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Abstract— Quantum computing offers immense speedup in
performing tasks such as data encryption and searching. The
quantum algorithms can be modeled using classical computing
devices, however classical computer simulations cannot deal
efficiently with the parallelism present in quantum algorithms.
The quantum circuit model for quantum algorithms is sufficient
to describe the known quantum algorithms. Using analogies
between quantum and digital circuits, we design the emulator of
quantum algorithms in FPGAs that allows efficient experimen-
tation with new quantum algorithms. This paper concentrates
on new techniques for modeling quantum circuits, including the
entanglement and probabilistic computing realization, as well as
the critical issues in the required precision of computing.

I. I NTRODUCTION

There is an increased interest in quantum computing and
algorithms [5]. Many quantum algorithms outperform their
classical counterparts through parallelism that is impossible in
classical computing. Such algorithms use physical effects like
entanglement and super-position to achieve the speedup. These
effects are hard to replicate at large scale and lead to reliability
and precision issues, as well as to the need to employ suitable
quantum measurement procedures [1]. Nevertheless, some of
the quantum effects have been successfully used in practical
applications such as data encryption and communication [5].
Further, several quantum-computing systems are being devel-
oped [7]. IBM has developed a small-scale quantum machine
that is able to execute the celebrated Shor’s algorithms for
factoring numbers. However, creating larger and more practical
quantum computers is still not possible, as knowledge about
building quantum systems is still in its infancy. To develop
quantum algorithms, simulation models nevertheless suffice.

Feynman noted that a quantum computer can be modeled
efficiently only by another quantum machine. In absence
of large-scale quantum machines, quantum algorithms are
currently being simulated by classical computers. Modeling
of quantum processes in software is the arduous task that is
currently facilitated mostly by quantum computing libraries
[3], [11], [12]. The challenge here comes from the need for
using approximations of quantum processes, as their exact
representation in classical computing is not possible. Even by
using approximations, it is estimated that a single simulation
run over a 20-bit quantum system requires a day of computing
time on modern computers [8]. For developing quantum sys-
tems, it is advantageous to have a hardware emulator which

approximates quantum effects, but mimics the parallel nature
of quantum computation more closely than software-based
simulators.

Quantum circuitsare one convenient way of describing
quantum algorithms. Such circuits comprise of analogues to
digital bits and gates. These components can be emulated
in existing FPGAs, which can map inherently parallel com-
putational tasks more efficiently than software simulations.
For this reason, we investigate the design of quantum circuit
emulators by classical circuits, and devise an FPGA-based
quantum circuit emulator. Using quantum circuit primitives,
the construction of new quantum algorithms becomes intuitive
and similar to the common software library approaches.

The paper is organized as follows. In Section II, we provide
the background on quantum computation. In Section III, we
give details of our quantum circuit emulation system, followed
by several case studies and performance analysis in Section IV.

II. BACKGROUND

In this section, we provide a brief review of the concepts
in quantum computing that have implications to the design of
a quantum circuit emulator.

A. Probabilistic vs. Deterministic Computing

One of the major distinctions of quantum computing is
that it is probabilistic and that quantum algorithms have to
deal with the reality of measurement errors. Surprisingly,
this difference often gets overlooked when modeling quantum
circuits and most modeling approaches still try to make the
simulations fit within the deterministic mode of computation.

Deterministic circuits present a computation model where
results of the computation can be obtained without any mea-
surement error. A classical (non-quantum) probabilistic circuit
runs a series of inputs through the network of gates and outputs
the bits according to the probability distribution induced by the
given network. Hence, in probabilistic computing the result
of computation cannot be determined correctly every time a
measurement of the result is made. Consequently, there is
a probability of an error in measuring probabilistic circuit
outputs, and the computation has to be performed a sufficient
number of times to make the expected error acceptable. In
this paper, we address both modes of modeling by FPGA
emulators.



B. Quantum Information Representation

The second major difference to classical computing arises
from the types of signal values required to perform computing.
While the basic information units for classical circuits are 0
and 1, quantum computing uses complex numbers as bearers of
information. Hence, representing a single quantum information
unit might require a large number of classical bits, depending
on the precision required.

More formally, the states of the quantum system belong to
a vector space over complex numbers in which there exists
an inner product of vectors. Such a vector space is usually
referred to as theHilbert Space H. For our purposes, it suffices
to say that the quantum states are depicted as vectors of
complex numbers.

