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Abstract

In this paper we discuss the application of circuit-based logi-
cal reasoning to simplify optimization problems expressed as inte-
ger linear programs (ILP) over circuit states. We demonstrate that
a targeted restructuring of the problem formulation based on the
circuit topology can significantly improve the performance and ca-
pacity of the overall optimization procedure. We further review two
distinct application classes, one requiring a feasible, the other an
infeasible bound of an ILP solution that cannot be computed opti-
mally within resource limits and present algorithmic approaches to
handle them. We use the problems of computing a minimal leakage
state and finding the state transition with maximal peak current to
exemplify these two unique classes and present results comparing
our methods with alternative techniques.

1 Introduction
Many CAD problems require reasoning about the logical state of
circuits. Algorithmic advances in this area have been driven mainly
by functional verification which requires to check whether a partic-
ular state or sequence of states is reachable. The corresponding
decision problem can often be formulated as a satisfiability (SAT)
check for which exploiting the circuit structure has become a key
component of efficient algorithms (e.g. [1]). Other CAD problems
are more naturally formulated as integer linear programs seeking
an “optimal valid state” with respect to an objective function given
as a weighted sum of the variables. Examples include leakage state
minimization with the goal to find a stand-by state that consumes
as little leakage power as possible, or peak current analysis that
searches for the state-transition that draws maximal current. De-
spite the significant progress in handling large ILP instances, many
problems cannot be solved optimally with limited computing re-
sources. In practice, however, suboptimal solutions are often ac-
ceptable.

There are two distinct approaches for deriving the optimal solu-
tion; both having unique applications. The first approach bounds
the optimum from the infeasible side, we will further refer to this
estimate as the infeasible bound. Clearly, there exist no actual vari-
able assignment for this estimate unless it is the optimal solution.
An example for using an infeasible bound is peak current analysis
which demands a conservative estimate of the maximum current
that cannot be exceeded under any circumstances. The second ap-
proach bounds the optimum from the feasible side, further referred
to as the feasible bound. Here an actual variable assignment is
desired to demonstrate this estimate. For example, leakage state
minimization searches for a low leakage state, even if it is not the
optimal one. Here a concrete state with the computed leakage value
is needed to implement the stand-by function.

In this paper we present an approach to simplify large ILP in-

stances in order to obtain better results. The paper is organized as
follows. Section 2 discusses previous work in modeling leakage
minimization and peak current analysis, and discusses the issues
in solving the formulations provided by previous work. Section 3
presents a general approach to simplify ILP problems using circuit-
based reasoning. Section 4 shows the application of the presented
approach to two problems and provides experimental results.

2 Motivation and Preliminaries
2.1 Previous Work in Applications
Previous work on leakage current minimization through the con-
trol of input vectors formulates the task as a discrete optimization
problem. The motivation is that the leakage current through each
gate in the circuit is a strong function of its inputs [2]. However,
because of the circuit structure, it is generally not possible to put
all gates into their lowest leakage state by just controlling the pri-
mary inputs. To minimize the overall leakage current, the authors
of [3] formulate an integer program over the circuit. For each gate,
a number of terms are added to the objective to reflect each pos-
sible input state of the gate. A number of constraints express the
logical relationships between the gates in a circuit. Solving the in-
teger program provides the optimum input vector which minimizes
leakage current.

The problem of peak current estimation has been approached
in [4]. In that work, the authors construct a MAX-SAT problem that
models the possible switching activity in a circuit. Unfortunately,
this approach requires that the problem be solved optimally—no
suboptimal solution can be used as upper bounds of switching ac-
tivity. The authors of [5] present a partial input enumeration algo-
rithm, which is a variant of branch-and-bound used to iteratively
improve estimates. The search procedure incrementally assigns
values to primary inputs, and calls a procedure to obtain loose
bounds on current. In this manner the authors simulate a fancy
ILP solver, albeit with good branching heuristics.

