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Abstract

Deterministic gate delay models have been widely used
to find the transition probabilities at the nodes of a cir-
cuit for calculating the power dissipation. However, with
progressive scaling down of feature sizes, the variations
in process parameters increase, thereby increasing the un-
certainty in gate delay. In this work, we propose a novel
non-simulative scheme to compute the transition probabil-
ity waveforms (TPWs) in a single pass of the circuit for con-
tinuous gate delay distributions. These TPWs are continu-
ous functions of time as opposed to the deterministic delay
case where transitions are constrained to occur at discrete
time points. The TPWs are then used to calculate the dy-
namic power dissipation in a circuit. We show that the cor-
responding power estimates obtained from deterministic de-
lay models can be off by as much as 75%. Our method has
an average error of only 6% and a speed up of 232× when
compared to logic simulations. Another important applica-
tion of our TPWs is in the area of crosstalk noise where the
likelihood of signals switching within a certain timing win-
dow is required.

1. Introduction

Logic transitions in a circuit affect circuit performance
characteristics like timing and power dissipation. It is there-
fore necessary to know when and how often these tran-
sitions occur and quantify them using probabilistic tech-
niques. Early methods to calculate the probability of logic
transitions (transition probability) assumed a zero-delay
model [9, 7]. These models do not account for transitions
due to glitching activity in the circuit which is caused due
to unbalanced path delays. To account for these glitches, de-
terministic delay models that assigned a fixed delay to every
gate in the circuit were introduced in [2, 11]. In [10, 6], the
authors use this model to obtain a tagged transition proba-
bility waveform at each node. These waveforms represent
the probability of a transition occurring at any time instant.

In these waveforms, transitions can only occur at discrete
time points as the delay for every gate is a fixed number.

Progressive scaling down of feature sizes has meant an
increase in manufacturing process variations. The variabil-
ity introduced in device characteristics has correspondingly
increased, thus affecting the overall circuit performance.
Variations in process parameters like effective gate length,
oxide thickness, and threshold voltage affect the gate de-
lay, making it vary over a range of values. Since the actual
gate delay can takeany value within this specified range,
gate delays need to be modeled as random variables with
a known probability density function (pdf). In this work,
we propose a novel methodology to obtain precise transi-
tion probability waveforms (TPWs) at all nodes in a combi-
national circuit. Standard approaches to model continuous
time functions in a computer would suffer from an expo-
nential increase in time-points with increasing complexity
of the circuit. We introduce a new approach to sample what
we call the integrated probability waveform (IPW), to keep
the storage and error within bounds. Having obtained these
TPWs we apply them to two crucial tasks in the circuit de-
sign process- power estimation and the analysis of the effect
of crosstalk induced noise on circuit delay.

The dynamic power dissipated by a logic gate is given
by the relation

Px = 0.5 CL V 2
dd fclk Esw (1)

whereCL is the effective parasitic capacitance at the gate
output,Vdd is the supply voltage,fclk is the clock frequency
andEsw is the average switching activity of the gate output
per clock cycle. SinceVdd,fclk andCL are known, the task
of dynamic power estimation usually reduces to the prob-
lem of finding the average switching activity at each node.
The average switching activity at each node can be found by
integrating the TPWs obtained from our proposed scheme.
We show that power estimation tools that use determinis-
tic delay models can give incorrect estimates that are off by
as much as 75%. To alleviate this problem [4] proposes a
Monte Carlo simulation based scheme to estimate the power
where the gate delay is modeled as a random variable with a



Gaussian pdf. However, the scheme suffers from excessive
run time and memory requirements as it is simulative in na-
ture. Our approach of estimating the power using the TPWs
is more efficient than simulative methods and has an aver-
age error of only 6%.

Logic transitions on a node (aggressor) can affect neigh-
bouring nodes (victim) due to capacitive coupling. Tradi-
tionally, timing windows obtained from static timing anal-
ysis have been used to determine the effect of noise due to
capacitive coupling [1, 3, 8]. If the timing windows over-
lapped, it was assumed that the aggressor would switch si-
multaneously with the victim. However, it is possible that
even for an overlapping timing window, the likelihood of si-
multaneous switching is low. We provide a framework for
using the TPWs obtained from our model to estimate the
likelihood of delay noise.

