

Layout Driven Optimization of Datapath Circuits using
Arithmetic Reasoning

Ingmar Neumann* Dominik Stoffel* Kolja Sulimma* Michel Berkelaar+ Wolfgang Kunz*
 *University of Kaiserslautern, Germany +Magma Design Automation Inc.
 Dept. of Electrical and Computer Engineering 2 Results Way
 Electronic Design Automation Group Cupertino, CA 95014, USA

Abstract
This paper proposes a new formalism for layout-

driven optimization of datapaths. It is based on preserv-
ing an arithmetic bit level representation of the arithme-
tic circuit portions throughout various design stages.
The arithmetic bit level description takes into account
the arithmetic nature of the datapath and facilitates
arithmetic reasoning to identify circuit transformations
that are too complex to derive for Boolean reasoning. It
is a bit-level representation so that it integrates well into
standard design flows. Based on this representation we
developed an optimization algorithm for cycle time. It
takes interconnect delay into account and can be applied
at late design stages. A prototype has been integrated
into a commercial EDA environment. For circuits im-
plementing complex arithmetic expressions we achieved
performance improvements of up to 32%.

1. Introduction
This paper describes an optimization method that is

targeted towards the adder tree structures that are com-
mon in datapath circuits. Datapath circuits often form a
significant part of a modern integrated circuit (IC), and
in many cases the critical timing path of these ICs passes
through them. Traditional logic synthesis techniques [1,
5, 7, 8], which perform well on the control parts of the
logic of the IC, are not well suited to optimize datapaths.
Logic synthesis techniques based on algebraic optimiza-
tions are too limited to use the full spectrum of optimiza-
tions that are potentially available in datapaths due to the
many existing symmetries. Sometimes they make the
situation even worse, e.g., by destroying the regularity
typical for arithmetic circuits[6]. Traditional techniques
based on Boolean reasoning, like rewiring [10-13],
could potentially exploit these symmetries. In practice,
these methods are severely limited by the inherent com-
putational intractability of finding all of the symmetries
in datapath structures like multipliers. Finding all sym-
metries in a multiplier is computationally as hard as
formally verifying the multiplier!

We propose a method that opens up the full use of op-
timization potential given by the symmetries in the
datapaths with the computational efficiency of algebraic
methods. To find the symmetries we propose to use an
arithmetic bit level representation of the circuit. This

representation models both arithmetic information and
bit-level circuit structure. It has already been applied
successfully in the context of formal equivalence check-
ing [9]. The arithmetic bit level representation exposes
all symmetry information we need, and as it does not
change during optimization, we have an extremely fast
way to use this global Boolean property to optimize
datapaths. In this paper, we examine its use in layout-
driven synthesis. We present an approach for optimizing
an arithmetic circuit in terms of timing by swapping
arithmetically symmetric operands. Our algorithm is
also suited for being applied during layout independent
logic synthesis as well as during combined synthe-
sis/layout generation.

The remainder of this paper is organized as follows.
Section 2 explains the arithmetic bit level structure.
Section 3 shows how we can use it to find candidates for
global operand swaps, and shows that the optimization
potential opened up by this can change any adder tree
structure into any other. Section 4 shows an application
of the operand swaps in an algorithm performing timing
optimization on a placed datapath circuit. Section 6
shows experimental results highlighting the tremendous
optimization potential that is opened up: up to 32% of
cycle time improvement at only 2% of area cost (all
measured in routed results).

2. Arithmetic Bit Level
In the past, there was little reason to apply logic syn-

thesis to arithmetic circuits. For implementing arithmetic
expressions, module generators using constructive algo-
rithms [2-4] are available. These approaches worked
sufficiently well for synthesizing stand-alone arithmetic
circuits, where all inputs and outputs have the same data
arrival and required time, respectively. If an arithmetic
expression is embedded into a large circuit the situation
becomes more complicated. The module generator must
take external constraints into account which may change
substantially during the design process.

In recent years, an even more crucial difficulty has
come up for module generators. The increasing contribu-
tion of interconnect delay to cycle time invalidates the
simple timing models being used by most constructive
algorithms. Without any layout data, predicting delay
with any degree of accuracy is virtually impossible mak-
ing pre-layout timing optimizations a game of chance.

To overcome these problems, in recent years a signifi-
cant amount of effort has been spent in developing ap-
proaches for integrating logic optimization into the
physical design flow. Post-placement optimization fol-
lowed by placement modifications[8], initial placement
of an unmapped netlist followed by logic synthesis and
final placement[5], integrating logic optimization into
the inner loop of a placement algorithm[7] are among
the most promising. However, most of these methods are
based on traditional approaches for logic optimization
and, hence, they achieve adequate results for control
logic only. [14] describes an optimization loop consist-
ing of re-synthesizing adder trees constructively fol-
lowed by repeating placement. The results being pre-
sented are promising. However, they still leave room for
improvement due to the simple timing model being
used. Another drawback is that several time consuming
placement steps are required.

