
Exploiting Quiescent States in Register Lifetime

Rama Sangireddy Arun K. Somani
Dept. of Electrical Engineering Dept. of Electrical & Computer Engineering
University of Texas at Dallas Iowa State University
Richardson, TX 75080, USA Ames, IA 50011, USA
rama.sangireddy@utdallas.edu arun@iastate.edu

Abstract

Large register file with multiple ports, but with a mini-
mal access time, is a critical component in a superscalar
processor. Analysis of the lifetime of a logical to physi-
cal register mapping reveals that there are long latencies
between the times a physical register is allocated, con-
sumed, and released. In this paper, we propose a TriB-
ank register file, a novel register file organization that
exploits such long latencies, resulting in a larger register
bandwidth and a smaller register access time. Imple-
mentation of the TriBank register file organization, as
compared to a conventional monolithic register file in an
8-wide out-of-order issue superscalar processor reduced
the register access time up to 34%, even while enhancing
the throughput in instructions per cycle (IPC) by 3% and
14%, for SpecInt2000 and SpecFP2000, respectively.

1 Introduction
Wide issue processors require multiple ports in the reg-
ister file which has an adverse affect on the register ac-
cess time. Besides, a wide-issue superscalar processor is
effective only if maximum possible number of instruc-
tions are issued during each cycle, which implies that
the processor has to view a larger instruction window to
achieve sufficient amount of instruction level parallelism
(ILP). Large instruction window implies a larger set of
in-flight instructions requiring a larger number of physi-
cal registers. However, increasing the size of register file
adversely affects the register access time.

Register access time plays a critical role in determin-
ing the processor clock cycle time [1]. Farkas et al [2]
have shown that an 8-wide issue superscalar processor
handling precise exceptions increases the average in-
structions per cycle (IPC) throughput as the register file
size is increased up to 256. However, the processor loses
performance in terms of average number of instructions
per second (IPS) for a register file size beyond 128, due
to the adverse impact of the large register access time
on the processor cycle time.

From above observations, we develop a TriBank reg-
ister file, a register file architecture that performs well
in meeting the following two main goals: (a) provide a
small register access time to enable a faster processor cy-
cle time, (b) provide a large number of registers to enable
dispatching maximum possible number of instructions to
issue window for extracting higher ILP. These two goals
are met by designing a register file that exploits long
latencies involved, in between allocation of register to
a logical value and actual consumption of the value by
a functional unit, and then in between consumption of
the value and actual freeing of physical register for next
allocation.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the register life time. Section 3 discusses
related research. In Section 4 we present a detailed de-
sign of the proposed register file organization. The sec-
tion also discusses the necessary modifications in the mi-
croarchitecture. Section 5 analyzes the performance of
the architecture. Section 6 concludes the paper.

2 Register lifetime Analysis

time when the
register is freed

time when a physical
register is mapped
to a logical register

time when the
register is
first consumed

time when the physical
register is written
with a value

time when the
register is
last consumed

time

t0 t1 t2 t3 t4

Quiescent
state

Quiescent Quiescent
state statestate

Active

S0 S1 S3S2

Figure 1: Various stages in the lifetime of a physical reg-
ister, for a particular mapping to a logical register.

We first study and analyze the activity of a physi-
cal register during its lifetime of one logical to physical
mapping. In Alpha 21264 processor pipeline [3], fetch-
ing and renaming of instructions are performed in-order,
while issue and execution of instructions are performed
out-of-order. The logical destination register for an in-

struction fetched is mapped to a free physical register at
dispatch stage. Subsequent instructions with same log-
ical register as their source operand are mapped to the
assigned physical register. The scheme of logical register
renaming eliminates false data dependencies. The allo-
cated physical register is freed only when a subsequent
instruction with same logical destination is committed,
to enable recovery from precise exceptions. The condi-
tions for freeing registers are described in more detail
in [2]. The life cycle of a physical register is identified as
the time between its allocation to a logical destination
at the dispatch stage and the time when it is freed.