The rest of the paper is organized as follows. Section
2 formally defines the TPWs and explains the terminology
used in the paper, section 3 develops the equations used
to propagate the TPWs, section 4 describes the method of
representing the TPWs, section 5 deals with reconvergent
fanout, section 6 discusses the application of TPWs to the
problems of power estimation and delay noise due to capac-
itive coupling. In section 7 we present our experimental re-
sults on the ISCAS’85 set of benchmark circuits followed
by conclusions in section 8.

2. Background and Terminology

In this work, we propose a novel scheme where we rep-
resent the transition probabilities ascontinuousfunctions of
time as against discrete valued functions that earlier meth-
ods use. We begin by defining the probability waveforms
we use in our scheme.

Definition 2.1 (Rising Transition Probability Waveform)
px
01(t) is a waveform such thatpx

01(t)∆t is the probabil-
ity that the signal ’x’ will make a transition from 0→ 1 in a
small time interval(t, t + ∆t)

Definition 2.2 (Falling Transition Probability Waveform)
px
10(t) is a waveform such thatpx

10(t)∆t is the probabil-
ity that the signal ’x’ will make a transition from 1→ 0 in a
small time interval(t, t + ∆t)

Definition 2.3 (Signal Probability Waveform) spx(t) is
the probability that the signal ’x’ has a value of logic 1 at
the time instantt.

The first two waveforms are collectively referred to as
the transition probability waveforms (TPWs), and if the sig-
nal probability waveform is included, the three waveforms
together are called the probability waveforms at the node
’x’.

The effect of process parameter variations is captured in
the gate delay model. In this work, we assume that the gate

delay is a random variable with a known pdf. While our
scheme works for any general delay distribution, we im-
plement it for the case of a truncated Gaussian distribution
which is used in [4, 5]. We use the notationDx(t) to de-
note the pdf of the delay distribution for a gate with output
node ’x’.

3. Waveform Propagation Scheme

Given that the probability waveforms are specified at the
primary inputs of a circuit, we derive equations to propa-
gate these waveforms to every node in the circuit. Without
loss of generality, we consider a two input AND gate with
input nodes ’a’ and ’b’ and output node ’c’. We assume that
the two input lines ’a’ and ’b’ are independent for the cur-
rent discussion.

To obtain the probability waveforms at the node ’c’, we
split up the AND gate into three different stages. The first
stage is an AND gate with zero delay, the second stage is
the glitch filter and the third stage is a BUFFER with the
delay distribution,Dc(t), of the original AND gate. The in-
termediate nodes are labeled ’q’ and ’g’ as shown in Fig-
ure 1. In the following three sub-sections we develop equa-
tions to propagate the TPWs across each of the three stages.
The final sub-section derives equations for the signal prob-
ability waveform at the output node.

’a’

’b’

’a’

’b’
’c’’q’

zero
delay

glitch
filter

’g’’c’

gate
with delay

AND delay
BUFFER

Figure 1. Three stages of an AND gate

3.1. Zero-Delay Gate

An up transition on node ’q’ can occur in a small time
interval(t, t+∆t) in three mutually exclusive ways that are
listed in Table 1.

Summing up the probabilities of the three mutually ex-
clusive events, the expression for the TPW at node ’q’ can
be written as,

pq
01(t)∆t = pa

01(t)sp
b(t)∆t + pb

01(t)sp
a(t)∆t +

pa
01(t)p

b
01(t)∆t2

(2)

In the limit ∆t → 0 and the input TPWs being continu-
ous functions of time, (2) reduces to

pq
01(t) = pa

01(t)sp
b(t) + pb

01(t)sp
a(t) (3)



Event Probability
Node ’a’ 0→1 and Node ’b’ at logic 1 pa

01(t)sp
b(t)∆t

Node ’b’ 0→1 and Node ’a’ at logic 1 pb
01(t)sp

a(t)∆t
Node ’a’ 0→1 and Node ’b’ 0→1 pa

01(t)p
b
01(t)∆t2

Table 1. Mutually Exclusive ways for an up
transition

The corresponding equation for the falling TPW can be
written as,

pq
10(t) = pa

10(t)sp
b(t) + pb

10(t)sp
a(t) (4)