Arithmetic circuits have the remarkable property that
arithmetic transformations may be used for optimizing
them. This is done by high level datapath generators in
practice. On the gate level, however, in general this is
not possible since module generators produce gate net-
lists containing no information about the arithmetic
behavior of the circuit.

In order to still enable arithmetic transformations on a
gate-level description we propose the following ap-
proach: Additionally to the gate netlist the module gen-
erator creates a second description of the circuit (an
arithmetic bit level description) preserving all the
knowledge we need to perform arithmetic transforma-
tions at the bit level. This description is maintained
throughout the design process allowing arithmetic op-
timizations during late design stages.

A circuit structure found in many kinds of datapaths
are addition networks. They are the main component of
multipliers as well as of complex arithmetic expressions
as they are used in signal processing circuits. Internally,
addition networks consist of cascaded addition trees. An
addition tree computes the modulo-2 sum of n 1-bit
operands. Furthermore, it computes  n/2 carry signals
which are fed as input signals into the next addition tree.
By cascading addition trees the number of carries pro-
duced in one addition tree is reduced until we finally
obtain a  log2(n) -bit wide operand consisting of
 log2(n)-1 signals driven by sum outputs and one signal
driven by a carry output. This operand represents the
result of the addition. Typically, an addition tree is im-
plemented using (n-1)/2 full adders if n is odd and n/2-1
full adders and one half adder if n is even. Fig. 1 shows
addition trees consisting of three full adders and one full
adder, respectively.

Remarkably all inputs to 1-bit adders belonging to the
same addition tree are symmetric[15]. This opens up a
large optimization potential. In the example shown in

Fig. 1 swapping two signals reduces the delay of the
critical path from 4 to 3 assuming unit delay for each
full adder.

s c

s c

s c

s c

s c

s c

s c

s c

Fig. 1: Optimizing addition trees

Note that identifying such symmetries on the logic
gate level by using conventional Boolean reasoning
techniques is very expensive, often prohibitively so.
However, if knowledge about the arithmetic nature of
the circuit is preserved, only a simple analysis is re-
quired to identify all symmetries.

Therefore, we represent each addition network (AN) of
a circuit as a set of cascaded addition trees (AT). Each
AT is represented by a netlist consisting of 1-bit-addition
units (AU). Each AU has either 2 or 3 inputs and calcu-
lates a sum and a carry output. An arithmetic bit level
description of a circuit is a netlist where sub-circuits
implementing addition networks are expressed exclu-
sively in terms of AUs. All other parts of the circuit can
be described using arbitrary gate types. This description
allows us to identify groups of symmetric operands in
linear time by traversing the ANs. For a formal definition
of AN, AT and the arithmetic bit level we refer the reader
to [15]. Our approach is based on the assumption that
the arithmetic bit level representation is preserved by the
synthesis tool through all design stages enabling arith-
metic reasoning beyond the module generation phase,
i.e., also during later design stages.

3. Operand swaps
Fig. 1 illustrated the optimization potential of ex-

changing symmetric operands. Syntactically, operand
swapping looks like the well-known pin swapping tech-
nique that is standard in many design flows. Note how-
ever, that the operand swapping considered here per-
forms transformations that are much more global than
conventional pin swapping.

The powerfulness of this technique is described by the
following theorem:
Theorem 1 : An addition tree of arbitrary topology can

be transformed into any other topology by applying a
sequence of operands swaps.

Proof: [15]�
Theorem 1 tells us that any embedded addition tree

being built manually by a designer or by a constructive
algorithm can be restructured to optimize timing by only
performing operand swaps during the design flow.

Since addition networks are constructed by cascading
addition trees this result obviously holds also for com-

plete addition networks. E.g. an array multiplier can be
transformed into a Wallace tree architecture (or anything
in between) simply by swapping operands. To better
understand this keep in mind that the number of carries
produced in one particular addition column during a
multi-operand addition depends only on the number of
1-bit operands that have to be added up. Consequently,
the number of carries being produced by the correspond-
ing addition tree is the same for all possible addition
networks implementing a particular multi-operand addi-
tion.