The various stages in the register lifetime, as illus-
trated in Figure 1, are: (i) t0: time at which a free
physical register Rp is allocated to a logical destination
register Rl of an instruction Ik, (ii) t1: time at which Rp

is written with a value. This happens when the instruc-
tion Ik enters writeback stage, (iii) t2: time at which
the value in Rp is first consumed. This happens when
an instruction Ik+x, with a logical source operand of Rl,
is executed, (iv) t3: time at which the value in Rp is
consumed for the last time. This happens when an in-
struction Ik+y (y > x), with a logical source operand
of Rl, is executed. And, no further instructions use Rl

as source operand until Rl becomes a destination reg-
ister for another instruction Ik+z, where z > y > x,
(v) t4: time at which the physical register Rp is freed
and is ready for the next allocation. This happens when
instruction Ik+z is committed.

At the microarchitecture level it is not easy to deter-
mine when a register is consumed for the last time. To
do so, it requires a large overhead of keeping track of
all the instructions that are potential customers for the
operand with a counting mechanism to track the instruc-
tions as and when they are executed. In this study, we
identify the time of last consumption of a register value
only for the purpose of analyzing the register activity
during lifetime. Using that we develop our architecture
where we do not have to keep track of time of last con-
sumption of a register.

To study a relationship among these various times,
we used Simplescalar-3.0 [4] for the Alpha AXP instruc-
tion set to simulate a dynamically scheduled out-of-order
issue superscalar processor with the simulation param-
eters depicted in Table 1. The instructions are traced
along the various stages of the processor pipeline and
the time intervals between various stages in the lifetime
of a register are measured according to the above men-
tioned specifications. The time intervals measured are:
[t1-t0:] time during which the register is waiting for the
result to be written into it after it is allocated, [t2-t1:]
time during which the register is waiting to be read by a
functional unit after it is written into, [t3-t2:] time dur-

ing which the register is active as supplier of an operand
to functional units, [t4-t3:] time during which the reg-
ister is waiting to be freed after it is consumed for the
last time.

Table 1: Simplescalar simulation parameters.
P arameter V alue

Instruction cache 32KB, 2-way, 32B line
- latency 1 cycle
Data cache 32KB, 4-way, 32B line
- latency 1 cycle
Branch predictor bimodal, 2K table size
−mis − prediction latency 7 cycles
−return address stack size 8
Instruction issue queue size 128
Load/store queue (LSQ) size 64
ReOrder buffer (ROB) size 64
Issue width 2/4/8/16
Commit width 2/4/8/16
L2 unified cache 256KB, 4-way, 64B line
−latency 6 cycles
T LB
−D − T LB 512KB, 128 entries
−I − T LB 256KB, 64 entries
−latency 30 cycles
Memory
−latency first, next 70, 2 cycles
−bus width 8B

SpecInt: Register life time distribution in absolute cycles

0

50

100

150

200

250

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

compress gcc go li m88skim perl vortex Avg

N
u

m
b

er
 o

f
cy

cl
es

S0 S1 S2 S3

SpecInt: Register life time in percentage cycles

0%

20%

40%

60%

80%

100%

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

compress gcc go li m88skim perl vortex Avg

P
er

ce
n

ta
g

e
cy

cl
es

S0 S1 S2 S3

SpecFP: Register life time distribution in absolute cycles

0

50

100

150

200

250

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

applu fpppp hydro2d mgrid su2cor swim turb3d wave5 Avg

N
u

m
b

er
 o

f
cy

cl
es

S0 S1 S2 S3

SpecFP: Register life time in percentage cycles

0%

20%

40%

60%

80%

100%

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

applu fpppp hydro2d mgrid su2cor swim turb3d wave5 Avg

P
er

ce
n

ta
g

e
cy

cl
es

S0 S1 S2 S3

Figure 2: Physical register lifetime distribution in (above)
absolute number of cycles (below) percentage of lifetime.