All previous methods lack a uniform approach to exploit signal
correlations within a circuit. Typical circuits contain large amounts
of redundancies and don’t care conditions that often go unused.
The focus of this paper is on the use of this information to improve
the performance of ILP solvers. In the next subsection we describe
how ILP is applied to solve optimization problems over circuits.

2.2 Preliminaries
Integer programming (IP) [6] can be used as a computational kernel
to perform many optimization tasks. An integer program is of the
form:

min f(x)

such that g(x) ≥ 0

x ∈ Z
n
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Figure 1: Example circuit for leakage minimization and leakage
power values dissipated in both NAND gates as a function of their
inputs.

where f is the objective function and g represents a set of con-
straints. If x ∈ {0, 1}n then the problem is called 0-1 IP. An
integer linear program (ILP) restricts f and g to consist of linear
functions.

As an example, consider the problem of leakage state minimiza-
tion of the circuit depicted in Figure 1. Using the values for the
individual gate states, we can formulate the following IP:

min 58x̄1x̄2 + 146x1x̄2 + 157x̄1x2 + 170x1x2 (1)

+58x̄3x̄2 + 146x3x̄2 + 157x̄3x2 + 170x3x2

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x̄1 + x̄2 + x̄3 ≥ 1

xi ∈ {0, 1}
A complemented variable x̄i represents the arithmetic expression
(1 − xi). The first expression in (1) computes the circuit leakage
and provides the minimization objective. The first (second) four
terms in the objective represent the four leakage modes of the first
(second) gate in the circuit. The three inequalities are Boolean con-
straints ensuring logical consistency of the gate inputs with respect
to the circuit topology.

There are two methods to approach the above given IP. First, due
to the lack of efficient non-linear solvers, all common approaches
linearize the objective function by substituting a fresh Boolean vari-
able for each non-linear term and adding constraints that force their
logical equivalence [7]. For example, the first part of the objec-
tive (1), 58x̄1x̄2, can be rewritten as 58y1 with the additional con-
straints (x̄1 + ȳ1 ≥ 1), (x̄2 + ȳ1 ≥ 1), and (x1 + x2 + y1 ≥ 1).
Note that in the circuit representation of Figure 1 this would be
equivalent to adding an AND gate to the original circuit that rep-
resents the state (A = 0, B = 0) of gate g1. In this manner all
non-linear terms can be expressed as circuit gates resulting in a ob-
jective function that is linear in the variables of these gate outputs.

Second, one can simplify the objective function in (1) by multi-
plying out the (1− xi) expressions and combining the coefficients
of the resulting polynomial [8, 3]. This would lead to the objective:
min −75x1x2 − 75x3x2 + 88x1 + 198x2 + 88x3 + 116

In the example, we know that x3 is a function of x1 and x2, i.e.,
x3 = (1 − x1x2). With careful manipulation, and knowledge of
properties of Boolean algebra (for example x2 = x), the original
quadratic problem in (1) can be restated as

min −88x1x2 + 88x1 + 123x2 + 204 (2)

xi ∈ {0, 1}
with no further constraints. Thus, we may often reduce the num-
ber of terms in the objective without affecting the solution to the
problem. By reducing the count of nonlinear terms in the objec-
tive, we also reduce the number of constraints necessary for lin-
earization. However, for large optimization instances derived from
realistic circuit problems this algebraic approach is infeasible.

In this paper we present how 0-1 ILP problems that are derived
from circuits can be compacted by analyzing the circuit structure.
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Figure 2: AND/INVERTER graph for circuit from Figure 1. Nodes
represent the inputs x1, x2, the constant ‘1’, and AND gates. Labels
above each node are weights representing leakage.

We show that the above mentioned simplifications and lineariza-
tion can be handled natively in a circuit-based representation and
thus be applied to large problem instances. We also show how the
identification of general equivalences can be used to derive redun-
dant constraints which tighten the solution to the continuous relax-
ation of the ILP. This technique helps the computation of infeasible
bounds.

