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Abstract

Simultaneous Multithreading (SMT) is emerging as an
effective microarchitecture model to increase the utilization
of resources in modern super-scalar processors. However,
co-scheduled threads often aggressively compete for cer-
tain limited resources, among the most important of which
is space in the cache hierarchy. Rather than require future
systems to have more cache resources, performance-aware
scheduling techniques can be used to adapt thread schedul-
ing decisions and minimize this inter-thread contention for
cache resources. Although many processors currently have
the ability to summarize the activity in each cache level,
systems that monitor and collect detailed information about
cache access behaviors can enable scheduling algorithms
to fully exploit multithreaded cache workload characteris-
tics in different cache regions. This paper explores the de-
sign of a novel fine-grained hardware monitoring system
in an SMT-based processor that enables improved system
scheduling and throughput.

1. Introduction

By concurrently executing instructions from multiple ac-
tive threads, simultaneously multithreaded (SMT) proces-
sors avoid limitations on instruction-level parallelism and
exploit thread-level parallelism. The SMT microarchitec-
ture model more fully utilizes available system resources
and thus is emerging as the leading, cost-effective method
to sustain performance of commercial and scientific work-
loads. Unfortunately, as the gap between memory and pro-
cessor core performance widens, cache penalties will be-
come more damaging to overall system performance, even
in SMT designs. For instance, studies [3] have demonstrated
that performance of an SMT processor is directly tied to
the efficiency of the lower cache levels. This effect will
only grow as the penalties for main memory and lower-
level cache accesses grow in terms of clock cycles. Like-

wise, SMT designs must also address the penalties due to in-
creased cache miss rates caused by inter-thread contention
for cache resources.

Fortunately, the effectiveness of multithreaded systems
is not strictly controlled by hardware constraints. For ex-
ample, experimental studies ([8][10]) have shown that in
a multithreaded architecture, the selection of threads to
schedule together has a major impact on overall system per-
formance. Since threads are competing for finite processor
resources, inter-thread contention for resources can invali-
date the advantages of multithreading and reduce its effec-
tiveness. Thus, the key to effective scheduling in a multi-
threaded system is determining which threads can be sched-
uled together as to minimize the inter-thread conflict rate
as to maximize overall performance. Although static tech-
niques have been developed to pre-select thread pairs can
try to minimize thread interference, adaptive techniques
have greater potential to overcome program execution vari-
ance and generate more symbiotic system schedules. In or-
der to make effective run-time scheduling decisions, thread
schedulers must be able to monitor the behavior of individ-
ual threads and predict future execution behavior in order to
estimate the interference between individual threads.

To date, current microprocessors only include perfor-
mance monitoring counters that can only summarize cache
access behavior. Yet, the full potential of multithreaded sys-
tems can only be fully realized by using operating sys-
tem scheduling algorithms that can effectively monitor de-
tails of cache behavior and track inter-thread cache con-
tention. Likewise, since program behavior can vary drasti-
cally over time and programs execute in phases [7]. There-
fore, an effective thread scheduler must be able to recognize
and predict program behavior changes. It has been demon-
strated [11] that SMT performance is dictated by not only
which threads are scheduled together, but more importantly
by the phase characteristics of each executing thread. As
such, it is critical to develop dynamic thread scheduling
techniques that can adapt to program phase changes. Ide-
ally, the thread scheduler should predict future behavior as



well as monitor program phase to maximize program per-
formance during the next scheduling period.

This paper investigates architectural support for
performance-awareSMT thread scheduling techniques that
exploit the memory access behaviors and patterns of in-
dividual threads. We extend existing operating system
scheduling techniques to predict inter-thread interaction be-
fore each scheduling interval, rather than treating thread
behavior as monolithic. The hardware methods for track-
ing and predicting thread behavior are relatively simple
by design, yet they can directly aid the operating sys-
tem job scheduler in reducing inter-thread interference
by an average of 10%, resulting in an average 7% per-
formance improvement. Details of job scheduling tech-
niques based on the presented hardware monitoring struc-
tures can be found in [6]. The remainder of the paper
is organized as follows: Section 2 discusses the moti-
vation for this work, Section 3 illustrates the proposed
hardware structures, Section 4 describes the experimen-
tal methodology and results, and Section 5 concludes the
paper.