The average time interval between each stage of reg-
ister lifetime is shown for various Spec benchmarks in
Figure 2. The register lifetime can be classified, as il-
lustrated in Figure 1, into an active state (S2) where
the register is supplying the values to functional units,
and quiescent states (S0, S1, and S3) where the phys-
ical register is inactive waiting for some action to take
place. It can be observed that the average active time
of the register is exceptionally small (around 1% to 5%).
This is mainly due to two reasons. First, it is observed
that around 85% of the time a register value is read at
most once. Second, some registers are never read as the
values they hold are either supplied to their consumers
through the bypass logic or even not read at all.

The observations that emanate from the above anal-
ysis are: (a) physical registers are allocated at dispatch
stage, early in the pipeline, and experience a long la-
tency before consumption, (b) amount of duration when
the register is an active supplier of values to consumers
is very small as compared to its long lifetime, (c) af-
ter the last consumption by a functional unit, there is
a long latency before a register is freed up. Hence, a

more aggressive logical to physical mapping at dispatch
stage can be obtained by hiding the latency in freeing
of registers, with the support of a mechanism to handle
precise exceptions.

3 Related Research
Alpha 21264 microprocessor [3] uses a replicated register
file organization to reduce the number of ports, wherein
each copy can be accessed by only a few functional units.
Tseng et al [5] have examined designs of such multiple
bank with fewer ports to reduce power and area. Cruz
et al [6] used a multiple-banked organization for imple-
menting a two-level register file. Level two (L2) register
file is a large bank that holds all register values and is
used for logical to physical register mapping. Level one
(L1) register file, a smaller bank and closer to the ALU,
maintains a copy of those L2 registers that are potential
consumer operands. This organization takes advantage
of the latency in the quiescent states S0 and S1, and
small active state S2. The scheme does not exploit the
long latency in quiescent state S3, as the L2 register file
still holds the values until the registers are freed. Also,
implementation of a large L2 register file results in a
large latency in access from L2 to L1.

Balasubramonian et al [7] proposed and evaluated two
orthogonal designs - two level and multi-banked register
file. In the two-level organization, L1 bank is used for
logical to physical register mapping and holds values un-
til they are consumed. After the consumption register is
moved to L2 and maintained until it is freed. This ex-
ploits the quiescent state S3. Such implementation helps
in organizing a relatively smaller L1 register file as com-
pared to a conventional register file, and hence reduces
the register access time. However, the microarchitec-
ture keeps track for each physical register value, when
it is consumed for the last time, with a large hardware
overhead. The approach in this case and in [8] results
in difficulty of managing the complexity and additional
latency of the control logic required to handle read and
write bank conflicts and the mapping of register ports
to functional units.

Some of the other techniques proposed in the past for
an effective utilization of register resources are as fol-
lows. Borch et al [9] have recently proposed caching of
registers. To reduce register access time, A cluster based
design of execution units and the extension of storage
hierarchy for each cluster, in place of a global register
file, is introduced by Dally [10]. Zyuban and Kogge [11]
have developed energy models for multi-ported register
files with a variety of architectural parameters, and as-
sert that the centralized register files would become the
dominating power component of next-generation super-
scalar computers. Gonzalez et al [12] proposed a virtual

registers architecture with a strategy to reduce the pres-
sure on register file by delaying the allocation of physical
registers until instructions complete, instead of doing it
in the decode stage.

4 TriBank Register File
The TriBank Register file organization consists of three
banks of physical registers with a heterogeneous struc-
ture, as shown in Figure 3. Each register bank consists
of a number of registers and ports according to the archi-
tecture requirements as discussed later. The bank RF1
is closer to ALU and consists of a small number of reg-
isters and a sufficient number of read and write ports to
support issue width of the processor. Functional units
are always supplied with the data only from the regis-
ters in RF1. The RF2 bank consists of a large number
of physical registers and a few read and write ports. The
physical registers in RF2 are used for logical to physical
register mapping at dispatch stage. Results are always
written to registers in RF2. The bank RF3 also consists
of a large number of registers and a few ports. From
Figure 2, we observe that the average time during inter-
vals t2-t0 (= S0+S1) and t4-t3 (S3) is around 45-50%
each. Hence we propose that there be an equal number
of registers in RF2 and RF3 banks.

