
Evaluating Techniques for Exploiting Instruction Slack
Yau Chin, John Sheu, and David Brooks

Division of Engineering and Applied Sciences
Harvard University

Abstract
In many workloads, 25% to 50% of instructions have

slack allowing them to be delayed without impacting per-
formance. To exploit this slack, processors may implement
more power-efficient, longer latency pipelines or provide
dynamically scaled pipelines using multiple clock domains.
Issuing instructions with slack to slower pipelines can result
in substantial power savings, with minimal performance
loss. Considering both dynamic and static power dissipa-
tion, we found that by using longer latency pipelines the
power of functional unit pipelines decreases by 20% to 55%
with a performance impact of 0% to 3% for SPEC2000 and
MediaBench workloads. Dynamic scaling reduces the per-
formance loss in intense multimedia workloads by up to 2%,
but achieves lower power savings.

1. INTRODUCTION
Increasing processor clock rates leads to higher perfor-

mance by reducing the run time of the critical instruction
path, but this critical path typically constitutes less than 5%
of instructions [3]. Non-critical instructions can be executed
at a slower rate without affecting overall performance, so
in reality, microprocessors run many instructions at higher
speeds needlessly. Recent research develops ways to iden-
tify these non-critical instructions and introduces the con-
cept of instruction slack [3], which is the number of cycles
an instruction can be delayed without impacting subsequent
instructions in a program.

Since many applications exhibit regular behavior, predic-
tive schemes can be effective in identifying this slack. Slack
predictors can be used to direct certain instructions to re-
duced speed pipelines with minimal performance loss and
executing instructions with slack in slower, low-power cir-
cuits can significantly reduce power. Throughput remains
unaffected as long as the microprocessor correctly predicts
and issues instructions to the pipeline of the adequate speed.

At least two distinct techniques can be used to exploit
slack in slower, less power intensive functional units. First,
fixed-speed slow pipelines can be designed to augment or
replace existing pipelines within the processor core. These
fixed-speed pipelines are designed with less aggressive cir-
cuits and smaller transistors and provide higher latency
operation but with significantly lower power dissipation.
Alternatively, standard high-performance functional units
could be employed but with the capability to apply dynamic
frequency and voltage scaling at the individual functional
unit level. These pipelines will be fairly easy to implement
because they require little additional control logic.

Dynamic scaling requires multiple clock domains, that
is, each functional unit has an independent clock frequency
and voltage. Recent work used a clock domain for each type
of functional unit [8], but we propose having a clock do-
main for each individual pipeline. Fine-grained clock do-

mains permit the microprocessor to better fit the current in-
struction stream, and allow it to respond to increased de-
mand for fast or slow pipelines. This approach offers the
ability to conserve power when the opportunity arises with-
out limiting maximum performance.

This paper compares the performance impact and active
and leakage power savings through slack exploitation with
fixed and dynamically scaled pipelines. The fixed approach
with three full speed and three slow pipelines achieves
power savings between 20% and 55% in the functional units
with a performance loss of 0% to 3%. The dynamic ap-
proach with six pipelines is better able to respond to the de-
mands of multimedia workloads. It minimizes performance
loss by up to 2% but also reduces power savings.

2. RELATED WORK
Dynamic voltage scheduling examines application be-

havior at run-time to produce the schedules. Pering et al.
[6] use the idea of application deadlines and target IPCs
to dynamically vary processor frequency and voltage. This
type of analysis works well for applications with established
deadlines such as MPEG decoders.

Semeraro et al. [8] proposes dynamic voltage scaling
at a finer level of granularity through the use of multiple
clock domains. With multiple clock domains, major blocks
(front-end, load-store unit, and execution units) may oper-
ate at different voltages and frequencies. The proposed on-
line scheme for determining the voltage and frequency is
based on the utilization of the units and does not consider
whether an instruction is on the critical path or has slack.

Pyreddy et al. [7] and Seng et al. [9] identify non-critical
instructions using techniques for determining criticality and
direct those instructions to low-power pipelines. Their mod-
els have only two levels of granularity: critical and non-
critical. Casmira et al. [2] extend the idea of critical path
scheduling to evaluate how many instructions have slack at
any given cycle. Fields et al. [3] continue in this domain
and formally define three types of instruction slack, assess
the availability of slack, and propose a prediction algorithm
to identify slack. However, their research only briefly dis-
cusses how to exploit slack in microprocessors.

