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Abstract

In this paper we provide a comprehensive study of the
mappability of a via-configurable gate array (VCGA). Al-
though the base cell of the VCGA is simple, by customiz-
ing only via masks it can implement various combina-
tional logic functions, sequential elements, and SRAM cells.
Our VCGA can be efficiently configured into SRAM arrays,
adders and multipliers. The strong configurability of our
VCGA allows us to minimize the number of fixed parts in a
general-purpose VCGA fabric, which greatly improves area
utilization.

1 Introduction

Due to huge performance and cost gaps between
cell-based andFPGA-based designs,structured-ASICs
have become the preferred option for many applications.
Structured-ASICs have most of their parts pre-fabricated,
and designers have flexibility for implementing different
circuits in the remaining metallization steps. Among var-
ious structured-ASICs, via-configurable fabrics, which use
only via masks to program circuit functionality, have been
favored due to reduced mask writing effort.

In [2], Patel et al proposed a via-patterned gate array
(VPGA), whose architecture follows anFPGA in which ac-
tive switches and programming bits are replaced by poten-
tial vias. In [3], Pileggiet al proposed a hybrid block struc-
ture, which consists of a 3-LUT and severalNAND gates.
In [1], Hu et al proposed a semi-universal logic block con-
structed from several simple gates. All of these structures
have fixed basic gates (orLUTs) and use vias to provide
connections between them. In [4], we proposed a novel,
via-configurable cell structure which has fixed layout pat-
terns and uses vias to implement cell functionality. Our
fabric, which is structurally similar to standard cells, can
achieve performance and area comparable to the cell-based
designs.

In general, a fabric with many pre-fabricated parts is less
flexible than cell-based designs. For certain specific ap-
plication needs, conventional fabrics introduce some fixed

parts, such as datapath elements and memory blocks. The
obvious drawback is that different applications may have
totally different requirements. As a result, fixed parts could
cause large area waste. In this paper, we show that although
ourVCGA has a simple base-cell structure, it is highly flexi-
ble and efficiently implements many practical functions, in-
cluding combinational logic, sequential logic,SRAM cell,
and various arithmetic units. Moreover, all the configura-
tions can be completed merely by customizing a set of via
masks. The high flexibility of ourVCGA makes it a promis-
ing general-purpose fabric.

2 Base Cell Structure

The basic logic element (BLE) of ourVCGA consists of a
via-configurable functional cell (VCC) and two neighboring
inverter arrays. AVCC is composed of vertically aligned
transistor pairs and single n-/p-diffusion strips.M1 seg-
ments are placed vertically, andM2 segments are placed
horizontally. Figure 1 shows a stick diagram of a 5-VCC,
which contains five transistor pairs and is the base cell of
ourVCGA. The intersections betweenM2 segments andM1
segments are potential via sites. Cell functionality is imple-
mented by appropriate via configurations. WhenM2 seg-
mentsW1–W8 are not used for cell customization, they can
be used for inter-cell routing. TheM1 segmentsC1 andC2

connectN -part andP -part together for a staticCMOS gate.
Moreover, they provide the feedback toVCC inputs through
two M2 segmentsF1 andF2. F1 andF2 are also used when
severalVCC inputs connect to the same signal.

Figure 2 shows a stick diagram of an inverter array. It
can be configured as four independent inverters, two 2X in-
verters, or a single 4X inverter, etc.

FourBLEs form a via-configurable block (VCB). In each
VCB, the VCCs are rotated by 90 degrees with respect to
their neighboringVCCs. Between any two neighboring
VCCs, there is an inverter array which provides the options
of inverting outputs of the ascendantVCC, or inverting in-
puts of the descendantVCC. A VCGA is an array ofVCBs.
Figure 3 shows a 4x4VCGA array. Horizontal and vertical
M2 wire segments betweenBLEs provide the connections
between neighbors. Each segment spans twoBLEs, and the
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Figure 2. Stick diagram of the base inverter
array

segments are distributed in a staggered way.M1 jumpers
provide the connections between twoM2 segments in the
same row (column). They are also used for connections be-
tween horizontal and vertical segments. Upper-level wire
segments, which are properly segmented, provide the long-
distance connections betweenBLEs.
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Figure 3. A 4x4 VCGA array

3 Combinational Logic

We first show the capability of ourVCC and inverter
array to implement different combinational functions. In
the following, all our experimental data are obtained for
0.18µm technology parameters withVdd = 1.8V . The ar-
eas of a 5-VCC, an inverter array and aVCB are 58, 54 and
800µm2, respectively.