3.2. Glitch Filter

Short glitches at the input of a gate do not propagate as
valid logic transitions at the output due to the inertial de-
lay of the gate. Glitch filtering refers to the process of ad-
justing the TPWs to account for this. Determining the mini-
mum glitch width at the input that can propagate to the out-
put of the gate is not an easy task. In [4], the minimum glitch
width is assumed to be equal to half the transport delay of
the gate. In our case, since the delay of the gate is variable,
the minimum glitch width is also variable. This makes the
glitch filtering scheme equations intractable. Instead we as-
sume that the minimum glitch width is a constant which is
equal to half the mean of the gate delay probability den-
sity functionDc(t), denoted bydc.

For a rising transition between(t, t + ∆t) at node ’a’,
all the falling transitions at node ’b’ which lie between
(t, t + dc) produce glitches at the output node which need
to be filtered. Similarly for a rising transition at node ’b’ in
the interval(t, t + ∆t), all falling transitions in the inter-
val (t, t + dc) are subject to glitch filtering. Under the as-
sumption that the inputs are free from glitches of width less
thandc, these two events are mutually exclusive. Their re-
spective probabilities can be subtracted frompq

01(t) to get
pg
01(t).

pg
01(t) = pq

01(t)− pa
01(t)

∫ t+dc

t

pb
10(τ) dτ

− pb
01(t)

∫ t+dc

t

pa
10(τ) dτ

(5)

Similar reasoning can be used to obtainpg
10(t).

3.3. The Delay BUFFER

To obtain the TPWs at the node ’c’, oncepg
01(t) and

pg
10(t) have been computed, we observe that,

pc
01(t)∆t = lim

∆k→0

∞∑

i=−∞
pg
01(ki)∆kDc(t− ki)(∆t−∆k)

(6)

whereki = i∆k. In effect, we have discretized the wave-
form pg

01(t) into small intervals of length∆k to arrive at
(6). We can show that (6) reduces to,

pc
01(t) =

∫ ∞

−∞
pg
01(k)Dc(t− k) dk (7)

or
pc
01(t) = pg

01(t) ∗Dc(t) (8)

where * represents the convolution operation. Similarly,

pc
10(t) = pg

10(t) ∗Dc(t) (9)

The above set of equations assumes that the gate delay is
characterized by a single random variable with the same de-
lay distribution for rise and fall transitions at the output. A
more general approach would be to use different distribu-
tions for rising and falling output transitions as well as dif-
ferent delays for different inputs. IfDac

r (t) (Dac
f (t)) is the

distribution of the delay from a→c for a rising (falling) tran-
sition at c, and similarlyDbc

r (t) andDbc
f (t) are the distribu-

tions for input b, the propagation equation is given under
as

pc
01(t) =

[
pa
01(t)

(
spb(t)−

∫ t+dac

t

pb
10(τ) dτ

)]
∗Dac

r (t)+
[
pb
01(t)

(
spa(t)−

∫ t+dbc

t

pa
10(τ) dτ

)]
∗Dbc

r (t)

(10)

3.4. Signal Probability Waveform

(3), (4), (5), (8) and (9) yield the two TPWs at output
node ’c’. Now to calculate the signal probability waveform
at node ’c’ we observe that thechangein signal probabil-
ity in the time interval (t, t+∆t) depends on the number of
signals undergoing a transition, either from0 → 1 or 1 → 0
in that interval, i.e.

spc(t + ∆t)− spc(t) = pc
01(t)∆t− pc

10(t)∆t (11)

Again, under the limit∆t → 0, (11) reduces to,

spc(t) = spc(0) +
∫ t

0

[pc
01(τ)− pc

10(τ)] dτ (12)

where,
spc(0) = spa(0)spb(0) (13)

4. Reconvergent Fanout

The previous section assumed that the two inputs ’a’ and
’b’ were independent. However if the inputs ’a’ and ’b’
fanout from a common node, they are correlated.The equa-
tions derived in section 3 will therefore have to be multi-
plied by time varying correlation coefficients. Calculating



these correlation coefficients is computationally expensive
and is infeasible for most circuits. Past methods either ne-
glect them or approximate them with zero delay correlation
coefficients [6].