3 Circuit-based Equivalences for ILP
3.1 Circuit Representation
We use an AND/INVERTER graph representation to efficiently store
and manipulate circuit structures. The AND/INVERTER graph is
composed of three types of nodes: A unique terminal node repre-
sents the constant ‘1’ (‘0’) value when it is referenced by a non-
complemented (complemented) arc. A second type of node has no
incoming arcs and models primary inputs. The third node type has
two incoming arcs and represents the AND of the node functions
referenced by the two arcs. INVERTER attributes on the graph arcs
indicate Boolean complementation. The AND/INVERTER graph
for a given circuit is simply constructed by rewriting each gate
in terms of ANDs and INVERTERs. The motivation for using an
AND/INVERTER graph instead of a BDD (or a BDD variant) is that
BDDs tend to grow impractically large for many circuits.

To illustrate the preprocessing on an AND/INVERTER graph,
we revisit the circuit from Figure 1. We first construct an
AND/INVERTER graph from the circuit. To represent the nonlinear
objective (1), AND nodes are introduced for each term and assigned
a weight equal to its respective coefficient. The resulting graph is
shown in Figure 2. Note that the nonlinear term x1x2 and x3 are
equivalent modulo complementation (x̄3 ≡ x1x2) and are repre-
sented by the same node y4(≡ x1x2). The node labeled y5 has a
weight of α to represent the term 58x̄3x̄2 in the objective of the
original problem.

The problem can now be restated as follows. Nodes in the
AND/INVERTER graph can be assigned 0 or 1, and the cost of the
assignment is evaluated as the sum of the weights of all nodes as-
signed to 1. The objective of the optimization problem is to find an
assignment logically consistent with the graph that has lowest cost.

The above process produces an AND/INVERTER graph which
maps directly to the original integer program. We use the term
weight and coefficient interchangeably depending on whether the
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emphasis is on the graph or its associated integer program. Simi-
larly we use the terms variable and node interchangeably. The key
idea of this paper is that we may modify the graph in any way that
does not change the logical relationships between nodes and does
not alter the value of the objective under any valid assignment. Do-
ing so will yield a new graph, which maps to a syntactically differ-
ent, but logically equivalent, integer program. Theoretically, one
could do the same type of modifications in the ILP formulation di-
rectly, however, this is impractical for large problem instances.

The approach we take in this paper is as follows. We find logical
equivalences in a graph which permit us to perform restructuring.
From these we derive corresponding arithmetic equations which
permit us to rewrite the objective and further compact the graph.

3.2 Simple Equivalences (y ≡ x)
Practical circuits contain a significant number of equivalent inter-
nal gate functions which cause redundancies in their SAT formula-
tion and a corresponding significant slow-down of SAT solvers [9].
Finding such equivalences is key for compacting their SAT formu-
lation. In the same vein, these redundancies are likely to adversely
affect the performance of ILP solvers.

We use three methods, similar to those described in [1, 9], to
identify functional equivalences. First, during the construction of
the AND/INVERTER graph, isomorphic subgraphs are identified by
simple structural hashing. Second, local rewriting rules are used
to identify equivalent subgraphs which are only slightly different
in structure. Third, to find equivalent vertices that are not identi-
fied by the previous two techniques, we use a variation of BDD
SWEEPING [9].1

3.3 Generalized Equivalences (y ≡ x1 ∨ x2)
More general equivalences between variables may also be ex-
ploited. The following theorem is familiar from probabilistic sim-
ulation of logical circuits [10]:

y ≡ x1 ∨ x2 ≡ x̄1 ∧ x̄2 ⇐⇒ y = x1 + x2 − x1x2

Informally, a Boolean-OR of two operands is the same as their
arithmetic sum minus any “overlap”. If these conditions on y hold,
we may replace y by x1+x2−x1x2 in the objective of our original
ILP formula without changing the problem. This may be beneficial
if no node implementing x̄1 ∧ x̄2 yet exists in the AND/INVERTER