RF1

Mux

TriBank Register file

RF2

RF3

Figure 3: A TriBank Register file organization.
The RF1 bank obtains a copy of only those register

values, from RF2 or RF3, that are soon to be consumed,
and so holds the values in the active state S2. The regis-
ter values in RF2 are transferred to RF3 whenever RF3
has free registers and thus simultaneously freeing the
corresponding registers in RF2. Section 4.3 discusses
in detail the process of transferring register values from
RF2 to RF3, and conditions for freeing of registers in
RF2 and RF3. The register in RF2 is freed up much
earlier than that is done in a conventional monolithic
register file. The following subsection discusses in de-
tail the various mechanisms for register value copying to
RF1 for consumption.

4.1 Register value fetching to RF1

The issue stage in the processor consists of wakeup logic
and select logic. The instruction is said to be in wakeup

state when it is in the reservation station waiting for
both its source operands to be ready. When an instruc-
tion has all its source operands ready, it sends a ready
signal to the select logic. The select logic sends a grant
signal to the instruction permitting it to be executed,
when necessary functional unit is available. The copying
of register values to RF1 from RF2 or RF3 occurs when
the values are ready to be consumed by an instruction
that is ready to be issued for execution. To avoid any
delay, the source operands for an instruction are copied
to RF1, when the instruction in the wakeup logic sends
a ready signal to the select logic. This mechanism en-
sures that the values are fetched to RF1 in time to be
consumed, and also not much in advance before being
consumed.

It is necessary that all active registers, to be consumed
soon, be kept in RF1. Thus we propose that RF1 be
maintained as a small fully associative register file, sim-
ilar to the Multi-banked register files proposed by Cruz
et al [6]. In this case, the values are replaced accord-
ing to the least recently consumed (LRC) policy. The
registers in RF1 can also be easily marked as consumed,
and thus enable replacing only those registers that are
marked. A pitfall with this scheme is that the register
value, though required, may not actually be read from
the register file, but is supplied directly via the bypass
logic. In that case, the register would not be marked as
consumed and hence never replaced. To avoid this, in-
stead of setting the flag for a register when it is read, the
flags are set whenever the consumer instruction is exe-
cuted, irrespective of whether the source operands are
read from RF1 or obtained via the bypass logic.

At the microarchitecture level, it is not possible to
know in advance when a register value is consumed
for the last time without a large overhead of keeping
track of all the instructions that are customers for the
operand. Hence, retaining the value in RF1 until it is
completely consumed cannot be guaranteed with 100%
accuracy. However, the register value replacement in
RF1 using LRC policy increases the chances that the
value is held for long enough to be consumed more than
once if needed. Even with a rare chance that the value
is replaced before it is consumed for the last time, it can
again be copied from RF2 or RF3 when that last instruc-
tion is to be issued for execution as per usual procedure
described above.

4.2 Register Transfer from RF2 to RF3

At the register renaming stage, a free physical register
in RF2 bank is used to allocate to a logical destination
register at time t0. The value produced after the execu-
tion of the corresponding instruction is written into the
physical register in RF2 at time t1. Since the two reg-

ister banks RF2 and RF3 are maintained to be of same
size, a direct-mapping (one-to-one) scheme is followed,
i.e., transfer of values from RF2 to RF3 is done strictly
in a one-to-one correspondence. The transfer of a physi-
cal register value in RF2 to RF3 bank will happen upon
the satisfaction of both the following conditions:

1. The physical register in RF2 bank must have al-
ready obtained its value, i.e., time t1 must have
elapsed in its current lifetime, and

2. the corresponding physical register in RF3 bank
should be free.

When the above conditions satisfy, register value in
RF2 is transferred to the corresponding register in RF3.
Subsequently the register in RF2 is freed and is ready
for a mapping to a new logical destination register. In
direct-mapping policy, for applications in which latency
of quiescent state S3 for a register is much larger com-
pared to the latency in state S0+S1 during the lifetime
of a logical to physical mapping, most of the time the
register in RF2 will be moved to RF3 much after it is
consumed. In this case, the effective lifetime of a register
mapping in the processor’s view is the latency in freeing
the register in RF2, which translates to the long latency
of freeing a register from RF3.