The main contribution of this work is to compare sev-
eral schemes for exploiting predicted slack. In doing so, we
build on the work of Fields et al. in identifying and predict-
ing slack. We consider fixed, low-power pipelines as well as
dynamically scaled pipelines under a multiple clock domain
architecture. Dynamic scaling of the pipelines offers some
advantages over fixed pipelines, and issuing instructions to
pipelines of different speeds based on their slack provides a
finer level of granularity than the previous work. In our mul-
tiple clock domain architecture, we also consider individual
functional unit pipelines as separately scalable units, as op-
posed to the coarse grained blocks considered in [8].



Instruction Window 128-RUU, 64-LSQ
Integer Functional Units 4 iALU (1cycle), 2 iMul (4 cycle)
FP Functional Units 2 fpALU (4 cycle), 2 fpMul (6 cycle)
Pipeline Width 4-issue, 4-commit, 2 memory ports
L1 D-Cache 16KB 4-way, 3 cycle latency
L2 I/D-Cache 256KB 4-way, 9 cycle latency
Main Memory 100 cycle latency

Table 1. Baseline processor parameters.

3. EXPLOITING SLACK
We consider two approaches to exploit slack for low-

power operation: fixed, low-power, longer latency pipelines
and standard, high-performance pipelines that are broken
into multiple clock and voltage domains and are dynami-
cally tunable depending on the availability of slack at that
point in the instruction stream. In both scenarios, each in-
struction is issued to a specific pipeline based on how much
slack is predicted for it.

Table 1 describes our baseline processor architecture.
For the fixed approach, we consider two changes to the ex-
ecution units in the baseline processor: fixed-4 and fixed-6.
In the fixed-4 scenario, which we call 3f + 1s, we con-
sider three fast ALUs combined with one ALU operating
with a latency of 2 cycles, or half-speed. The alternative is
the fixed-6 scenario with 3f +2s+1s′ where two ALUs run
at half speed and one ALU runs at one-third speed. This de-
sign includes a small area and leakage power overhead (dis-
cussed in detail in Section 4.2) because of the additional
two ALUs. However, this configuration limits the perfor-
mance loss of the processor when compared to the baseline.
We chose these two configurations mainly because 2f + 2s
had very poor performance and 3f +2s+1s′ generally per-
formed as well as 4f + 2s but had higher power savings.

Similarly, we examine two scenarios for the dynamic ap-
proach with 4-ALU and 6-ALU pipelines: dynamic-4 and
dynamic-6. The ALU pipelines can run at 1x (full speed),
2x, and 3x. Each pipeline is in a separate frequency and
voltage domain, but this design is simpler than the mul-
tiple clock domain architecture proposed in [8], since the
pipelines are always running at an integer multiple of the
global clock. The dynamic approach can reduce power dis-
sipation for slack-dominated applications while retaining
the capacity for full-speed performance.

For each execution unit, the dynamic scaling algorithm
looks at the distribution of predicted slack within fixed time
intervals and adjusts the frequency and voltage accordingly.
For example, during one time interval, 55% of integer ALU
instructions may have no local slack, 30% have 1 cycle, and
15% have 2 or more cycles. It records the cumulative distri-
bution so it knows that 15% have at least 2 cycles and 45%
have at least 1 cycle.

Each type of execution unit has predetermined thresh-
olds specified as a percentage for each speed. The pipeline is
scaled to the highest level of delay that meets its threshold.
The cumulative distribution reflects the demand for slower
functional units, and the threshold is the minimum demand
required to slow down a pipeline. In the previous example,
if the thresholds for 4 integer ALUs were 10%, 30%, 50%,
and 80%, one pipeline would run at 3x and another pipeline

Implementation Delay Fixed Fixed DVS DVS
Style Active Leakage Active Leakage
Kogge-Stone/Dyn. 1x 1x 1x 1x 1x
QuadTree/Static 2x .1x .2x .125x .5x
Carry-Skip/Static 3x .05x .1x .015x .33x

Table 2. Latency vs. Power Tradeoffs.

would run at 2x. If fewer instructions have slack, the cu-
mulative distribution of slack may fall below the thresh-
olds, thus causing more pipelines to run at full speed. The
thresholds for dynamic-4 are 15%, 70%, 80%, and 90%.
The thresholds for dynamic-6 are 10%, 20%, 30%, 55%,
80%, and 90%.