2. Motivation

Job scheduling can alter the collective system workload
by selecting threads based on their individual characteris-
tics. A number of architecture resources and their potential
bottlenecks to overall performance can be examined to de-
termine the combined SMT execution efficiency of multiple
threads. For example, limitations in number of integer units,
floating-point units, cache ports, fetch bandwidth, and cache
space are just a few of the processor components that can
be overrun by job mixes that include too many simultane-
ous resource requests made from two or more threads dur-
ing the same interval. Thus, with the effectiveness of cache
memories being of primary importance to reducing the fre-
quency of long latency memory requests, it is essential that
job scheduling for an SMT involve matching the memory
request characteristics of paired threads. To do this, effec-
tive ways of observing and communicating exploitable run-
time memory behavior to the operating system are needed.

Figure 1 illustrates temporal cache use behavior of
188.ammpand 253.perlbmkfrom the SPEC CPU2000
benchmark suite. The x-axis of each graph is the time mea-
sured in samples of one million clock cycles. Along the
y-axis is cache position (grouping of cache sets into 32 re-
gions or super sets). Asuper setis a grouping of several
contiguous cache sets. The color of each super set indi-
cates cache activity, dark represents very low usage and
light represents very high. These cache maps demonstrate
behavior that changes not only temporally, but also spa-
tially with some regions hosting the majority of overall
cache activity. Each application has distinct patterns (tem-

poral and spatial) in each of the different levels of cache,
all of which is meaningful to understanding how to cre-
ate the best job mix for an SMT system.
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Figure 1. Level-2 cache activity characteris-
tics for 188.ammp and 253.perlbmk.

The consequence of scheduling two jobs with high activ-
ity at the same super set positions during the same schedul-
ing interval is directly correlated to the inter-thread kick
outs (ITKO) incurred during paired execution. An ITKO is
a line of the cache from thread A being pushed out of the
cache because thread B requires that cache line. If thread A
is not finished with that data, it will have to recall it from
lower in the memory hierarchy and incur a performance
penalty that it would not have taken in a single threaded en-
vironment. Under evaluation, we observed that inter-thread
conflict misses account (on average) for more than 30% of
the overall data misses, and 25% of the instruction misses,
on a randomly selected job mix of SPEC 2000 applications.
Although thread thrashing can be mitigated by increasing
cache associativity, it does so at the cost of increased hard-
ware complexity and cache access time. As such, minimiz-
ing the amount of inter-thread conflict using performance-
aware multithreaded schedulers proves to be an effective
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Figure 2. IPC correlation to activity conflu-
ence of two paired threads.

and most likely necessary technique.
Figure 2 shows the consequence to the number of ex-

ecuted instructions per cycle (IPC) on an SMT machine
when monitoring the number of groups of cache sets that
had high activity for both threads in an SMT system execut-
ing two threads. Thirty-two super sets were considered, and
the forty-five pairings of nine SPEC CPU2000 benchmarks
(including two instances of the same benchmark) were eval-
uated to derive this data. Overall, the results show that IPC
is strongly correlated with the confluence of cache set activ-
ity of the combined threads. When two threads have zero-
overlap (below an average threshold) in their cache activ-
ity, IPC is generally 1.5 higher than when two threads over-
lap across all 32 cache super sets.

The decisions of operating systems schedulers can be
driven by fine-grained run-time information. To test this
concept, sixteen random job mixes of SPEC CPU2000
benchmarks, consisting of four applications per job, were
examined using an SMT architecture simulator. At each
scheduling interval, the operating system could choose one
of three threads to schedule with a resident (fourth) thread.
Scheduling decision were based on the level two cache
miss counter that tracks overall cache misses and compared
against the scheduling decisions based on monitoring a 128-
super-set activity vector of the cache accesses. The results
are summarized in table 1. Although there is a great deal
of variance between the individual tests, 22.5% of the deci-
sions were different on average between the two methods.
In the tests where very few or none of the decisions dif-
fer typically involve benchmarks with very high (such as

Benchmark Mix % Diff.
164.gzip, 164.gzip, 181.mcf, 183.equake 0.0%
164.gzip, 164.gzip, 188.ammp, 300.twolf 12.0%
164.gzip, 177.mesa, 181.mcf, 183.equake 0.0%

164.gzip, 177.mesa, 183.equake, 183.equake 0.0%
164.gzip, 197.parser, 253.perlbmk, 300.twolf 44.4%
177.mesa, 177.mesa, 197.parser, 300.twolf 11.1%
177.mesa, 181.mcf, 253.perlbmk, 256.bzip2 0.0%

177.mesa, 188.ammp, 253.perlbmk, 300.twolf 59.5%
177.mesa, 197.parser, 197.parser, 256.bzip2 96.2%

181.mcf, 181.mcf, 256.bzip2, 256.bzip2 0.0%
181.mcf, 183.equake, 253.perlbmk, 300.twolf 4.0%