However, if the latency in state S0+S1 is larger than
that in state S3, a register value might be moved from
RF2 to RF3 even before it is consumed. This will not
hinder the reading of operands as the value can still be
fetched from RF3. However, there is a pitfall in this
scenario. Consider a case when a value in physical reg-
ister pr5 is moved from RF2 to RF3 even before it is
consumed, and then the register pr5 in RF2 is freed for
next allocation. Subsequently the register pr5 in RF2
obtains another value corresponding to the next logical
renaming. A following instruction that sources the log-
ical operand corresponding to pr5 in RF3 (former map-
ping) or the logical operand corresponding to pr5 in RF2
(later mapping) has to read the value correctly. To il-
lustrate the scenario more clearly, consider the example
shown in Figure 4.
Code with logical registers Code with renamed registers
lr6 ← ... ; pr5 ← ...
............. ;
............. ;
... ← lr6 ; ... ← pr5
............. ;
............. ;
lr4 ← lr2 ; pr5 ← pr9
............. ;
... ← lr6 ; ... ← pr5 (in RF3)
... ← lr4 ; ... ← pr5 (in RF2)
............. ;

Figure 4: Example code.
Let us say, sometime in between the first two instruc-

tions shown, the value in pr5 is moved from RF2 to

RF3. In that case, the microarchitecture should make
sure that the second instruction reads the value from pr5
register in RF3 bank. Besides, now pr5 in RF2 is free to
be allocated and thus gets mapped to lr4. For the next
two instructions shown, the reading of operands lr6 and
lr4 happens to be from pr5 and thus operands have to be
read from RF3 and RF2, respectively as per the correct
mapping shown. These issues can be addressed by the
mechanism shown in Figure 5.

from RF3

from RF2
to RF1

Register reading inst. ID

flag from rename table

Pr Sel. bitInst. ID

Bank select logic table

Figure 5: Selection of physical register value from correct
register bank.

A bank select logic table with tuple [physical register,
instruction id., select bit] is maintained at the register
read stage in the processor. When the value in pr5 is
moved from RF2 to RF3, the register mapping table in
the dispatch stage is updated by setting a flag as one
for the mapping lr6 ←→ pr5 in the rename map table.
Also, the instruction id. against pr5 in the bank select
logic table is set to highest number and the select bit is
set to one. For a subsequent mapping of lr4 ←→ pr5
the corresponding flag in the rename map table is set to
zero, and the id. of that instruction replaces the highest
number set in the bank select logic table for pr5.

Now, for the second instruction shown in Figure 4,
since the id. of that instruction is smaller than the in-
struction id. in the bank select logic table (it is assumed
that id. for instructions are assigned in increasing or-
der at decode stage in program order), the logic uses
the select bit from the bank select logic table to read the
register value from the appropriate bank. For the fourth
and fifth instructions shown in Figure 4, since their in-
struction id. are larger than that in bank select logic
table, the flag from rename map table is used to read
the register value from appropriate bank. It is impor-
tant to note that, the selection logic to read the operand
value from appropriate bank functions in parallel to the
reading of the operand values from both RF2 and RF3
banks, and so do not add any delay in the register ac-
cess time. Hence, the addition of this small selection
logic does not impact the overall register access time.

4.3 Freeing of registers in RF2 and RF3

As discussed above, a register in RF2 is freed whenever
the register value is transferred to the corresponding reg-
ister in RF3 bank. A register in RF3 is freed according
to the conditions followed in the case of a conventional
monolithic register file. That is, for a current logical to
physical register mapping, the physical register in RF3
is freed when a subsequent instruction with same logical
destination commits. The freed register in RF3 is again
ready to assume another register value from RF2.