4. IMPLEMENTATION DETAILS
4.1. Slack Prediction

The slack predictor is required to predict the number
of cycles of available slack for individual instructions. Our
predictor is a PC-indexed table with 2K entries which we
found to be sufficient to accommodate the large loop struc-
tures in our benchmark suites. Each entry has 4-bit fields
expressed in cycles for the prediction, the observed slack,
and a counter for the cycles elapsed since the completion of
the instruction. The counter increments only when the ac-
tive bit is set, which is waiting for the first child instruction
to issue. The tag consists of the 3 bits above the bits in the
PC used to select the entry. The entry is activated upon the
writeback of the instruction until an instruction uses its re-
sult. In addition, the register metadata and instruction tags
track instruction dependencies using 11-bit fields that index
into the predictor table.

The writeback stage sets the counter to the actual de-
lay and enables the 4-bit counter. The decode stage deter-
mines the parents of an instruction using the register meta-
data. The issue stage resets the active flag of the parents’
predictor entries and updates the prediction.

The total predictor size is roughly 5 KB, but it is impor-
tant to note that, unlike a branch predictor, the result of the
prediction is not required until the issue stage which is typ-
ically four or more cycles later. The array structure can be
built with power-efficient techniques that trade latency for
power dissipation such as hierarchical banking techniques
similar to phased second-level caches. In addition, the en-
tries could most likely be further reduced in size by shar-
ing data with other structures in the microprocessor that
track similar data. For example, out-of-order architectures
already track dependency information.

4.2. Fixed Approach
We consider two approaches for modifying the execu-

tion pipelines in the microprocessor to trade latency for
power dissipation. The first approach replaces or augments
the existing high-performance execution units with slower
pipelines that operate at a fixed speed. There are many
tradeoffs that designers may employ to trade latency for
power dissipation in function units including choice of
adder styles, dynamic vs. static logic, transistor sizing, and
threshold voltage selection.



Oklobdzija et al. [5] analyze many energy-delay trade-
offs in the implementation of high-performance micropro-
cessor adders. The paper reports a 2x increase in delay
and a 5x decrease in energy moving from a fast, dynamic
logic, Kogge-Stone adder to a static logic, reduced transistor
sized, Quaternary-Tree adder. For our 3x slower pipeline,
we switch from the Kogge-Stone adder to a carry-skip adder
with high-Vt transistors. As for leakage power, the energy
savings in [5] track closely with fewer, smaller transistor
device widths. Thus, we assume a 5x reduction in the static
power dissipation for the half-speed pipeline. Furthermore,
Kim et al. [4] indicate that the use of high-Vt transistors can
provide 4x leakage savings with a 35% slowdown. We es-
timate a 20x leakage reduction for the 3x slower pipeline.
These assumptions are summarized in Table 2.

4.3. Dynamic Approach
Dynamic frequency and voltage scaling within multiple

clock and voltage domains [8] provides another method to
trade latency for power. We assume multiple clock domains
for execution pipelines operating at integer multiples of the
clock, 1x, 2x, and 3x, thus simplifying domain synchroniza-
tion. We assume that increasing pipeline latency with DVS
can provide cubic reduction in active power dissipation. In
addition, leakage power reduces linearly with supply volt-
age. These assumptions are summarized in Table 2.

As described in Section 3, dynamic scaling compares the
slack distribution against the preset thresholds to determine
the appropriate frequency and voltage for the pipelines. It
considers the slack distribution every 16K cycles, or 8 mi-
croseconds on a 2 GHz processor, and adjusts the frequency
and voltage as needed. For each type of functional unit, the
distribution of predicted slack is stored as a small array of
three 13-bit integers representing the number of 1x, 2x, and
3x slack predictions. The implementation can also be very
power-efficient because it does not need to complete in a
short amount of time.

5. RESULTS AND ANALYSIS
We simulated the slack predictor with fixed and dynamic

scaled pipelines of different speeds with SimpleScalar. The
SPEC2000 benchmarks were executed for 100 million in-
structions starting at the 1-billion checkpoint, while the Me-
diaBench benchmarks were executed in their entirety.