181.mcf, 253.perlbmk, 253.perlbmk, 256.bzip2 0.0%
183.equake, 188.ammp, 188.ammp, 256.bzip211.1%
188.ammp, 188.ammp, 197.parser, 197.parser96.2%

188.ammp, 300.twolf, 300.twolf, 300.twolf 8.0%
197.parser, 197.parser, 253.perlbmk, 256.bzip2 0.0%

Average 22.5%

Table 1. Percentage of scheduling decisions
that are different using 128-super-set activ-
ity vector versus raw miss count for various
benchmark mixes

181.mcf) or very low levels of memory demand (such as
164.gzip). In these cases, the activity is consistently very
high or low across the cache, so little new information is de-
rived from the activity vector. Unfortunately, it is extremely
difficult to test which is the better decision because it is
challenging to replicate the exact initial conditions of each
decision. However, coupled with the correlation data from
Figure 5 the case is strong that the inter-thread interference
is more closely correlated to activity vector score than the
overall activity counts, so decisions based on the activity
vector are probably better.

3. Hardware support

Modern microprocessors have support for a number of
different performance counters for tracking events in both
the microarchitecture pipeline and memory system [2][1].
For example, the Intel Pentium4 and Itanium2 and the IBM
Power4 processors each support a large number of possi-
ble counters of which a few can be monitored at any given
time (4 in Intel CPU’s and 8 in the Power4). Additionally,
the Itanium has the ability to sample data cache miss ad-
dresses using Event Address Registers and can be config-
ured to ignore misses that return under a certain threshold
number of cycles (which theoretically extends the capability
to lower level caches if a proper threshold is chosen). Such
support can be useful in validating microarchitecture behav-



ior, performance analysis, and performance tuning. How-
ever, these counters have limitations in their flexibility to
support adaptable run-time optimization and operating sys-
tem scheduling. Although existing processor counters facil-
itate coarse-grained analysis, collecting aggregate counter
values of an architecture component over an interval of time
can be generally lacking in detail about the exact location of
exploitable workload characteristics.
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Figure 3. Activity counters and vectors

Figure 3 illustrates the hardware structures needed to
support the proposed performance-aware scheduling. The
address bits from the cache bus are snooped and used to in-
dex the superset activity counters and increment the appro-
priate counter. Similar hardware was proposed in [9]. The
activity counters are then each reduced to a few bits and
combined into a N-dimensionalActivity Vector(where N is
the number of super sets). In the experimental results sec-
tion, we evaluate the effects of the number of super sets, the
precision of the activity vector, and how the activity vec-
tor thresholds between activity vector thresholds are cho-
sen. Generally, the design theme for not transporting a large
number of activity counters (one for each cache set, or even
one for each cache super set) to the operating system for
analysis in scheduling decisions is to reduce the process-
ing overhead of the performance-aware scheduler.

Although overall a thread’s cache behavior varies over
time, it demonstrates periodicity and hence is very pre-
dictable. In [5] it was shown that simple models could be
used to predict cache activity within a small margin with
89% to 95% accuracy. This is important as scheduling de-
cisions are made in order to minimize interference in a
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scheduling period before that period occurs.

4. Experimental Results

4.1. Experimental Methodology

Our simulated environment was designed to simulate a
common SMT processor, the Intel Pentium 4 model 2 with
Hyperthreading [4]. Our model has separate level one data
and instruction caches with an access time of 4 cycles (the
Pentium 4 has a two cycle access time for integers and 9 cy-
cles for floating point data and unspecified access time to
the trace cache). Level two is a unified 512KB cache with
an access time of 7 cycles. Finally the Level three cache is
2MB with an access time of 14 cycles. Main memory ac-
cess is modeled as 300 cycles. Our simulator is a modified
version of the SMTSIM simulator extended to support our
thread scheduling algorithms. Tests were performed over
one billion simulated cycles on all possible static combi-
nations of nine SPEC2000 benchmarks.

Although it is possible to simply save the counters from
each super set and use that raw data in the scheduling algo-
rithm, it is probably unnecessary. A simplified version of the
data is sufficient because the noisy nature of the data makes
high precision meaningless. Additionally, only a summary
of the fine-grained usage is needed to predict what the level
of interference will be. The predicted usage for each thread
in each super set is given a score of between zero for low
usage and some pre-defined maximum. The predicted use
in each super set for each thread is scored against the pre-
dicted use in that super set of the other threads in potential.
The overall goodness of a potential grouping is the sum of
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Figure 5. Effect of the number of super sets.

the scores from all super sets. The question is then how to
best predict interference from predicted use. Using a sim-
ple sum of the scores is weak because it gives the same
number for two heavily imbalanced scores (where there is
unlikely have high interference) as is does for two evenly
weighted scores (which would presumably have high inter-
ference). The weakness of using the minimum of the scores
is that if one thread has light usage, it will determine the in-
terference score. If the other thread also has light usage, this
is not a concern, but the same score will be given even if the
second thread has very high usage (and will thus probably
cause higher interference).