The proposed architecture recovers from branch mis-
predictions as follows. In a conventional architecture,
when a branch mis-prediction occurs, the instructions
that are not yet committed following the mis-predicted
branch are squashed from the pipeline along with the
corresponding values written in register file and the log-
ical to physical register mappings due to those instruc-
tions. Subsequently, for instructions that are issued the
source operands are read according to the logical to
physical register mapping performed before the branch
instruction. In the proposed architecture, the corre-
sponding values existing in RF2 and RF3 are squashed
when branch mis-prediction occurs. For new instruc-
tions issued, the source operand values are obtained from
either RF2 or RF3, where ever they exist. Consider the
example shown in Figure 6.
Code with logical registers Code with renamed registers
lr6 ← ... ; pr3 ← ...
... ← lr6 ; ... ← pr3
branch to LOOP ; branch to LOOP
lr5 ← lr4 ; pr8 ← pr9
lr6 ← ... ; pr2 ← ...
... ← lr6 ; ... ← pr2
............. ;
LOOP: ... ← lr6 ; ... ← pr3

Figure 6: Example code.
Initially, the logical register lr6 is mapped to physical

register pr3, and thus is read as a source operand for
the next instruction. When the branch is predicted to
be not taken and the following instructions are fetched,
the logical register lr6 is renamed to a physical regis-
ter pr2, different from the earlier mapping. The subse-
quent dependent instructions read from physical register
pr2. However, when the branch is realized to be mis-
predicted, the instruction in the correct path after the
branch requires the logical value from lr6 which actu-
ally refers to pr3. Thus when the recovery mechanisms
are initiated and the instructions are processed on the
correct program path, instruction requiring the value in
physical register pr3 will find the register value either in
RF2 or RF3, depending on the timing of transfer of the
value from RF2 to RF3.

4.4 Impact on bypass logic
The design of a register file, also impacts the complexity
of the bypass logic. A conventional monolithic register

file with one cycle latency will have one level of bypass.
However, a large monolithic register file to support an
8-issue superscalar processor (requires around 128 reg-
isters with 16 read and 8 write ports) is unlikely to be
implemented with one-cycle latency. Such a register file
requires two levels of bypass logic which incurs a sig-
nificant cost. For a register file with two-cycle latency,
designing only one level of bypass logic further degrades
the performance [6]. For the proposed architecture, since
operands are supplied only from the RF1 register bank,
complexity of the bypass logic is not affected and is the
same as for a register file with single-cycle latency and
a single level of bypass logic.

5 Performance Evaluation

Table 2: Configurations for various register file organiza-
tions simulated. Access time is measured at 0.18µ.

Index Configuration (IW) = 4 (IW) = 8
(IW = Issue W idth)
read port (rp), write port(wp), access access
access latency time (ns) time (ns)

C1: Base RF = 128 registers 1.0614 1.4873
rp = 2*IW , wp = IW

C2: two-level RF1 = 16 registers 0.8046 0.9791
rp = IW , wp = IW, 2 cycles

organization RF2 = 128 registers 0.9428 1.2302
rp = IW , wp = IW, 2 cycles 0.9428 1.2302

C3: TriBank RF1 = 16 registers 0.8046 0.9791
rp = 2*IW , wp = IW, 1 cycle

organization RF2 = 64 registers 0.8922 1.1552
rp = IW , wp = IW, 1 cycle
RF3 = 64 registers 0.8687 1.0844
rp = IW, 1 cycle
number of buses from
RF2 to RF3 = IW

C4: TriBank RF1 = 16 registers 0.8046 0.9791
rp = 2*IW , wp = IW, 1 cycle

organization RF2 = 128 registers 1.0614 1.4873
rp = IW , wp = IW, 2 cycles
RF3 = 128 registers 0.9428 1.2302
rp = IW, 2 cycles
number of buses from
RF2 to RF3 = IW

We used Simplescalar-3.0 [4] for the Alpha AXP in-
struction set to simulate a dynamically scheduled out-
of-order issue superscalar processor with the simulation
parameters summarized in Table 1, with a few modifica-
tions as below. In Simplescalar, instruction issue queues
and the re-order buffer (ROB) constitute one single cen-
tralized circular structure called the Register Update
Unit (RUU). The simulator has been modified to model
the instruction issue queues and the ROB structures.
Besides, an Alpha 21264 processor [3] based architec-
ture is implemented with split integer and floating-point
physical register files and issue queues for a 4-wide and
an 8-wide out-of-order issue processor. The configura-
tions for four different register file organizations are used
for the analysis as shown in Table 2. The benchmark
programs are simulated for 500-1000 million instructions
depending on the characteristics of each program, and
the simulation was fast-forwarded past the initial warm-
up phases.