graph, but a node exists for x1 ∧ x2.
Note that the above equation is nonlinear, while the ILP solvers

we use require us to make it linear. Ordinarily, we would linearize
the equation by introducing a fresh Boolean variable z representing
x1 ∧ x2. In that case, we would obtain:

y = x1 + x2 − z

At first glance, this seems to complicate our formulation with more
variables and constraints. On the other hand, we can exploit the first
two simple equivalence identification mechanisms mentioned in the
previous section to search for some existing node z′ equivalent to
z. If such a z′ is found, then the equation y = x1 + x2 − z′ can
be used instead with no increase in complexity. For example, the
term 58x̄1x̄2 from the objective in (1) can be simply rewritten as
58(1− (x1 + x2 − x1x2)), thus reducing the number of nonlinear
terms. This can be seen in Figure 2 as moving the label from y1 to
y4, x1, x2, and ‘1’.

The result of such rewriting is twofold: First, the number
of nonlinear terms in the objective function is reduced which

1Our implementation of the SWEEPING procedure uses SAT for speed and robust-
ness. However, the principle is the same.
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Figure 3: Valid facts about ȳ1.

helps solving the optimization task and also decreases the num-
ber of additional variables needed for linearization. Second, the
AND/INVERTER graph nodes that yield a weight of zero and have
no fanout can be removed which reduces the number of required
constraints for the ILP formulation. In the next subsection we out-
line how rewriting opportunities can be identified and how they are
processed in a systematic manner.

3.3.1 Identification
Generalized equivalences of the form y ≡ x1∨x2 are often obtain-
able by inspecting an AND/INVERTER graph structurally. We list
the three easily discernible types below, exemplified in Figure 3:

• ȳ1 ≡ x1 ∨ x2

For any AND node y1 ≡ x̄1∧x̄2, De Morgan’s theorem yields
ȳ1 ≡ x1 ∨ x2. Finding a node y4 where y4 ≡ x1 ∧ x2, yields

1 − y1 = x1 + x2 − y4

• ȳ1 ≡ y2 ∨ x2

In this case, y1 and y2 share common fan-ins, except one is
complemented. This is justified as follows:

ȳ1 ≡ y2 ∨ x2

≡ (x1 ∧ x̄2) ∨ x2

≡ x1 ∨ x2

For these structures, 1− y1 = y2 + x2 − y2x2. Furthermore,
y2 ∧ x2 ≡ x1 ∧ x̄2 ∧ x2 ≡ false, which leads to

1 − y1 = y2 + x2

• ȳ1 ≡ y3 ∨ x1

This is the same as the previous case, where the other input of
the gate implementing y1 is complemented.

While these examples focus on node y1, the same ideas apply to
the other nodes in the figure. For example, we may use the facts
ȳ2 ≡ x̄1 ∨ x2, ȳ2 ≡ y1 ∨ x2, and ȳ2 ≡ y4 ∨ x̄1 to derive similar
equations.

These concepts may be generalized to equivalences of the form:

y ≡
_

i

xi ≡
^

i

x̄i ⇐⇒ y = 1 −
Y

i

(1 − xi)

However, the identification of these more general cases is more
complex. Therefore, this paper focuses on simple equivalences and
the special cases listed above.

3.4 Use of Equivalences And Equalities
The previous discussion introduced a set of equivalences for rea-
soning about a circuit. We call a transformation on a circuit sub-
graph a valid “move” if it preserves the objective.