4. Timing Optimization
This section starts describing how to find promising

operands swaps. Consider two input pins A and B of two
different AUs as shown in Fig. 2. For each of them we
can determine the delay tpd of the longest path leading
through it by adding the corresponding data arrival time
tar and data time-to-sink t2s. If we swap the signals a and
b we simply have to swap the tar values in the corre-
sponding equations and we have to add correcting fac-
tors CAB and CBA representing the changes in wire de-
lays.

g

g

 before swap: after swap:

tpdA = tarA + t2sA tpdA
’ = tarB + t2sA + CAB

tpdB = tarB + t2sB tpdB
’
 = tarA + t2sB+ CAB

tarA

A

t2sA

tarB

B

t2sB

a

b
Fig. 2: Gain of an Operand swap

The maximum delay reduction achievable by the swap
results to)','max(),max(pdBpdApdBpdA ttttgain −= .

Since some path leading neither through pin A nor
through pin B may become the most critical path after
the swap the delay reduction may be smaller than gain.
However, it can be guaranteed that performing a swap
with positive gain will at least not deteriorate cycle time.

Note that the gain calculation is not bound to a certain
timing model. Delay can be calculated with the accuracy
of the data being available at a particular design level.
This allows us to take all technology dependent parame-
ters influencing delay like transistor sizes, wire capaci-
tances, etc., into consideration during optimization. This
is a fundamental advantage over the simple timing mod-
els being used in constructive algorithms.

Fig. 3 presents our algorithm optimize. It improves
performance by swapping operands repeatedly and stops
when no swap with positive gain is found on the critical
path. Two signals are swap candidates for each other if
they belong to the same AT and if they do not lie in the
fanin cone of each other.

repeat {
perform timing analysis;
determine most critical path pcritical
maxgain=0;
Signal a,b;
foreach Signal i ∈ pcritical being an input of an AU

foreach Signal j being a swap candidate for i
if (gain(i,j)>maxgain) {

a=i; b=j; maxgain=gain(i,j);
if (maxgain>0)

swap signals a and b;
} until (maxgain=0);

Fig. 3: Algorithm optimize

Note that optimize does not consider particular addi-
tion trees in isolation. At any time it analyzes the critical
path of the whole circuit. This path may lead through
several addition trees (or even through several addition
networks). The algorithm always globally searches for
the most promising operand swap.

As explained in the previous sections this allows
transforming an addition network for adding up several
multi-bit operands into any other addition network im-
plementing the same arithmetic function. Consequently,
our method is orthogonal to specific multiplier architec-
tures. Any architecture based on addition networks can
be optimized using our approach.

The addition networks targeted by the algorithm form
the major part of virtually all kinds of arithmetic circuits.
Since arithmetic components often dominate the critical
path this makes our approach applicable in all circuits
containing arithmetic datapaths.

5. Experiments
For all experiments we used the design environment

of Magma Design Automation, Inc.. Our optimizer is
implemented as a set of Tcl scripts. For all the other
tasks the corresponding Magma functions have been
used. Our new design flow consists of the following
steps:

1. Module generation
2. Global placement
3. Optimization by operand swaps using the layout

data obtained from step 2.
4. Incremental placement with integrated optimi-

zation, global and detailed routing
If tight timing constraints were applied the module

generation step created nearly balanced Wallace tree-
like adders as a starting point. The wire length values
used for gain calculation in step 3 have been estimated
using the half perimeter bounding box method. The
conventional design flow we used for comparison per-
formed the same steps except step 3. For benchmarking
we generated circuits for the following expressions and
mapped them onto a 0.13µm standard cell library:

1. y[16] = a⋅b + c⋅d + e⋅f + g⋅h
2. y[32] = a⋅b + c⋅d + e⋅f + g⋅h
3. y[16] = (a+b)⋅(c+d)+(e+f)⋅(g+h)
4. y[32] = (a+b)⋅(c+d)+(e+f)⋅(g+h)
5. y[32] = a⋅b
6. a 16-bit microprocessor

In our first experiments our goal was to minimize cy-
cle time. The results are shown in Table 1. Columns 2
and 3 contain the improvements in cycle time and area
that have been achieved compared to the results of the
conventional flow. Both cycle time and area are meas-
ured after detailed routing. Hence, they are very accurate
and realistic. The area can be different as step 4 of the
flow above still performs a lot of optimizations, such as
restructuring, buffering and gate sizing.

Exp. 1 : min. cycle time Exp. 2 : min. area Circuit
Cycle time Area Area reduction

1 -31% +2% -41%
2 -32% -10% -37%
3 -2% -9% -11%
4 -3% -15% -13%
5 -20% +5% -18%
6 -15% +4% -3

Table 1: Cycle time improvement
The results show improvements in cycle time of up to

32% while the area roughly stays the same. Note that the
benchmarks with the largest improvements (1,2) are
typical for multiply/accumulate-expressions that occur
frequently in signal processing.