It has been observed that the effect of reconvergent
fanout reduces as the fanout node moves away from the
point of reconvergence while using a deterministic delay
model. For example, [6] neglects reconvergent fanout if the
common node is more than six levels away as it is uncertain
whether transition at the point of reconvergence has been
caused by a transition at the common node. Moreover, in
the variable delay model, the effect of reconvergent fanout
is of lesser importance since further uncertainty in the paths
is injected by the uncertainty in the delay after the very first
level. In our scheme, we therefore assume all inputs to a
gate to be independent.

5. Piece-wise Linear Implementation

The continuous time TPWs need to be represented on a
computer. Sampling the TPWs at discrete time points is one
way to do so. However, since the width of the TPWs will in-
crease linearly with the levels in the circuits, the storage re-
quirements and computation costs become prohibitive. In-
stead we propose a novel method to represent the TPWs in
which they are first integrated to give the integrated proba-
bility waveforms (IPWs) as given in (14) and (15)

Ix
01(t) =

∫ t

−∞
px
01(τ) dτ (14)

Ix
10(t) =

∫ t

−∞
px
10(τ) dτ (15)

The IPWs are monotonically increasing functions of
time which are upper bounded by the average switching ac-
tivity at the corresponding circuit node1 . In our scheme,
the IPWs are stored as piece-wise linear (PWL) functions
which are obtained by sampling them at equally spacedy-
axisvalues (where the x-axis is the time axis). This method
has the advantage that fewer points are used to represent
the time intervals in which the node is dormant, while time
intervals with greater switching will be sampled more fre-
quently. In order to keep the complexity of the scheme
within bounds, we allocate a fixed number of points (N)
to representeveryIPW in the circuit. Alternately we could
have decided to sample the waveform at equally spaced in-
tervals along they-axisbut since this does not offer any sig-
nificant benefit we choose the number of points (N) to be
constant. Figure 2 shows a PWL representation of an IPW
according to our method with N=7. Since the IPWs, and not

1 The maximum value of the IPW at any node gives it’s average switch-
ing activity. Therefore, the maximum value of the IPW need not be
one, unlike a conventional cumulative distribution function (CDF).
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Figure 2. PWL representation of an integrated
probability waveform

the TPWs, are stored at every node in the circuit, the propa-
gation equations derived in section 3 need to be restated in
terms of the IPWs at nodes ’a’ and ’b’.

5.1. Propagation Equations

Rewriting the equations derived in section 3 [(3), (5), (8)
and (12)] in terms of the IPWs we get,

pq
01(t) =

dIa
01(t)
dt

spb(t) +
dIb

01(t)
dt

spa(t) (16)

pg
01(t) = pq

01(t)− pa
01(t)(I

b
10(t + d)− Ib

10(t))
− pb

01(t)(I
b
10(t + d)− Ib

10(t))
(17)

Ic
01(t) = Ig

01(t) ∗Dc(t) (18)

spc(t) = spc(0) + Ic
01(t)− Ic

10(t) (19)

Only the equations for the rising transitions are pre-
sented, similar equations for the falling transitions can be
easily derived. Only (16),(17), (18) and (19) will be used ex-
plicitly in our implementation. Note that we have presented
the equations for the case where the gate delay is charac-
terised by a single random variable. The equations for a
more general case with different rise/fall delays and trans-
port delays can be easily derived from (10).

Since the IPWs at nodes ’a’ and ’b’ are PWL, the signal
probability waveforms,spa(t) andspb(t) will also be PWL.
Furthermore, the derivatives of the IPWs will be piece-
wise constant (PWC). This information, along with (16) im-
plies that the computed TPWs,pg

01(t) andpg
10(t), are PWL.

These waveforms are now integrated and are sampled at the



preset y-axis values to give the IPWs,Ig
01(t) andIg

10(t). The
time taken to perform the various operations on the IPWs -
addition, subtraction and multiplication, varies linearly with
the number of segments in the IPWs.