Figure 4 illustrates how a set of valid moves can be applied to a
graph. For example, the move from (4a) to (4b) can be justified as
follows: If x1 is true, then either y2 or y4 is true. Therefore, we can
“factor out” a common cost β from the two cases and attribute β to
x1 by deducting it from the costs of y2 and y4. This reasoning is the
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Table 1: Simplification of problem in Figure 2: α = 58, β = 146, γ = 157, δ = 170.
Theorem used Coefficients of nodes in Figure 2

Equivalence Associated Equation x1 x2 y1 y2 y3 y4 y5 y6 y7 y8 const
58 146 157 170 58 146 157 170
α β γ δ α β γ δ

ȳ8 ≡ x̄2 ∨ y4 −y8 + x2 − y4 + y5 = 0 δ α β γ 0 α + δ β γ 0
ȳ7 ≡ y5 ∨ ȳ4 −y7 − y5 + y4 = 0 δ α β γ γ α + δ − γ β 0
ȳ6 ≡ y5 ∨ x2 1 − y6 − y5 − x2 = 0 δ − β α β γ γ α + δ − γ − β 0 β
y5 ≡ false y5 = 0 δ − β α β γ γ 0 β
ȳ1 ≡ x1 ∨ x2 1 − y1 − x1 − x2 + y4 = 0 −α δ − β − α 0 β γ γ + α β + α
ȳ2 ≡ x̄1 ∨ y4 −y2 + x1 − y4 = 0 β − α δ − β − α 0 γ γ + α − β β + α
ȳ3 ≡ x̄2 ∨ y4 −y3 + x2 − y4 = 0 β − α δ − β − α + γ 0 α − β β + α

88 123 0 −88 204
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Figure 4: Valid moves preserve the objective.
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Figure 5: Simplification of graph in Figure 2.

same as using the fact x1 − y2 − y4 = 0. After this transformation
node y2 is unused and may be discarded or used for further moves.
All other moves in the figure can be justified in a similar way.

We apply the moves in a general preprocessing loop that aims at
simplifying the AND/INVERTER graph which, in turn, results in a
simpler ILP formulation. The preprocessing loop makes a series of
moves until some stopping condition:

do
make a valid move
update gains

while there are beneficial moves
discard unused nodes

The stopping condition and move values depend on the application
and will be discussed in detail in Section 4. In general, we use
an empirical quality metric to measure the anticipated ILP runtime
for a given circuit structure and interleave rewriting with quick at-
tempts to solve intermediate formulations.

Table 1 shows a sequence of moves that greatly simplify the
graph of Figure 2 for the original example given in Figure 1. The
resulting graph is depicted in Figure 5 and reflects the ILP formu-
lation (2) after the term x1x2 is linearized.

4 Applications
In this paper, we focus on two applications. The leakage minimiza-
tion problem seeks a solution showing a feasible bound, whereas
the peak current problem seeks a proof for an infeasible bound. As
stated in the introduction, leakage minimization requires a variable
assignment which induces a minimal leakage current in the rest of
the circuit. This assignment must be feasible so that it can actually
be used in real devices. On the other hand, the peak current prob-
lem requires a guaranteed estimate of the maximum current, which
cannot be exceeded under any circumstances. Obtaining an actual
pair of input vectors is not as important as obtaining a conservative
upper bound in this case. In the next two subsections, we show how
our approach can be used to obtain tight bounds of both feasibility
and infeasibility, respectively.

4.1 Minimizing leakage through input vector control
The leakage current dissipated in a circuit has been shown to de-
pend on the assigned logic values as shown in [2]. Figure 1 shows
an example of the varying leakage amounts for different logic val-
ues at the gate inputs. The problem of leakage state minimization
is to find a circuit-wide consistent assignment of logic values to all
gates such that the overall leakage of minimal.

To find feasibility bounds, we focus on using a SAT-based 0-1
ILP solver to successively search for increasingly better solutions
for this optimization problem. We focus on SAT-based methods
because modern solvers are tuned for efficiently finding feasible
solutions [11, 12].

All modern SAT-based methods are based on branch-and-bound
search and are highly sensitive to the branching order which is con-
trolled by the decision heuristic. Popular decision heuristics [12]
tend to prefer assignments to variables which occur in many con-
straints. However, in optimization, it seems sensible to favor vari-
ables with large coefficients ci. To assist the solver, we try to align
the two decision heuristics by maximizing the value of a formula-
tion as computed below:

value =

P
i∈I |ci| ∗ fanout2i

|I | I = {i|ci 	= 0}
Here, fanouti denotes the out-degree of node i in the
AND/INVERTER graph. There is a linear relationship between
fanouti and the number of constraints in the ILP formulation
which contain the variable representing node i. It has been ob-
served empirically that using fanout2i instead of fanouti leads to
objectives with fewer terms and smaller coefficients.