In denoting these vectors, commonly used is the Dirac bra-
ket notation. Elements ofH are ”ket” vectors given by|x〉 ∈
H. A corresponding ”bra” vector〈x| is an element of the
dual spaceH∗ of all operatorson the vector space that act on
vectors and produce scalar values.

C. Quantum Bits

The basic units of quantum information can be viewed as
simple two-state systems, such as magnetic spin of plus/minus
one half. The state of a spin is given as a continuous quantity
represented by two real numbers. It is exactly this continuity
in spin representation that contributes to the ability of storing
the infinite classical information by a single quantum system.
Quantum bits defined this way are commonly referred to as
qubits. Qubits can be realized by means such as NMR and
trapped ion interactions.

Binary qubits have twocomputational base statesdenoted
as |0〉 and |1〉. Unlike classical bits, quantum bits are in a
linear superposition of the basis states|0〉 and |1〉.

|ψ〉 = α|0〉+ β|1〉 (1)

whereα andβ are complex coefficients related as

|α|2 + |β|2 = 1. (2)

The superposition phenomena, by which the qubits simulta-
neously exist in states|0〉 and |1〉 is explained by considering
|α|2 and |β|2 as probabilities of being in|0〉 and |1〉, respec-
tively. However, when a measurement is performed on a qubit,
it collapses to either of the two basis states.

III. FPGA QUANTUM CIRCUIT EMULATOR

A. Challenges in Emulating Quantum Circuits

Emulation of quantum circuits requires mapping concepts
from quantum physics to classical technologies. The main goal
is to simulate quantum computation in a way that is more
flexible and efficient than software simulators. As most quan-
tum algorithms require an exponential amount of resources
when simulated by classical technology, resource management
is a key design issue. The second goal is to emulate the
parallelism in quantum computing using FPGAs. Finally, it
is desired that the modeling tool be simple to use and that the

construction of the model does not require significant effort
from the developer. The overall design process is illustrated in
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Fig. 1. Modeling quantum circuits using the VHDL quantum gate library

Figure 1. Quantum circuits are constructed from the quantum
gate components provided in the library that we have created.
The correctness of the circuit can be verified either by software
simulation or by FPGA emulation. We thus, have a technique
for modeling quantum ciruits using VHDL and then synthesiz-
ing the circuit in hardware to achieve the performance needed
to make the whole process more practical.

We next show how the fundamental constructs of quantum
circuits and the rules governing quantum computation are
simulated by classical technology.
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Fig. 2. Fixed-point quantum bit representation

B. Emulation of Pure Quantum Bits

The quantum bit is implemented using Equation 1. Thus, we
need to store the values ofα andβ to describe a qubit. The
finite precision description ofα andβ introduces imprecision
errors, as quantum gates involve operations like add and
multiply on α andβ. To keep the size of the quantum circuit
to a manageable proportion, we implement theα andβ using
the fixed point scheme described in Figure 2.

Each qubit is represented by four fixed point numbers.
The fixed point scheme was chosen over the floating point
representations becauseα and β can have a decimal part
of 0 or 1 only. Having the exponent field in the number
representation (as in floating point arithmetic) does not bring
benefits in this case. Regarding the precision, the emulator
has been designed in a modular way - changing the size of
the fractional part is achieved without any modifications to
the other components of the system. This is an advantage
for experiments dealing with precision and fault-tolerance of



quantum algorithms and it incorporates the ideas of quantum
error correction to the emulator.

Quantum gates, described by matrices of complex numbers,
bring additional imprecision to the system. The error model of
a quantum gate is depicted in Figure 3. Here,δ is the error in
the input that is propagated and augmented with errorε, the
discretization error of the matrix coefficients representing the
given gate.
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Fig. 3. Quantum gate error model

The error model can be expanded as in Figure 4. Then, the
multiple sources of an error are added linearly. This model is
used to evaluate the error at each gate in the network.
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The absolute errorE is thus,

E =
√
α2

e + β2
e (3)

whereαe andβe are described in Figure 4. These error values
effect the probability of the qubit to be in|0〉 or |1〉 state when
the qubit is subjected to a quantum measurement.

The qubit can be considered as a three dimensional unit
vector in Figure 5 - while two dimensions are needed forα
andβ, the third dimension is attributed to the use of complex
numbers. The representation error in the qubit is then given

as the absolute difference between the true and discretized
positions of the vector representing the qubit.

