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Abstract 
This paper proposes a new formalism for layout-

driven optimization of datapaths. It is based on preserv-
ing an arithmetic bit level representation of the arithme-
tic circuit portions throughout various design stages. 
The arithmetic bit level description takes into account 
the arithmetic nature of the datapath and facilitates 
arithmetic reasoning to identify circuit transformations 
that are too complex to derive for Boolean reasoning.  It 
is a bit-level representation so that it integrates well into 
standard design flows. Based on this representation we 
developed an optimization algorithm for cycle time. It 
takes interconnect delay into account and can be applied 
at late design stages. A prototype has been integrated 
into a commercial EDA environment. For circuits im-
plementing complex arithmetic expressions we achieved 
performance improvements of up to 32%. 

1. Introduction 
This paper describes an optimization method that is 

targeted towards the adder tree structures that are com-
mon in datapath circuits. Datapath circuits often form a 
significant part of a modern integrated circuit (IC), and 
in many cases the critical timing path of these ICs passes 
through them. Traditional logic synthesis techniques [1, 
5, 7, 8], which perform well on the control parts of the 
logic of the IC, are not well suited to optimize datapaths. 
Logic synthesis techniques based on algebraic optimiza-
tions are too limited to use the full spectrum of optimiza-
tions that are potentially available in datapaths due to the 
many existing symmetries. Sometimes they make the 
situation even worse, e.g., by destroying the regularity 
typical for arithmetic circuits[6]. Traditional techniques 
based on Boolean reasoning, like rewiring [10-13], 
could potentially exploit these symmetries. In practice, 
these methods are severely limited by the inherent com-
putational intractability of finding all of the symmetries 
in datapath structures like multipliers. Finding all sym-
metries in a multiplier is computationally as hard as 
formally verifying the multiplier! 

We propose a method that opens up the full use of op-
timization potential given by the symmetries in the 
datapaths with the computational efficiency of algebraic 
methods. To find the symmetries we propose to use an 
arithmetic bit level representation of the circuit. This 

representation models both arithmetic information and 
bit-level circuit structure. It has already been applied 
successfully in the context of formal equivalence check-
ing [9]. The arithmetic bit level representation exposes 
all symmetry information we need, and as it does not 
change during optimization, we have an extremely fast 
way to use this global Boolean property to optimize 
datapaths. In this paper, we examine its use in layout-
driven synthesis. We present an approach for optimizing 
an arithmetic circuit in terms of timing by swapping 
arithmetically symmetric operands. Our algorithm is 
also suited for being applied during layout independent 
logic synthesis as well as during combined synthe-
sis/layout generation. 

The remainder of this paper is organized as follows. 
Section 2 explains the arithmetic bit level structure. 
Section 3 shows how we can use it to find candidates for 
global operand swaps, and shows that the optimization 
potential opened up by this can change any adder tree 
structure into any other. Section 4 shows an application 
of the operand swaps in an algorithm performing timing 
optimization on a placed datapath circuit. Section 6 
shows experimental results highlighting the tremendous 
optimization potential that is opened up: up to 32% of 
cycle time improvement at only 2% of area cost (all 
measured in routed results). 

2. Arithmetic Bit Level  
In the past, there was little reason to apply logic syn-

thesis to arithmetic circuits. For implementing arithmetic 
expressions, module generators using constructive algo-
rithms [2-4] are available. These approaches worked 
sufficiently well for synthesizing stand-alone arithmetic 
circuits, where all inputs and outputs have the same data 
arrival and required time, respectively. If an arithmetic 
expression is embedded into a large circuit the situation 
becomes more complicated. The module generator must 
take external constraints into account which may change 
substantially during the design process.   

In recent years, an even more crucial difficulty has 
come up for module generators. The increasing contribu-
tion of interconnect delay to cycle time invalidates the 
simple timing models being used by most constructive 
algorithms. Without any layout data, predicting delay 
with any degree of accuracy is virtually impossible mak-
ing pre-layout timing optimizations a game of chance.  