In the next experiment we targeted area minimization
for a given cycle time. This was done by using the cycle
time that could be achieved by the conventional flow as
delay target. Now the optimizations in step 4 above had
to add less area in order to achieve the performance
goal. The area improvements are shown in Column 3.

Finally, we investigated the ability of our algorithm to
adapt a circuit to non-uniform input data arrival times.
For this purpose we generated a few sets of non-uniform
data arrival times for circuit no. 2 randomly. The per-
formance improvements now ranged up to 45% depend-
ing on how the data arrival times had been chosen.

6. Conclusion
In this paper we exploit the advantages of an arithme-

tic bit level representation when optimizing datapaths.
This level preserves information about arithmetic sym-
metries in addition networks that are very expensive to
identify using Boolean techniques. Further we presented
an algorithm for optimizing circuits containing embed-
ded addition networks in terms of timing. The algorithm
considers all addition networks simultaneously to glob-
ally optimize the critical path.

The addition networks targeted by the algorithm form
the major part of many arithmetic circuits and very often
are part of the critical path of large designs. This makes

our approach useful in all circuits containing arithmetic
parts not only for the multiply accumulate structures on
which it performs best.

As the number and type of cells is unchanged by the
algorithm it can be applied late in the toolflow. Even on
a placed circuit the timing can be optimized without
changing the placement. This allows using very detailed
timing information to achieve the most accurate results.

In our experiments we obtained performance im-
provements for complex arithmetic expressions of up to
32% for uniform data arrival times and of up to 45% for
non-uniform data arrival times.

References
[1] “Logic Synthesis and Verification”, ed. by Hassoun S. and
Sasao T., Kluwer Academic Publishers, 2002 Bos-
ton/Dordrecht/London
[2] Oklobzija V., Villeger D., Ravi R., “A Method for Speed
Optimizing Partial Product Reduction and Generation of Fast
Parallel Multipliers using an Algorithmic Approach”, IEEE
Trans. on Comp. Vol. 5, No. 3, 1996
[3] Stelling P., Martel C., Oklobzija V., Ravi R., „Optimal
Circuits for Parallel Multipliers, IEEE Trans. on Comp., Vol.
47, No. 3, 1998
[4] Um J., Kim T., “An Optimal Allocation of Carry-Save-
Adders in Arithmetic Circuits”, IEEE Trans on Comp., Vol.
50, No. 3, pp. 215-233, 2001
[5] Kutzschebauch T., Stok L., “Congestion Aware Layout
Driven Logic Synthesis”, Proc. ICCAD-2001, pp. 216-223,
2001
[6] Kutzschebauch T., Stok L, “Regularity Driven Logic
Synthesis”, Proc. ICCAD-2000, pp. 439-446, 2000
[7] Hartje H., Neumann I., Stoffel D., Kunz W.,Cycle Time
Optimization by Timing Driven Placement with Simultaneous
Netlist Transformations”, Proc. ISCAS-2001, pp. 359-362,
2001
[8] Lou J., Chen W., Pedram M., “Concurrent logic restruc-
turing and placement for timing closure”, Proc. ICCAD-1999,
pp. 31-35, 1999
[9] Stoffel D., Kunz W., “Equivalence Checking of Arithme-
tic Circuits on the Arithmetic Bit Level”, IEEE Trans. on CAD
of Integrated Circuits and Systems, May 2004
[10] Kunz W., Menon P., “Multi-Level Logic Optimization by
Implication Analysis”, ICCAD-94, pp. 6-13, 1994
[11] Chang C, Marek-Sadowska M., “Perturb and Simplify:
Multi-Level Boolean Network Optimizer, ICCAD-94, pp. 2-5,
1995
[12] Sinha S., Brayton R., “Implementation and Use of SPFDs
in Optimizing Boolean Networks”, ICCAD-98, pp. 103-110,
1998
[13] Chang C., Cheng C., Suaris P., Marek-Sadowska M.,
“Fast Post-placement Rewiring Using Easily Detectable Func-
tional Symmetries”, Proc. DAC-2000, pp. 286-289, 2000
[14] Shin K., Kim T., “An Integrated Approach to Timing-
Driven Synthesis and Placement of Arithmetic Cirtcuits”, Proc.
ASPDAC2004
[15] Neumann I. et al., “Layout Driven Optimization of
Datapath Circuits using Arithmetic Reasoning”, Tech. Rep.
EIS-07-04-01, Univ. of Kaiserslautern, Dept. of Electrical and
Computer Engineering, http://www-eda.eit.uni-kl.de, 2004