The configuration C1 is a base processor implementa-
tion. In C1 the monolithic register file is implemented
as a single cycle register file with one-level bypass logic.
The configuration C2 is implemented in line with the
two-level register file design proposed by Cruz et al [6].
The configuration C3 is used to evaluate the perfor-
mance of the TriBank register file organization with RF2
and RF3 constituting 64 physical registers as against
a conventional monolithic register file with 128 physi-
cal registers. This constitutes an even-handed compar-
ison of the TriBank scheme with C1 and C2 in terms
of number of physical registers available for data stor-
age. However, note that the physical register bandwidth
available for logical register mapping in C3 will be half of
that available in case of C1 and C2. Hence, to measure
the performance of TriBank scheme with same logical to
physical register mapping bandwidth, we also evaluate
the configuration C4. In C2, C3 and C4, the small regis-
ter bank closer to ALU is implemented as a single cycle
one-level bypass register file. The RF2 and RF3 in C3
are implemented with a single cycle latency, while RF2
in C2, and RF2 and RF3 in C4 are implemented with a
two-cycle latency.

We used SPEC2000 benchmarks, and evaluated both
the integer and floating-point programs. The access time
models of CACTI-2.0 [13] at 0.18µ technology are used
with necessary modifications to generate cycle times for
multiported register files, to evaluate the complexity of
proposed register file structures in comparison to the
baseline organization. The CACTI-2.0 was made to an-
alyze caches with a fewer ports. We have greatly ex-
panded the tool to analyze register files (which typically
do not use sense amps like caches) with a larger number
of ports. We compute the access time of the RF2 and
RF3 register banks while accounting for the multiplexer
logic used to select values from either of the banks.

5.1 Results and analysis

SpecInt2000: 4-wide issue

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

bzip crafty gcc gzip parser vortex Hmean

IP
C

C1 C2 C3 C4 SpecFP2000: 4-wide issue

0

0.5

1

1.5

2

2.5

3

3.5

ammp applu lucas mgrid swim Hmean

IP
C

C1 C2 C3 C4

Figure 7: Instructions per cycle (IPC) throughput for vari-
ous register file configurations in the 4-wide issue processor.

Figures 7 and 8 show the IPC throughput for various
integer and floating-point Spec2000 programs for 4-wide
and 8-wide processors, respectively. The degradation
in IPC for configuration C2 as compared to configura-
tion C1 is in line with the analysis given by Cruz et

SpecInt2000: 8-wide issue

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

bzip crafty gcc gzip parser vortex Hmean

IP
C

C1 C2 C3 C4 SpecFP2000: 8-wide issue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ammp applu lucas mgrid swim Hmean

IP
C

C1 C2 C3 C4

Figure 8: Instructions per cycle (IPC) throughput for vari-
ous register file configurations in the 8-wide issue processor.

al [6]. It is observed, that the TriBank register file con-
figurations C3 and C4 perform either similar or better
as compared to the base configuration. An enhancement
in IPC by 2% and 3% for a 4-wide processor, and by 2%
and 1% for an 8-wide processor, is seen with configura-
tion C3, for SpecInt and SpecFP programs, respectively.
On the other hand Implementation of configuration C4
enhances IPC by 2% and 12% for a 4-wide processor,
and by 3% and 14% for an 8-wide processor for SpecInt
and SpecFP programs, respectively. For certain integer
benchmarks like crafty, gcc, gzip, and parser, C3 is ob-
served to be performing slightly better than C4. This
is due to the larger access cycles for register banks RF2
and RF3 in C4 as compared to those in C3. Hence, this
performance difference can vary in either way depend-
ing on the architecture implementation technology and
other factors that govern access time of a register bank.