C. Quantum Gates

A quantum gate is the analogue of a logic gate in a classical
circuit model. Few gates that are useful in developing quantum
algorithms are given next, together with the error magnitudes
obtained in their modeling by classical circuits.

Quantum systems are reversible by nature. Information can
travel freely in both directions: from inputs to outputs and vice
versa. Thus, each gate must have the same number of inputs
and the outputs. The single input gates are defined by a2× 2
matrix with complex entries.

1) Walsh-Hadamard Gate:The Walsh-Hadamard gate (H
gate) facilitates the superposition of pure quantum states.

H =
1√
2

[
1 1
1 −1

]
If |ψ〉 = α|0〉+ β1〉 is the input qubit to the Hadamard gate,
then the transformed state is:

H|ψ〉 =
1√
2
((α+ β)|0〉+ (α− β)|1〉)

The new stateH|ψ〉 is a superposition of the computational
basis states. This gate is also referred to as the square root of
the identity, sinceH2 = I, and thereforeH|H|φ〉 = |φ〉.

The implementation of theH gate requires four multiplica-
tions and four additions, as bothα andβ are complex. Since
the coefficients of the Hadamard gate cannot be represented
without imprecision, the gate incurs a discretization error on
both theα andβ values of the output qubit.

2) Phase Shift Gate:The operation of the phase shift gate
φ on the single qubit is defined in the following way:

|0〉 → |0〉 and |1〉 → eiφ|1〉

The definition of a phase shift gate is given by matrixNS

as:

NS =
[

1 0
0 eiφ

]
The phase-shift gate requires multiplication of two complex

entities:eiφ andβ. This means that 4 multiplications and two
additions have to be performed in this gate. Due to the finite
representation ofeiφ, a discretization error is incurred on the
β value of the qubit at the output.

3) X-Gate: The X-gate is a single-qubit gate that performs
the quantum equivalent of a NOT operation on the qubit. The
quantum NOT operation simply swaps theα andβ values of
a qubit:

X =
[

0 1
1 0

]
For the vector|ψ〉 = α|0〉 + β|1〉, this transformation

amounts to producing

X|ψ〉 = β|0〉+ α|1〉

The gate does not incur any error to the algorithm as the
emulation of the gate involves swapping the bits ofα and
β



4) Controlled NOT Gate:Controlled NOT, or CNOT gate
accepts two quantum bits: a control qubit,|η〉 and a target
qubit, |ψ〉, and produces the outputs:|η〉 and |(η⊕ψ)〉 where
⊕ is the XOR operation.

Its transform matrix in input order|η〉 and |ψ〉 is:

Nc =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


In simple terms, if |η〉 = |0〉, then |ψ〉 is inverted, hence
the name CNOT. This operation is well-defined for any linear
superposition of states, unlike binary NOT gates which only
convert 0 to 1, and vice-versa.

5) Z-Gate: TheZ-gate is a single-qubit gate that inverts the
phase of the qubit in1〉 basis.

Z =
[

1 0
0 −1

]
That is,

Z|ψ〉 = α|0〉 − β|1〉

The Z-gate does not introduce any error as it simply flips
the sign bits for the complex beta value.

The data in Table I was obtained by computing the absolute
error in the output of each gate using 16-bit mantissa length
for gate coefficients and the inputs. The input to each gate
was chosen to be|ψ〉 = 1√

2
|0〉 + 1√

2
|1〉. From experiment it

was found that the error is maximum when the qubit is in a
superposition state. For multi-qubit gates like the CNOT gate,
the error varies depending on the entangled or unentangled
nature of the output of the gates.

TABLE I

ABSOLUTE ERROR ONQUBIT IN STATE |ψ〉 = 1/
√

2|0〉+ 1/
√

2|1〉

Gate Absolute Error
(16-bit mantissa)

Hadamard Gate 3.05× 10−5

Phase-Shift Gate 3.08× 10−5

X-Gate 0
Z-Gate 0

D. Emulation of Quantum Gates

A library of common quantum gates has been developed
comprising of most of the simple quantum gates (Hadamard
gate, CNOT gate,X-gate,Z-gate, phase-shift gate) that are
commonly used. The gates are realized by mapping their
transformation to VHDL code. Therefore, gates with simple
transformations like theX-gate andZ-gate require less re-
sources than the other gates.