  

To overcome these problems, in recent years a signifi-
cant amount of effort has been spent in developing ap-
proaches for integrating logic optimization into the 
physical design flow. Post-placement optimization fol-
lowed by placement modifications[8], initial placement 
of an unmapped netlist followed by logic synthesis and 
final placement[5], integrating logic optimization into 
the inner loop of a placement algorithm[7] are among 
the most promising. However, most of these methods are 
based on traditional approaches for logic optimization 
and, hence, they achieve adequate results for control 
logic only. [14] describes an optimization loop consist-
ing of re-synthesizing adder trees constructively fol-
lowed by repeating placement. The results being pre-
sented are promising. However, they still leave room for 
improvement due to the simple timing model being 
used. Another drawback is that several time consuming 
placement steps are required. 

Arithmetic circuits have the remarkable property that  
arithmetic transformations may be used for optimizing 
them. This is done by high level datapath generators in 
practice. On the gate level, however, in general this is 
not possible since module generators produce gate net-
lists containing no information about the arithmetic 
behavior of the circuit.  

In order to still enable arithmetic transformations on a 
gate-level description we propose the following ap-
proach: Additionally to the gate netlist the module gen-
erator creates a second description of the circuit (an 
arithmetic bit level description) preserving all the 
knowledge we need to perform arithmetic transforma-
tions at the bit level. This description is maintained 
throughout the design process allowing arithmetic op-
timizations during late design stages. 

A circuit structure found in many kinds of datapaths 
are addition networks. They are the main component of 
multipliers as well as of complex arithmetic expressions 
as they are used in signal processing circuits. Internally, 
addition networks consist of cascaded addition trees. An 
addition tree computes the modulo-2 sum of n 1-bit 
operands. Furthermore, it computes  n/2  carry signals 
which are fed as input signals into the next addition tree. 
By cascading addition trees the number of carries pro-
duced in one addition tree is reduced until we finally 
obtain a  log2(n) -bit wide operand consisting of 
 log2(n)-1  signals driven by sum outputs and one signal 
driven by a carry output. This operand represents the 
result of the addition. Typically, an addition tree is im-
plemented using (n-1)/2 full adders if n is odd and n/2-1 
full adders and one half adder if n is even. Fig. 1 shows 
addition trees consisting of three full adders and one full 
adder, respectively.  

Remarkably all inputs to 1-bit adders belonging to the 
same addition tree are symmetric[15]. This opens up a 
large optimization potential. In the example shown in 

Fig. 1 swapping two signals reduces the delay of the 
critical path from 4 to 3 assuming unit delay for each 
full adder. 
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Fig. 1: Optimizing addition trees 

Note that identifying such symmetries on the logic 
gate level by using conventional Boolean reasoning 
techniques is very expensive, often prohibitively so. 
However, if knowledge about the arithmetic nature of 
the circuit is preserved, only a simple analysis is re-
quired to identify all symmetries. 

Therefore, we represent each addition network (AN) of 
a circuit as a set of cascaded addition trees (AT). Each 
AT is represented by a netlist consisting of 1-bit-addition 
units (AU). Each AU has either 2 or 3 inputs and calcu-
lates a sum and a carry output. An arithmetic bit level 
description of a circuit is a netlist where sub-circuits 
implementing addition networks are expressed exclu-
sively in terms of AUs. All other parts of the circuit can 
be described using arbitrary gate types. This description 
allows us to identify groups of symmetric operands in 
linear time by traversing the ANs. For a formal definition 
of AN, AT and the arithmetic bit level we refer the reader 
to [15]. Our approach is based on the assumption that 
the arithmetic bit level representation is preserved by the 
synthesis tool through all design stages enabling arith-
metic reasoning beyond the module generation phase, 
i.e., also during later design stages.  

