-sized cache if we use the A-
index. As the cache becomes large, we get less gain. It is 
due to the increased number of cache slots. As the number 
of cache slots increases, occurrence of conflict miss is 
reduced because increased index bits scatter cached data 
into wider cache slots.  
 

 
Figure 7. Cache miss in variable cache size 

 
4.2. Performance Estimation 

 
Miss-rate of a cache is one of the most important factors 

in performance of the system using the cache. It is not 
easy to estimate performance or cache miss of a texture 
cache because a texture cache stores image data which is 
deeply dependent on a rendering scene. Generally, it is 
necessary to simulate the whole cache operations for a few 
tens or hundred of test scenes to design a cache satisfying 
the required cache miss. However, we can save the 
simulation time if we can estimate cache miss by simple 
calculations. Cache miss can be split into three parts based 
on triangle spans as shown in (2). Here, we focus on the 
intra-span replacement which gives us a clue to estimate 
cache miss. It is possible to estimate cache miss by 
calculating the intra-span replacement, Rintra, given by the 
following:  
 

 
 
 
 

 
  (3) 

 

The intra-span replacement can be split into intra-span 
replacements per span, ri’s. K is the number of spans, ls 

and w mean span length and the number of ways. Seff and 
Sphy are the number of effective cache slots for a given 
span and physical cache slots per way. HE is a hashing 
efficiency of a span and can be modeled by the length of 
the touched blocks projected on the U or V coordinate 
divided by the number of touched blocks. HE has a value 
of 0~1 and means efficiency of the used indexing method. 
Cache replacement is needed when conflict occurred. 
Conflict occurring in a single span is explained well in 
Figure 8. When span-length exceeds effective cache slots, 
intra-span replacement occurs. If not, there is no intra-span 
replacement. By (3), we can calculate the number of intra-
span replacement for a given scene.  
 

 
Figure 8. Intra-span conflicts 

 

   
(a) Teapot         (b) Chess        (c) Elephant 

Figure 9. Test models 
 

We investigated the relation of intra-span replacement 
and cache miss obtained from HDL simulations on three 
test models (shown in Figure 9) which have different 
texel-access directions. We obtained data of 15 sample 
points from 15 different camera positions for each test 
model. The results are shown in Figure 10. By 45 points 
from the three models, we obtained estimated linear 
equations with the smallest RMS error in the cases of 
using the u-index and the A-index respectively. 
 

 
(a) u-index 



 
(b) A-index 

 
Figure 10. Estimated linear equations 

 
We estimated the number of cache misses from the 

estimated linear equations and measured estimation errors 
about the three test models respectively. It is shown in 
Table 3. From the results, we figure that it is reasonable to 
approximate cache miss from intra-span replacement. 
Especially, the A-index has smaller deviation in the 
number of intra-span replacements than the u-index 
according to texel-access direction. So, we can estimate 
cache miss with smaller error by using the A-index rather 
than the u-index, a conventional indexing method. In the 
Teapot model, the u-index has a little smaller cache miss 
than the A-index because the Teapot model is u-major 
dominant. In other models, however, the A-index has 
smaller cache miss. In the u-index, a projected angle of a 
mapped span into a coordinate axis is 0 ~ 90° because the 
projection is applied to only the u-axis, However, the 
angle is bounded 0 ~ 45° in the A-index because the 
projection can be applied to u-axis or v-axis. Therefore, 
the value of the HE has smaller deviation in the A-index 
than in the u-index. As a result, the A-index has smaller 
cache miss and smaller estimation error than the u-index. 
 

Table 3. Estimation errors 
 u-index A-index 

Teapot 
1604 triangles, 

12.0 pixs/triangle, 
u-major dominant 

Avg. $ miss 
Est. $ miss 
RMS error 

% 

3748.8 
4639.1 
999.4 
26.7 

3919.2 
3885.9 
348.5 

8.9 
Chess 

8310 triangles, 
5.6 pixs/triangle, 
v-major dominant 

Avg. $ miss 
Est. $ miss 
RMS error 

% 

3474.9 
2487.2 
1035.2 

29.8 

2090.3 
2108.1 
243.0 
11.6 

Elephant 
4063 triangles, 

18.1 pixs/triangle, 
- 

Avg. $ miss 
Est. $ miss 
RMS error 

% 

2229.2 
2317.1 
282.3 
12.7 

2091.2 
2081.4 
254.6 
12.2 

 
5. Conclusions 
 

In this paper, we have proposed A-index, a method to 
reduce memory bandwidth required for fetching texture 

image data by reducing cache miss through adaptive 
selection of an index according to the mapped direction of 
a span. To prove our idea, we designed a texture mapping 
hardware model including a texture cache. From cycle-
accurate HDL simulations, we examined the number of 
cache misses and the number of total cycles for rendering 
some test scenes. In the case of using the A-index, cache 
miss and total cycles were saved by 21.6 % and 8.8 % 
respectively. Also, it is possible to maintain or increase 
cache performance with only a half-sized cache if the A-
index is used. By the decomposition of cache miss based 
on triangle spans, we showed that it is possible to estimate 
the number of cache misses in a texture cache by 
calculating intra-span replacement. In addition, we found 
that we can estimate cache miss more precisely with small 
errors if the A-index is used.  
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