3.1 Single Logic Gate and Multi-Gate Implemen-
tation

As shown in [4], a 5-VCC can implement about 92% of
logic functions using five transistor pairs. AVCC can also
be configured to implement two gates by letting them share
Vdd and ground in the middle. Figure 4 shows a 5-VCC im-
plementing anXOR gate, whereĀ andB̄ are supplied by the
VCC-feeding inverter array. AnXOR gate needs only four
transistor pairs, and thus one transistor pair is unused. Fig-
ure 5 shows a 5-VCC implementing two gates. Flexibility
of theVCC-cell significantly contributes to high cell utiliza-
tion. Due to the similar structure, aVCC-implemented logic
gate has similar performance as a standard cell but is about
50% larger.
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Figure 4. Implementation of an XOR gate Y =
A ⊕ B = ĀB̄ + AB by a 5-VCC
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Figure 5. Implementation of two gates Y =
(A + B)C and Z = DE by a 5-VCC

The inverter array can also be configured to implement
some logic functions. Figure 6 shows anXOR gate built
from the inverter array by using pass-transistor logic. Ta-
ble 1 lists the characteristics of twoXOR implementa-
tions. Twc is the worst-case delay, andTavg is the average
delay among all input combinations. The pass-transistor
implementation by inverter array has better performance
than the staticCMOS implementation byVCC. TheVCC-
implementedXOR gate could be used on non-critical path
to balance the cell utilization.

Similarly, a 2-to-1MUX can also be configured from the
inverter array as shown in Figure 7. With appropriate via
configurations, some 2-input functions can be implemented
by a 2-to-1MUX as shown in [4].
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Figure 6. Implementation of an XOR gate Y =
A ⊕ B = ĀB + AB̄ by an inverter array

Table 1. Comparison of two XOR implementa-
tions: input slew = 150ps, load capacitance =
25 fF.

Style Area (µm2) Twc (ps) Tavg (ps)
5-VCC + 2 INV 85 361 270
inverter array 54 248 147

3.2 Repeaters

TheVCC and the inverter array can be configured to form
inverters of different sizes. Repeaters, which play an im-
portant role in interconnect performance optimization, can
be dynamically configured from theVCGA elements. For
example, aBLE can provide inverters 1X–13X-size of the
minimum, and aVCB can be configured into an inverter of
up to 52X of the minimum size with inter-BLE connections.

3.3 Capacitors

A VCC (inverter array) can also be configured to be a ca-
pacitor, which may be used as a decoupling component to
reduce power/ground voltage fluctuations. One implemen-
tation is to connect all the transistor gates together to form
one plate, and to connect all the drains/sources together to
form another plate of a capacitor. In this way aBLE in the
VCGA can provide capacitance of 44fF .

4 Sequential Elements

Sequential elements can be constructed from basic gates.
With the ability to implement two gates, and using the feed-
back segmentsC1–C2/F1–F2, a VCC can implement se-
quential elements.
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Figure 7. Implementation of MUX21 Y = SA +
S̄B by an inverter array

4.1 Latch and Flip-Flop (FF)

Figure 8 shows anRS latch implemented by a 5-VCC.
Figure 9 shows aD-latch implemented by the inverter ar-
ray, whereΦ1 andΦ2 are two non-overlapping clocks. A
flip-flop can be constructed using severalVCCs (inverter ar-
rays). Therefore, no fixed sequential elements are required
in our fabric.
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Figure 8. Implementation of an RS latch by a
5-VCC
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Figure 9. Implementation of a D-latch by an
inverter array

4.2 SRAM

A VCC can also be configured to be anSRAM cell. Fig-
ure 10 shows the configuration, where the middle transistor
pair and the two PMOS transistors for word-lineWL are not
used. Moreover, an inverter array can also be configured to
be anSRAM cell as shown in Figure 11. As a result, each
BLE can implement a 3-bit memory. A large memory array
can be constructed from ourVCGA. Figure 12 shows a 6-bit
memory formed by twoBLEs with the correspondingM2
andM3 wire organizations.

Our VCGA can be configured into a memory array with
15K-bit/mm2. Although the memory array constructed
in this way is less dense than a customized one (∼90K-
bit/mm2), it provides the flexibility to build memory as
needed, both in size and in location. For a fabric used for
various applications, this flexibility could save unnecessary
area waste caused by a fixed-size memory block. It is possi-
ble to combine area efficiency and design flexibility by hav-
ing in the fabric a customized memory block suiting a class
of applications, and to provide the supplementary memory
using dynamic configuration.
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Figure 10. Implementation of a 6-transistor
SRAM cell by a 5-VCC
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SRAM cell by an inverter array

5 Arithmetic Units

In this section, we show how to construct some arith-
metic units for building datapath using ourVCGA.