5.1. Simulation Results
Figure 1 shows the performance degradation of each

benchmark under dynamic and fixed scaling. The perfor-
mance loss of the fixed-6 scheme is at most 3%, with the
exception of mpeg2d. Fixed-4 is significantly worse for the
multimedia workloads due to the insufficient number of
full speed pipelines, with performance losses of 2% to 5%.
Dynamic-6 addresses this problem by increasing the speed
of functional units, and so performs better than the fixed ap-
proach for many of the media applications. However, limit-
ing the number of pipelines to four in the dynamic approach
further impacts performance.

Figure 2 shows the reduction in dynamic power dissi-
pation in the integer and floating point ALUs, relative to
a baseline processor with fine-grained clock gating. The

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

ar
t

eo
n

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

pa
rs

er

ad
pc

m

g7
21

d

g7
21

e

jp
eg

m
pe

g2
d

m
pe

g2
e

Pe
rf

or
m

an
ce

 L
os

s

Dynamic-4 Dynamic-6 Fixed-4 Fixed-6

Figure 1. Performance loss after applying slack.

0%

10%

20%

30%

40%

50%

60%

ar
t

eo
n

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

pa
rs

er

ad
pc

m

g7
21

d

g7
21

e

jp
eg

m
pe

g2
d

m
pe

g2
e

Po
w

er
 S

av
in

gs

Dynamic-4 Dynamic-6 Fixed-4 Fixed-6

Figure 2. Dynamic power in execute pipelines.

power savings for art and gcc is much higher than the
rest, by up to 20%, due to more instructions with slack and
greater amounts of slack.

With six pipelines, the fixed scheme generally reduces
power by 24%-33%, and the dynamic scheme performs
slightly worse, saving between 15% and 27%. The fixed-
4 configuration is less aggressive and consequently has a
much lower power savings of 11% to 17%. The thresholds
for dynamic-4 are even more conservative, and power sav-
ings are generally between 8% and 12%. The savings de-
pend largely on the fixed speed configuration and the dy-
namic scaling thresholds. Making them more aggressive
would yield greater energy savings, while further reducing
performance.

The power savings of the microprocessor core is roughly
3% to 5% under dynamic scaling and 5% to 7% under fixed
scaling, assuming the execution units consume 20% of core
power, as reported by Bose et al. [1] for the POWER4.

5.2. Energy-Delay2 Savings
Design modifications that demonstrate reduction in ED2

indicate the techniques achieve additional power savings
that would not result from simply scaling back the global
clock frequency and voltage of the processor. Figure 3
shows the change in ED2 for the entire microprocessor core
after exploiting slack. Fixed-6 achieves an ED2 reduction



-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

ar
t

eo
n

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

pa
rs

er

ad
pc

m

g7
21

d

g7
21

e

jp
eg

m
pe

g2
d

m
pe

g2
e

C
ha

ng
e 

in
 E

D
2

Dynamic-4 Dynamic-6 Fixed-4 Fixed-6

Figure 3. Processor Core Energy-Delay2.

of 3% or more in the majority of the benchmarks and breaks
even in a few, but it performs worse in gzip and mpeg2d.

The ED2 chart highlights the effectiveness of the fixed-6
scheme, and at times, the dynamic-6 scheme. The improve-
ments are substantial for gcc because it has large amounts
of slack due to the high frequency of loads and stores. This
may also indicate that memory and I/O bound workloads
such as TPC-C and other server applications would benefit
substantially. At the opposite extreme, the mpeg2d and gzip
benchmarks have tight loops with thousands of iterations,
and slack mispredictions incur high performance penalties.
A better slack predictor would greatly enhance the ED2

numbers for these benchmarks.
The media benchmarks underscore a clear difference be-

tween four and six pipelines. The latter configuration is sig-
nificantly better in power and performance. For fixed-4, re-
placing a full speed pipeline with a half speed one decreases
the bandwidth of the ALU pipelines from four to three and a
half. Multimedia workloads often have enough parallelism
to have four instructions issued per cycle, so substantial per-
formance loss in a fixed-4 configuration is unavoidable.