5.2. The Convolution Operation

Having obtained the IPWs at node ’g’ we need to propa-
gate them across the delay BUFFER as per (18). To perform
the convolution operation, (18) is re-written as,

Ic
01(t) =

∫ t

−∞

dIg
01(t)
dt

∗Dc(t)dt (20)

wheredIg
01(t)
dt is a PWC function. The delay distribution,

Dc(t), is also represented as a PWC function as shown in
Figure 3.
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Figure 3. Truncated Gaussian pdf and it’s
PWC representation

A PWC function is expressible as a sum of a number

of rectangular functions. IfdIg
01(t)
dt hasn1 rectangular func-

tions andDc(t) hasn2 rectangular functions,n trapezoidal
functions need to be added to yield the result of the convo-
lution operation, wheren = n1n2. Figure 4 shows the con-
volution of two rectangular functions,R1(t) andR2(t) to
yield a trapezoidal function T(t).

Then trapezoidal functions are grouped into sets of two
each and added. The resulting functions are then further
grouped and added, and this process is recursively repeated
to yield the final result. The resulting PWL waveform is
integrated and sampled at the preset y-axis values to give
Ic
01(t). A similar process is used to obtainIc

10(t). The time
complexity of the convolution operation is O(nlogn).

6. Applications of the TPWs

The TPW at any circuit node can be explicitly evalu-
ated as a PWC function by differentiating the correspond-

R1(t) R2(t)

T(t)

d2 d3 d4d1

d1+d4 d2+d3d1+d3 d2+d4

h1 h2

h3

h3=h1h2(d2-d1)

time time

time

 *

Figure 4. Convolution of two rectangular
functions

ing IPW. The TPW is used for both dynamic power estima-
tion and analysis of noise due to capacitive coupling.

6.1. Dynamic Power Estimation

The dynamic power dissipation at a circuit node is given
by

Px = 0.5 CL V 2
ddfclk

∫ ∞

0

(px
01(t) + px

10(t)) dt (21)

Px is summed up over all nodes to give the total dynamic
power dissipation in the circuit.

6.2. Capacitive Coupling Noise

To analyze noise due to crosstalk consider the aggres-
sor and victim timing windows obtained from static timing
analysis as shown in Figure 5. Note that the rising window
has been shown for the aggressor and the falling window
for the victim, since the aggressor and the victim should
switch in different directions for worst case delay noise.
Without information of the TPWs at the aggressor and vic-
tim nodes (’a’ and ’v’ respectively), an arbitrary distribution
would have to be assumed (for e.g. a uniform distribution)
for the time varying transition probability in the timing win-
dow interval. This would then be used to find the probabil-
ity of both the aggressor and victim switching in the overlap
interval.

For the same nodes ’a’ and ’v’, if the TPWs are known,
as shown in Figure 5, the probability that both the aggres-
sor and victim switch in the overlap interval(Ta1, Tv2), de-
noted byPn

a,v can be computed as

pn
a,v =

∫ Tv2

Ta1

∫ Tv2

Ta1

pa
01(t1)p

v
10(t2) dt1 dt2 (22)
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Since a victim can have more than one aggressor, the
probability that a particular aggressor and the victim switch
in the corresponding overlap interval can be calculated for
each of the aggressors. The noise contribution of the aggres-
sors can then be weighted with their respective simultane-
ous switching probabilities and superposed to give a more
realistic picture of noise due to crosstalk.

7. Experimental Results

To validate our proposed scheme, we tested our algo-
rithm on the ISCAS’85 set of benchmark circuits. The
benchmark circuits are mapped to a recent technology li-
brary and the gate delay information is extracted using a
commercial logic synthesis tool. We assume that the vari-
ance of the delay distributionσd = 0.3µd where µd is
the mean value of the distribution, as assumed in [4]. Pri-
mary inputs are assumed to be unbiased and are assumed
to switch at the same time instant. In order to compare the
accuracy of our scheme, we also performed explicit logic
simulations. The logic simulation results are reported for
100,000 simulation runs. We assume aVdd value of 3.3 V
and a clock frequency of 500 MHz. The experiments were
run on a 2 GHz Intel Pentium processor running on 256 MB
of RAM.