5.1 Full Adder (FA)

The most common arithmetic unit is a full adder. Given
two adder inputsa andb, and a carry-inc i, the sums and
the carry-outco can be expressed ass = a ⊕ b ⊕ ci and
co = ab + (a + b)ci, respectively. Figure 13 illustrates
the implementation of a full adder by aBLE. The carry-out
co is implemented by configuring a 5-VCC into a 5-input
complex gate. The signals is implemented by configuring
two inverter arrays into twoXOR gates (see Figure 6).

5.2 Ripple Carry Adder (RCA)

Figure 14 shows a 16-bitRCA, where each dashed box
corresponds to a full adder. The zig-zag structure of the rip-
ple path is caused by the orthogonal orientations of neigh-
boringVCCs.
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Figure 14. A 16-bit ripple carry adder, the bold
line shows the carry ripple path.

5.3 Carry-Lookahead Adder (CLA)

A carry-lookahead adder is one of the most frequently
used fast-addition adders. It is based on the idea of dividing
inputs intok-bit groups and organizing them into a tree-like
structure. The carries for each group are obtained from the
carry lookahead tree, not by waiting for the carry rippling
from the least significant bit. Figure 15 shows an example
of a 16-bitCLA with k = 3.
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Figure 15. A 16-bit CLA, the bold line shows
the critical path.

Given inputsA<15..0>, B<15..0>, and carry-inCin, the
local carry-generateGi, carry-propagatePi, and sumSi in
stage 1 can be expressed asGi = AiBi, Pi = Ai ⊕ Bi

andSi = Pi ⊕ Ci, whereCi is the carry-in for thei-th bit,
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which comes from the lookahead circuitry. In aCLA, the
group (super-group) carry generate/propagate and carryC i

signals have the similar functional forms. For example, in
Figure 15,

GG1 = G4 + P4(G3 + P3G2) (1)

PG1 = P4P3P2 (2)

GS1 = GG5 + PG5(GG4 + PG4GG3) (3)

PS1 = PG5PG4PG3 (4)

CG4 = GG3 + PG3CS1 (5)

C2 = CG1 (6)

C3 = G2 + P2CG1 (7)

C4 = G3 + P3(G2 + P2CG1). (8)

Carry generate signals (also carry signalsCi) have two
forms, a fanin-3 gate (e.g., (5) and (7)) and a fanin-5 gate
(e.g., (1), (3) and (8)). A 5-VCC can implement a fanin-5
gate. A 5-VCC can also implement a fanin-3 gate, leaving
an empty site for another 2-input gate. Carry propagate sig-
nals are formed by a 3-inputAND gate (e.g., (2) and (4)),
which can be implemented by part of a 5-VCC.

Figure 16 shows the organization of aVCGA implement-
ing the dashed block in Figure 15. TheP i/Gi/Si module
in stage 1 is implemented by aBLE with an empty site for a
3-input gate. The arrowed lines show connections between
those blocks.Site-2 andSite-3 correspond to the empty sites
which can be used for other purposes, e.g., folding the top-
level of the carry-lookahead tree. With careful planning, a
compactCLA can be constructed.
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Figure 16. A CLA block implemented by a
VCGA

5.4 Multiplier

Figure 17 shows an 8x8 multiplier (P = X · Y ) which
uses radix-4 multiplication scheme (Booth’s coding) [5].
It consists of three main parts: a Booth encoder, a carry-
save-adder (CSA) array and a final carry-propagate-adder
(CPA). A Booth encoder generates three control values for
each partial product:ZERO which zeroes the operand,NEG
which negates the operand, andTWO which doubles the
operand (left shift by one bit). The accumulation of par-
tial product is implemented by aCSA array. The finalCPA

generates the final sum. Figure 18(a) shows the Booth en-
coder cell, and Figure 18(b) shows the Booth-encoded mul-
tiplier cell. A Booth encoder cell can be implemented by
four BLEs. A Booth-encoded multiplier cell consists of a
BoothMUX and aCSA cell (a full adder). It can be imple-
mented by twoBLEs, one for the full adder and the other
for the BoothMUX (an inverter array for the 2-to-1MUX,
the other inverter array for theXNOR gate, and aVCC for
theNOR gate).
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Figure 17. A 8X8 radix-4 Multiplier
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Figure 18. Booth encoder and multiplier cell

Figure 19 illustrates the organization of aVCGA-
implementedCSA array. The multiplier cells (each imple-
mented by twoBLEs) are interleaved to make use of inter-
BLE direct connections coming from the orthogonal ori-
entation of neighbors in ourVCGA. The connections be-
tween multiplier cells are implemented by inter-BLE wire
segments. The Booth coding signals usingM3 are on top of
the cells.