We then decided to use the code-generating capability of
the VHDL language to automatically produce descriptions
of multiple input quantum gates from single-input gates. In
general, an-input gate is represented by a2n by 2n matrix. For
controlled gates, the number of control variables is passed as a
parameter to the code generating script. For efficiency reasons,

the script produces the VHDL description of the resulting
transformation, rather than a large matrix form. The outlined
procedure hence automates the construction of arbitrary size
quantum gates. To construct network of quantum gates, we
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Fig. 6. Emulated quantum circuit overview

insert intermediate registers to hold the qubit values after
each gate. These quantum state registers (QSRs) essentially
represent the state of the entire quantum system at any given
stage of evolution. Since the QSRs are clocked they can
synchronize the data flow in the system, which is important
for large circuits.
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Fig. 7. Emulation of quantum evolution of an entangled system

E. Emulation of Entanglement

A gate resulting inentanglementrequires considerably more
resources than a gate where no entanglement occurs. This is
the reason why efficient simulation of quantum computation is
difficult on classical computing devices. Consider a two-input
C-NOT gate and a situation where the controlled qubit is in
superposition. In such a case the gate operation is described
as follows

|ψcontrol〉 = α1|0〉+ β1|1〉

|ψtarget〉 = α2|0〉+ β2|1〉

|ψout〉 = α1α2|00〉+ α1β2|01〉+ β1β2|10〉+ β1α2|11〉

In an entangled state, the qubits cannot be represented
individually. For the case of two qubits|ψ1〉 and |ψ2〉, if
they are unentangeled we can represent them as two distince
qubits |ψ1〉|ψ2〉. However, once entangled the qubits can only
be represented in|ψ1ψ2〉 form.

The C-NOT gate requires 4 complex multiplications in this
case. For ann input C-NOT gate, the number of complex



multiplications is 2n. This exponential increase becomes a
serious issue with entangled systems. FPGAs have a large
amount of logic cells (and multiple FPGAs can be combined
for even bigger circuits) and therefore large quantum circuits
with entangled states can be emulated. While efforts are
made to overcome this overhead in the resource usage when
simulating the evolution of an entangled system [10], we
note that the entanglement poses a fundamental bottleneck in
modeling quantum systems by classical means.
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Fig. 8. Emulation of probabilistic quantum computing

F. Emulation of Quantum Measurements and Probabilistic
Computing

Quantum measurements and the probabilistic nature of
quantum algorithms are currently supported directly by a
combination of hardware and software means. Due to the
complexity of quantum measurement algorithms (which are
being investigated and developed in parallel), software simu-
lation of quantum measurements is currently employed [1].
We however foresee the possibility of emulating quantum
measurements in hardware once the measurement algorithms
become developed and stable. To perform the measurement in
hardware, it suffices that the probabilities for detecting each
state are pre-computed in software and stored in hardware.
The probabilities can then be used as weights to emulate the
random state detection in hardware.

IV. QUANTUM CIRCUIT CASE STUDIES

A. Emulator Mapping Results

The techniques presented in this paper offer the means for
quantum circuit emulations in FPGAs by including quantum
gate library and entanglement components, like most quan-
tum software simulators [11]. No changes to standard FPGA
mapping and the overall design flow are required.

Table II depicts the logic cell usage for the quantum gates
in the library and that of the quantum circuits described above.
The device chosen were Altera Stratix EP1S80B956C6. The
simulation tool used is ModelSim and Leonardo Spectrum was
used to obtain synthesis results. SinceX andZ gates perform
a swap and a bit flip respectively, they consume negligible
resources.

As the number of qubits increases, the circuit size grows
exponentially due to entanglement effects. However, from the
emulation results we can observe that fairly large circuits can
be constructed. The potential of this emulation technique for

large quantum circuits is also evident as by combining multiple
FPGAs we have a possibility of emulating the functionality
and other pertinent quantum effects (like quantum error-
correction) of more complex quantum circuits.