3. Operand swaps 
Fig. 1 illustrated the optimization potential of ex-

changing symmetric operands. Syntactically, operand 
swapping looks like the well-known pin swapping tech-
nique that is standard in many design flows. Note how-
ever, that the operand swapping considered here per-
forms transformations that are much more global than 
conventional pin swapping. 

The powerfulness of this technique is described by the 
following theorem: 
Theorem 1 : An addition tree of arbitrary topology can 

be transformed into any other topology by applying a 
sequence of operands swaps. 

Proof: [15]� 
Theorem 1 tells us that any embedded addition tree 

being built manually by a designer or by a constructive 
algorithm can be restructured to optimize timing by only 
performing operand swaps during the design flow. 

Since addition networks are constructed by cascading 
addition trees this result obviously holds also for com-



  

plete addition networks. E.g. an array multiplier can be 
transformed into a Wallace tree architecture (or anything 
in between) simply by swapping operands. To better 
understand this keep in mind that the number of carries 
produced in one particular addition column during a 
multi-operand addition depends only on the number of 
1-bit operands that have to be added up. Consequently, 
the number of carries being produced by the correspond-
ing addition tree is the same for all possible addition 
networks implementing a particular multi-operand addi-
tion. 

4. Timing Optimization 
This section starts describing how to find promising 

operands swaps. Consider two input pins A and B of two 
different AUs as shown in Fig. 2. For each of them we 
can determine the delay tpd of the longest path leading 
through it by adding the corresponding data arrival time 
tar and data time-to-sink t2s. If we swap the signals a and 
b we simply have to swap the tar values in the corre-
sponding equations and we have to add correcting fac-
tors CAB and CBA representing the changes in wire de-
lays.  

g 
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Fig. 2: Gain of an Operand swap 

The maximum delay reduction achievable by the swap 
results to )','max(),max( pdBpdApdBpdA ttttgain −= . 

Since some path leading neither through pin A nor 
through pin B may become the most critical path after 
the swap  the delay reduction may be smaller than gain. 
However, it can be guaranteed that performing a swap 
with positive gain will at least not deteriorate cycle time.  

Note that the gain calculation is not bound to a certain 
timing model. Delay can be calculated with the accuracy 
of the data being available at a particular design level. 
This allows us to take all technology dependent parame-
ters influencing delay like transistor sizes, wire capaci-
tances, etc., into consideration during optimization. This 
is a fundamental advantage over the simple timing mod-
els being used in constructive algorithms. 

Fig. 3 presents our algorithm optimize. It improves 
performance by swapping operands repeatedly and stops 
when no swap with positive gain is found on the critical 
path. Two signals are swap candidates for each other if 
they belong to the same AT and if they do not lie in the 
fanin cone of each other. 

repeat { 
perform timing analysis; 
determine most critical path pcritical 
maxgain=0; 
Signal a,b; 
foreach Signal i ∈  pcritical being an input of an AU 

foreach Signal j being a swap candidate for i 
if (gain(i,j)>maxgain) { 

a=i; b=j; maxgain=gain(i,j); 
if (maxgain>0) 

swap signals a and b; 
} until (maxgain=0); 

Fig. 3: Algorithm optimize 

Note that optimize does not consider particular addi-
tion trees in isolation. At any time it analyzes the critical 
path of the whole circuit. This path may lead through 
several addition trees (or even through several addition 
networks). The algorithm always globally searches for 
the most promising operand swap. 

As explained in the previous sections this allows 
transforming an addition network for adding up several 
multi-bit operands into any other addition network im-
plementing the same arithmetic function. Consequently, 
our method is orthogonal to specific multiplier architec-
tures. Any architecture based on addition networks can 
be optimized using our approach. 

The addition networks targeted by the algorithm form 
the major part of virtually all kinds of arithmetic circuits. 
Since arithmetic components often dominate the critical 
path this makes our approach applicable in all circuits 
containing arithmetic datapaths.  