It can be observed from Table 2 that the register or-
ganization in C3 significantly reduces the register access
time by 25%, while implementation of C4 register file ar-
chitecture reduces the register access time by 34%. The
advantage gained by the inclusion of RF3 register bank,
used to retain the register values before being freed, is
explained as follows. Cruz et al [6] have shown that a
large RF2 (with large access time) and small RF1 re-
sults in IPC loss though instruction throughput per sec-
ond is gained as it increases the pipeline latency. We
have shown that splitting the large register bank into
RF2 and RF3 provides the same register bandwidth for
dispatch stage while reducing pipeline latency improv-
ing both IPC and the instruction throughput. This is a
significant contribution.

6 Conclusions
An effective register file organization in a superscalar
processor is one that provides a small register access
time, even while providing a large number of registers
and multiple ports. We developed TriBank register file
organization, a novel architecture that exploits the long
quiescent states in the lifetime of a logical to physical
register mapping. Implementation of the TriBank reg-
ister file organization, as compared to a conventional
monolithic register file in an 8-wide out-of-order issue su-

perscalar processor enhanced the throughput in instruc-
tions per cycle (IPC) by 3% and 14%, while reducing
the register access time by 34% .

References

[1] S. Palacharla, N. P. Jouppi, and J. E. Smith,
“Complexity-Effective Superscalar Processors”, Proc.
24th Annual International Symposium on Computer Ar-
chitecture, 1997, pp. 206-218.

[2] K. I. Farkas, N. P. Jouppi, and P. Chow, “Register File
Design Considerations in Dynamically Scheduled Proces-
sors” Proc. Second International Symposium on High-
Performance Computer Architecture, 1996, pp. 40-51.

[3] R. E. Kessler, “The Alpha 21264 microprocessor”, IEEE
Micro, Volume: 19, Issue: 2, Mar-Apr 1999, pp. 24-36.

[4] Doug Burger and Todd M. Austin, “The SimpleScalar
Tool Set, Version 2.0”, Computer Sciences Depart-
ment Technical report # 1342, University of Wisconsin-
Madison, June 1997.

[5] J. H. Tseng and K. Asanovic, “Banked Multiported Reg-
ister Files for High-Frequency Superscalar Microproces-
sors”, Proc. 30th Annual International Symposium on
Computer Architecture, 2003.

[6] J. L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham,
“Multiple-banked Register File Architectures”, Proc.
27th Annual International Symposium on Computer Ar-
chitecture, 2000, pp. 316-325.

[7] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi,
“Reducing the Complexity of the Register File in Dy-
namic Superscalar Processors”, Proc. 34th ACM/IEEE
International Symposium on Microarchitecture, MICRO-
34, 2001, pp. 237-248.

[8] I. Park, M. D. Powell, and T. N. Vijayakumar, “Reducing
Register ports for higher speed and lower energy”, Proc.
35th Annual International Symposium on Microarchitec-
ture, 2002.

[9] E. Borch, E. Tune, S. Manne, J. Emer, “Loose loops sink
chips” Proc. Eighth International Symposium on High-
Performance Computer Architecture, 2002, pp. 270-281.

[10] W. J. Dally, “Interconnect-limited VLSI architecture”,
Proc. IEEE International Conference on Interconnect
Technology, 1999, pp. 15-17.

[11] V. Zyuban and P. Kogge, “The Energy Complexity of
Register Files”, Proc. International Symposium on Low
Power Electronics and Design, 1998, pp. 305-310

[12] A. Gonzalez, M. Valero, J. Gonzalez, and T. Monreal,
“Virtual registers”, IEEE Fourth International Confer-
ence on High-Performance Computing, 1997, pp. 364-369

[13] S. E. Wilton and N. P. Jouppi, “An Enhanced Access
and Cycle Time Model for On-chip Caches”, DEC WRL
Research 93/5, July 1994.