TABLE II

GATE LOGIC CELL USAGE ONALTERA STRATIX EP1S80B956C6

Gate LC Usage LC Usage
(8-bit mantissa) (16-bit mantissa)

Hadamard Gate 704 1284
Phase-Shift Gate 386 708

C-Not Gate 40 231
X-Gate 0 0
Z-Gate 0 0
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Fig. 9. A N-qubit QFT Circuit

B. Quantum Fourier Transform

The quantum Fourier transform (QFT) [2], [5], [6] is an
important quantum algorithm as it plays a key role in phase
estimation, order-finding and factoring algorithms. AN qubit
QFT circuit is depicted in Figure 9. The QFT algorithm
achieves exponential speedup compared even to FFT, which
by itself is one of the most important nontrivial algorithms.
The entire QFT circuit is constructed from one or two input
quantum gates. The QFT comprises of Hadamard and the
controlled-Rj gates. TheRj transform is defined as follows

Rj =
[

1 0
0 e2πi/2j

]
The Rj gate is similar to the phase-shift gate so the

controlled-Rj is implemented using controlled phase-shift
gates. We implemented a 3-qubit QFT circuit using our library.

C. Grover’s Search Algorithm

The Grover’s search algorithm [5], [6], [9] is yet another
illustration of quantum algorithms significantly outperforming
classical algorithms. The algorithm performs searches in is
O(
√
N) time, rather than classically possibleO(N), for a

database withN entries. The Grover’s search algorithm circuit
for 4 element data base is depicted in Figure 10. The oracle
gate is itself a “black box” quantum circuit that queries the
database for the search key. The oracle gate can be constructed
using the quantum gates provided in the library. In this circuit,



entanglement can occur depending on the query result from
the oracle gate. The circuit in Figure 10 was implemented
using our library.
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Fig. 10. Grover’s search algorithm for a 4 element database

Emulation data for the algorithms is provided in Table III.
Both of the algorithms were synthesized on the Altera Stratix
EP1S80B956C6 chip using 16-bit mantissas.

TABLE III

QUANTUM CIRCUIT PERFORMANCE

Circuit LC Usage Clock Speed
(16-bit mantissa)

3-qubit Quantum Fourier Transform 5076 82.1 MHz
Grover’s Search 12636 82.1 MHz

D. Comparison to software simulation

The hardware emulation of quantum circuits has significant
advantages over software simulators. First, the evolution of
each quantum bit can occur in parallel. Software simulators
have to sequentially simulate the evolution of each quantum
bit. Efforts are being made to create parallel software sim-
ulators [4] but they cannot achieve the parallelism available
through emulating quantum circuits using FPGA.

Secondly, by using QSRs, we can pipeline the quantum
circuit. This introduces latency to the design but provides the
ability to emulate quantum circuits for multiple inputs very
efficiently. This is not possible in software and the algorithm
has to be executed in its entirety for each new input.

In order to compare the performance of the FPGA emulator
to software, we found the average time required to execute the
above algorithms in software using [3]. The test was performed
on a 2 GHz Pentium IV machine running Redhat Linux.
The FPGA emulation of the same algorithms was performed
using 16-bit mantissas to represent gate coefficients and in-
puts. The benchmark results are presented in Table IV. The
FPGA emulator performs significantly better than the software
simulator. For larger circuits, the disparity in performance is
even greater because the sequential software simulation of the
qubits’ evolution becomes a more constricting bottleneck.

TABLE IV

BENCHMARKS

Circuit Libquantum FPGA Emulator
(seconds) (seconds)

Quantum Fourier Transform 40× 10−6 61× 10−9

Grover’s Search 90× 10−6 84× 10−9

V. CONCLUSIONS ANDFUTURE WORK

We presented the issues in the design and the operation of
a quantum circuit emulator based on FPGAs and developed
a platform for the development of quantum circuits. The
emulator allows the construction of fairly complex quantum
circuits from the component library in a simple way. At the
same time, it emulates the parallelism present in quantum
computers by constructing parallel evolution paths for each
quantum bit on the FPGA. We show that FPGA emulations are
advantageous, as it is difficult to efficiently emulate the parallel
evolution of the quantum system in software. The emulator
is also scalable and has the potential of emulating complex
quantum circuits. This emulator can also incorporate further
quantum computing concepts like quantum error-correction,
fault-tolerant quantum computing and quantum measurement
techniques. These would be especially helpful in developing
practical systems for quantum computers.

Other uses of the quantum emulator can be for the anal-
ysis, optimization and approximation of quantum Fourier
transforms, which are critical for most spectacular quantum
algorithms. We plan to further explore the development of
quantum/reversible gate libraries and specialized architectures
for emulation of quantum algorithms [8] and [15].

Finally, we plan to undertake a study and optimization of
quantum measurement algorithms using this emulator, which
is currently not practical by software simulations.
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