In theory, dynamic-4 should be able to scale the pipelines
appropriately to minimize the performance impact. How-
ever, our dynamic scaling is based on the distribution of
slack meeting the preset thresholds. The media benchmarks
do have at least 15% of instructions exhibiting slack, but
our algorithm fails to consider whether a change in band-
width will impact performance. Dynamic-6 does not have
this problem, because even if it slows down three pipelines
the bandwidth will still be at least four. As such, it performs
better than fixed-6 on most of the benchmarks.

Nevertheless, the ED2 numbers for fixed-6 are almost
always better than those of dynamic-6, since the preset
thresholds for dynamic-6 are fairly conservative, signifi-
cantly reducing the power savings. Our analysis suggests
that it is always best to have three full speed and two slower
functional units, so we set the thresholds accordingly. This
suggests a hybrid approach with several fixed fast and slow
pipelines and one dynamic pipeline.
5.3. Static Power

The discussion so far has focused on dynamic power sav-
ings, but slower pipelines also reduce static power dissipa-
tion, and the additional pipelines require us to consider the

leakage power of the increased area. For our analysis we as-
sume that leakage power is roughly 20% of the total power
representing next generation process technologies.

Our assumptions summarized in Table 2 anticipate that
slowing down a pipeline decreases the active power more
than the leakage power, the total power savings is actually
less than the dynamic power savings. In dynamic-4, this
delta is at most 1% with the exception of gcc and art, which
had higher active power savings to begin with. However,
for dynamic-6, the addition of two full-speed pipelines in-
creases the area of the ALUs by 50%. The delta in this case
is as much as 13%. This further emphasizes the need for a
hybrid approach, where only fixed slower pipelines which
have less area are added.

Like dynamic-4, the fixed-4 configuration has a total
power savings of at most 1% less than the active power sav-
ings. As for fixed-6, the addition of two half-speed pipelines
with a fifth of the area of a full-speed pipeline increases the
area by only 10%. Unlike dynamic-6, the delta between to-
tal and active power savings is at most 2%. Even if leakage
power is included, the fixed-6 scheme still provides substan-
tial power savings.
6. CONCLUSION

This paper examines the use of dynamic slack schedul-
ing based on a predictive algorithm to reduce power by issu-
ing non-critical instructions to slower pipelines. We evalu-
ate two approaches for configuring the pipelines: fixed and
dynamic. The fixed-6 configuration achieved 20% to 55%
reduction in the active power of the execution units while
keeping performance loss between 0% and 3%. Certain
workloads have enough parallelism so that the processor
is able to issue four instructions at once, and fixed, slower
pipelines limit the maximum bandwidth. Dynamic scaling
of one or two of the pipelines mitigate this performance im-
pact as demonstrated by the better performance of the mul-
timedia benchmarks.
References

[1] P. Bose et al. Early-stage definition of LPX: A low power
issue-execute processor. In PACS’02 at HPCA, 2002.

[2] J. Casmira and D. Grunwald. Dynamic instruction scheduling
slack. In Koolchips 2000 Workshop, December 2000.

[3] B. Fields, R. Bodik, and M. D. Hill. Slack: Maximizing per-
formance under technological constraints. In 29th Interna-
tional Symposium on Computer Architecture, May 2002.

[4] S. Jung et al. Dual threshold voltage domino logic synthe-
sis for high performance with delay and power constraint. In
Design, Automation and Test in Europe, 2002.

[5] V. Oklobdzija et al. Energy-delay estimation technique for
high-performance microprocessor VLSI adders. In Interna-
tional Symposium on Computer Arithmetic, June 2003.

[6] T. Pering, T. Burd, and R. Broderson. Voltage scheduling in
the lpARM microprocessor system. In ISLPED, July 2000.

[7] R. Pyreddy and G. Tyson. Evaluating design tradeoffs in dual
speed pipelines. In Work. on Complex. Eff. Design, June ’01.

[8] G. Semeraro et al. Dynamic frequency and voltage control for
a multiple clock domain microarchitecture. In 35th Interna-
tional Symposium on Microarchitecture, November 2002.

[9] J. Seng, E. Tune, and D. Tullsen. Reducing power with dy-
namic critical path information. In MICRO34, Dec. 2001.