6 Experiments

We synthesized intoVCGA a 32-bitRCA, a 32-bitCLA
and a 16X16-bit multiplier (using aCLA as a finalCPA).
Table 2 lists the characteristics of those components. For
comparison, we also manually mapped those circuits into
a 3-LUT-based fabric (to mimic theVPGA in [2]) and a
hybrid-block-based fabric [3]. The hybrid block contains
one 3-LUT, two 3-inputNAND gates, and seven inverters.
Due to the difficulty of implementing sequential elements
by LUTs, in their original version both fabrics have a fixed
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Figure 19. Portion of a CSA array by a VCGA

DFF in each block, that cannot be used in these arithmetic
units. Moreover, many inverters in the hybrid block are not
used. The fixedDFF and inverters cause a significant area
waste in the implementation of arithmetic components. For
more aggressive comparisons, we assume that there are no
DFFs in those blocks, and inverters are assigned as required
(hence no inverters are wasted) for those two fabrics. In
the following we only compare the three fabrics in terms
of logic area and assume that inter-LUT(block) connections
use customized wires on the top of transistors. The same
fixed routing structure as in [3] could be applied on them.
Due to the smaller logic area requirement ofVCGA-based
designs, more routing resource could be available to relieve
routability issue.

Table 2. Arithmetic units comparison by dif-
ferent fabric implementations (Power con-
sumption is calculated at 100MHz).

Circuit Type
Area Delay Power Utilization

(µm2) (ns) (mW ) (%)

32-bit
RCA

VCGA 5568 6.39 0.84 100
3-LUT 4672 8.64 1.37 100
Hybrid 6784 8.64 1.42 93.8

32-bit
CLA

VCGA 11484 1.68 1.16 78.3
3-LUT 14016 3.24 4.11 66.7
Hybrid 12879 2.14 2.49 75.5

16x16-bit
Multiplier

VCGA 58812 5.73 7.49 81.7
3-LUT 51246 8.91 15.0 93.2
Hybrid 72398 7.88 13.1 80.5

From Table 2 we see thatVCGA-based designs have sig-
nificant advantages in delay and power consumption over
purely 3-LUT-based and hybrid-block-based fabrics. We
attribute the superior results ofVCGA-based designs to
more efficient implementation of functions using single-
stage staticCMOS gates, rather than 3-LUTs. 3-LUT-based
designs show area advantage inRCA implementation, since
eachLUT is compact due to customized design, and two 3-
LUTs are a perfect match for a full adder. Each multiplier
cell in a CSA array also can be perfectly realized by four
3-LUTs, which results in a compact area of 3-LUT-based

multiplier. The configuration flexibility of ourVCC and
inverter array invokes an area penalty compared to a cus-
tomized layout. However, the strong configurability helps
to achieve high transistor utilization as shown in the column
Utilization. When a 3-LUT-based fabric does not match
circuit structure well, for example, in CLA implementa-
tion, it incurs a large penalty in every aspect. Moreover,
if we considered the fixedDFFs and inverters, the tran-
sistor utilization of the designs implemented byLUTs (ei-
ther purely-LUT-based or hybrid-block-based) in Table 2
will decrease significantly; therefore the area of the designs
would increase a lot (could be doubled due to the large
area of anFF). The hybrid-block-based fabric has delay
and power advantages over purely 3-LUT-based fabric since
a NAND3 gate is faster and less power-consuming than a
3-LUT. But the block is more ad-hoc and irregular. Fur-
thermore, aNAND3 gate is not efficient to implement some
complex gates, such as a fanin-5 gate, anXOR gate etc,
which makes the arithmetic units implemented by hybrid-
block-based fabric slower and more power-consuming com-
pared toVCGA-based designs.

7 Conclusions

In this paper we have shown the strong configurability
of a via-configurable gate array. Using only via masks, a
VCGA can efficiently implement combinational logic, se-
quential elements, repeaters,SRAM blocks, and datapath el-
ements. It has much better configurability and performance
thanLUT-based fabrics. Our plan for future work includes
the routing structure design and CAD support for this fabric.
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