5. Experiments 
For all experiments we used the design environment 

of Magma Design Automation, Inc.. Our optimizer is 
implemented as a set of Tcl scripts. For all the other 
tasks the corresponding Magma functions have been 
used. Our new design flow consists of the following 
steps: 

1. Module generation 
2. Global placement 
3. Optimization by operand swaps using the layout 

data obtained from step 2. 
4. Incremental placement with integrated optimi-

zation, global and detailed routing 
If tight timing constraints were applied the module 

generation step created nearly balanced Wallace tree-
like adders as a starting point. The wire length values 
used for gain calculation in step 3 have been estimated 
using the half perimeter bounding box method. The 
conventional design flow we used for comparison per-
formed the same steps except step 3. For benchmarking 
we generated circuits for the following expressions and 
mapped them onto a 0.13µm standard cell library: 



  

1. y[16] = a⋅b + c⋅d + e⋅f + g⋅h 
2. y[32] = a⋅b + c⋅d + e⋅f + g⋅h 
3. y[16] = (a+b)⋅(c+d)+(e+f)⋅(g+h) 
4. y[32] = (a+b)⋅(c+d)+(e+f)⋅(g+h) 
5. y[32] = a⋅b 
6. a 16-bit microprocessor 

In our first experiments our goal was to minimize cy-
cle time. The results are shown in Table 1. Columns 2 
and 3 contain the improvements in cycle time and area 
that have been achieved compared to the results of the 
conventional flow. Both cycle time and area are meas-
ured after detailed routing. Hence, they are very accurate 
and realistic. The area can be different as step 4 of the 
flow above still performs a lot of optimizations, such as 
restructuring, buffering and gate sizing.  

Exp. 1 : min. cycle time Exp. 2 : min. area Circuit 
Cycle time Area Area reduction 

1 -31% +2% -41% 
2 -32% -10% -37% 
3 -2% -9% -11% 
4 -3% -15% -13% 
5 -20% +5% -18% 
6 -15% +4% -3 

Table 1: Cycle time improvement 
The results show improvements in cycle time of up to 

32% while the area roughly stays the same. Note that the 
benchmarks with the largest improvements (1,2) are 
typical for multiply/accumulate-expressions that occur 
frequently in signal processing.  

In the next experiment we targeted area minimization 
for a given cycle time. This was done by using the cycle 
time that could be achieved by the conventional flow as 
delay target. Now the optimizations in step 4 above had 
to add less area in order to achieve the performance 
goal. The area improvements are shown in Column 3.  

Finally, we investigated the ability of our algorithm to 
adapt a circuit to non-uniform input data arrival times. 
For this purpose we generated a few sets of non-uniform 
data arrival times for circuit no. 2 randomly. The per-
formance improvements now ranged up to 45% depend-
ing on how the data arrival times had been chosen. 

6. Conclusion 
In this paper we exploit the advantages of an arithme-

tic bit level representation when optimizing datapaths. 
This level preserves information about arithmetic sym-
metries in addition networks that are very expensive to 
identify using Boolean techniques. Further we presented 
an algorithm for optimizing circuits containing embed-
ded addition networks in terms of timing. The algorithm 
considers all addition networks simultaneously to glob-
ally optimize the critical path. 

The addition networks targeted by the algorithm form 
the major part of many arithmetic circuits and very often 
are part of the critical path of large designs. This makes 

our approach useful in all circuits containing arithmetic 
parts not only for the multiply accumulate structures on 
which it performs best. 

As the number and type of cells is unchanged by the 
algorithm it can be applied late in the toolflow. Even on 
a placed circuit the timing can be optimized without 
changing the placement. This allows using very detailed 
timing information to achieve the most accurate results. 

In our experiments we obtained performance im-
provements for complex arithmetic expressions of up to 
32% for uniform data arrival times and of up to 45% for 
non-uniform data arrival times. 
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