The interference score used in this study is a hybrid of
the sum and minimum. The score given is the sum of the
threads’ usage scores minus one unless one score is zero. If
one score is a zero the interference score is made zero. This
special case is made because if one thread has very low us-
age, it is unlikely to interfere with other scheduled threads.
We feel that this is a good compromise between the other
two methods considered although ongoing research indi-
cates that something more heavily weighted toward the min-
imum score may be optimal. The scoring systems are illus-
trated in Figure 4, each being developed with a four by four
matrix that indicates the prediction of conflict at the particu-
lar superset position given threadA and threadB quantized
thread activity (0-3). The first row of the figure has the three
interference prediction matrices for the three scoring meth-
ods considered. Three methods are considered:Min, Sum,
andHybrid. The second row is a color-coded representa-
tion of the same data, where brighter colors indicate higher
predicted interference. The overall interference score is the
sum of the interference scores from each super set.

4.2. Cache Monitor Granularity

Many modern processors include the ability to monitor
cache activity at a course-grained level in real time, which
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Figure 6. Effect of activity vector precision.

could be used by operating systems in scheduling decisions.
However, because demand varies across the cache, having
finer grained information allows better characterization of
cache behavior. Figure 5 illustrates this concept. The corre-
lation between the score given to the intersection and total
number of inter-thread kickouts is given for various num-
bers of super sets. The data for zero super sets is the cor-
relation between the total number of misses in the cache
and the number of ITKO and demonstrates the effects of
counter quantization and the scoring scheme. The strong up-
ward trend in the lower level caches is the important feature
to note because these are the caches that have the great-
est effect on overall performance. A miss which requires a
main memory access is equivalent to dozens of misses in a
higher-level cache.

4.3. Activity Vector Precision

An experiment similar to that performed for the number
of super sets was performed on the number of usage lev-
els and the results are shown in Figure 6. An interesting re-
sult is that that correlation is strongest for very few usage
levels and correlation then flattens out or even goes down
with finer granularity. Part of this effect is due to the simple
method of determining the intersection score from the pre-
dicted usage, but the overall trend is most likely real. One
weakness of the scoring system is that very heavy usage in
both threads in linked to heavy interference, when in real-
ity high use can only be achieved if there is little interfer-
ence. The results indicate that only a few bits for each super
set counter can be used to make effective scheduling deci-
sions.

4.4. Determination of Activity Vector Cutoff

If the counter data is going to be quantized to one of a
small number of values, some decision must be made as to
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where to differentiate between those values. If only two val-
ues are available, only one decision point is needed. The
question is where to put that decision point. Figure 7 sum-
marizes the correlation between miss scores and ITKO for
each cache and a variety of decision points on a two-level
scoring system. The first set of tests are based on global
statistics. All of the data was consolidated across all su-
per sets, samples, and tests. The median, the first and third
quartiles, and the arithmetic mean across all of this data
were tested as the cutoff value and the average correlation
was compared. The strongest correlations are with the third
quartile used as the cutoff. This means that very high num-
bers of misses tend to best indicate a higher ITKO.

Another set of data that was tested used local statistics.
Median, quartiles, and average were calculated for each ac-
tivity vector for each sample. For example, when the me-
dian was used, exactly one half of the values in each activ-
ity vector were high and one half were low. This required
much less calculation as the data did not have to be consol-
idated across all of the test and samples, but the correlation
values were significantly lower. For tests with a higher num-
ber of activity vector values, the cutoff between values was
linearly scaled from the two-level test. For instance a four-
level test would have cutoffs at half the two-layer cutoff, the
two-layer cutoff, and one and a half times the two-layer cut-
off. Further analysis has to be done on where the ideal cut-
off values are and how those can best be translated into ex-
pected interference values.

5. Conclusions

The advantages of multithreading extend only to the
point at which threads begin to interfere and adversely im-

pact system performance. The challenge in scheduling in
a multithreaded environment is choosing threads in such a
way that minimizes inter-thread interference. Fine-grained
cache information is an excellent tool in choosing threads
such that inter-thread interference in the memory hierarchy
is minimized. In this paper, we have investigated to what
granularity this information should be obtained and it’s re-
spective utility in guiding thread scheduling decisions.
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