7.1. Transition Probability Waveforms

Since there is no accurate way of obtaining TPWs
through logic simulation to a high degree of accuracy
in a reasonable amount of time, we compare switch-
ing activity figures between the logic simulation and our
scheme. Table 2 reports the average node by node er-
ror in switching activity obtained in our scheme compared

to switching activity obtained from extensive logic simula-
tions.

Circuit Average Percentage Error
c432 4.7
c499 2.1
c880 7.9
c1355 6.6
c1908 10.6
c2670 16.2
c3540 15.9
c6288 13.8
Mean 9.73

Table 2. Average node by node percentage er-
ror

The mean average node-by-node error over all circuits is
only 9.73%, thereby re-enforcing the validity of our scheme
as an accurate method to compute the TPWs. Figure 6
shows the rising TPW (p01(t)) obtained by our method for
a randomly picked node (node 791) in the c880 benchmark
circuit. The number of pieces (N) in the PWL representation
is set at N=50 for every circuit node. From the waveform,
one can clearly infer three regions of increased switching
activity on the node. Timing windows obtained from static
timing analysis cannot yield this information.
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Figure 6. p01(t) at node 791 in c880 circuit

7.2. Power Estimation

Table 3 shows the percentage error in power dissipation
by using a deterministic delay model, in which the mean
values of the delay distribution are used as the gate delay
numbers, with reference to the power dissipation obtained
from the variable delay model. These figures are generated
by running extensive logic simulations for the determinis-
tic delay case and the variable delay case.

From Table 3, it is observed that a deterministic de-
lay model can yield an overestimate in power dissipation
of upto 75% (c6288) and an underestimate of upto -25%



Circuit Variable Delay Fixed Delay Error
Power(in mW) Power(in mW) Percentage

c432 6.55 6.80 +3.88
c499 13.76 10.28 -25.28
c880 20.98 20.93 -0.26
c1355 37.27 36.63 -1.71
c1908 80.52 93.69 +16.35
c2670 114.84 115.25 +0.36
c3540 149.72 150.14 +0.28
c6288 1565.17 2746.87 +75.5

Table 3. Error between deterministic and vari-
able delay models

(c499). Methods based on deterministic delay models are
therefore inadequate to estimate the power dissipation un-
der delay uncertainty.

Logic Simulation TPW based Estimates
Power Time Power Error Speed
(mW) (sec) (mW) (%) Up

c432 6.55 0.6 7.07 7.90 277×
c499 13.76 12.7 13.92 1.14 252×
c880 20.98 15.1 20.38 2.88 185×
c1355 37.27 30.4 37.06 0.56 177×
c1908 80.52 45.0 70.01 13.05 200×
c2670 114.84 81.7 101.64 11.50 247×
c3540 149.72 218.6 138.62 7.41 243×
c6288 1565.07 409.1 1582.15 1.09 274×
Mean 5.69 232×

Table 4. Comparison of power Estimates from
logic simulation and the proposed algorithm

Table 4 reports the power estimated obtained from our
scheme in comparison with results obtained from exten-
sive logic simulations for the variable delay case. For our
scheme, the number of segments (N) in the PWL waveform
at every node is kept at a value of N=50. It can be observed
that the average error is only 5.69% and the worst case er-
ror is 13%. The speed-up obtained from our scheme over the
extensive logic simulations is 232× on an average. More-
over, the speed-up does not worsen with increase in circuit
size.

8. Conclusions

In this paper we present a novel scheme to represent the
transition probability waveforms (TPWs) which captures

uncertainty in gate delays. To the best of our knowledge
this is the first time that transition probabilities have been
represented as continuous functions of time. We propose a
fast and efficient implementation to propagate these TPWs
across all nodes of a circuit. We use TPWs to estimate dy-
namic power dissipation under delay uncertainty and show
that previously used deterministic delay models can give an
error of upto 75%, while our maximum error is only 13%.
Moreover, we obtain substantial speed-up over simulative
schemes. We also provide a framework to use our TPWs to
analyze the effect of noise due to crosstalk.
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