Preliminary experiments show that there is a weak correlation
between the value of an ILP formulation as computed above and the
observed quality of the solutions from the SAT solver. Therefore,
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we use the value only as a guide for preprocessing. To heuristically
obtain a good solution, we iterate between applying graph moves
and running the SAT-based ILP solver with a short time-out. The
moves aim at increasing the value of the formulation whereas the
inexpensive attempts to solve the formulation address the typically
erratic relationship between the structure of the ILP formulation
and the solver efficiency.

In addition to the interleaved application of greedy moves and
solver attempts, we regularly apply random moves to the formula-
tion in order to move it out of a local optimum of its value. This
is accomplished by a series of random moves before entering into
the preprocessing loop. For assisting the solver, we further include
constraints given by the equations described in Section 3.3.

4.1.1 Experimental Results
We run the proposed algorithms to compute a minimum leakage
vector on MCNC ‘91 circuits. We chose circuits with many inputs
as to make exhaustive simulation infeasible. The circuits are syn-
thesized in SIS [13] using script.delay to a library consisting
of inverters and 2- and 3-input NANDs and NORs. We use the SAT-
based ILP solver galena with its CNF learning option [11]. For
comparison we also apply the LP-based solver OSL [14] from IBM.
All experiments are run on a Pentium III 800MHz processor with
256MB of memory.

For providing a baseline, we run the problems using two variants
of random search. We run random simulation with 50000 vectors
to obtain a bound on the leakage amount and its mean value. The
corresponding results are shown in Column “Random Simulation”
in Table 2. Furthermore, we apply a genetic algorithm [15] using
21 generations of 1000 vectors (total of 21000 vectors); the results
are shown in column “GA”.

We then compare the minimization with a SAT-based solver with
and without applying the rewriting techniques described in this pa-
per. Without rewriting, the problem is formulated as in [3] using
a direct translation from the original circuit to a 0-1 ILP, which is
then run with a timeout of 600 seconds. With rewriting, the prob-
lem is converted to an AND/INVERTER graph which is amenable
to preprocessing and the iterative solve loop using short time-outs.
The solver is run at most 11 times for 3 seconds each then once
more for 30 seconds.

The best results obtained before termination are shown in
columns 7 and 8 of Table 2. Provably optimal results are marked
by parentheses along with the used run time. The reported run-
times include only the time spent in the solver. In almost all cases,
running the solver with preprocessing shows an improvement com-
pared to running the solver without preprocessing. Note that for
cht, optimality is provable only after preprocessing.

Compared to the GA bounds, the SAT-based approach does com-
paratively poorly on frg2, i6, and x3. Our explanation for this
is that these circuits are relatively shallow; SAT solvers are able
to reason well in deep circuits using logical implications, while in
these experiments, we force the solver to reason laterally.

For further comparison, we run the same problems in the LP-
based solver OSL using the simplex method to search for feasible
solutions given a 600s time-out period. Dashed entries indicate that
OSL was not able to find any feasible 0-1 solution within that time
limit. The same preprocessing loop is used as before to obtain the
final formulation; however, no intermediate solves are performed.
Instead of performing moves on the AND/INVERTER graph, the
associated equalities described in Section 3.3.1 are emitted to the
ILP solver. This is because LP-based solvers perform the same

moves internally when given the proper equations. For the exam-
ples C2670 and frg2, the solver experiences a dramatic speedup
over the original formulation. For C7552, the solver is able to find
a feasible solution only after preprocessing.

Interestingly, the problems that were difficult for the SAT-based
ILP solver are simple for the LP-based ILP solver, while the prob-
lems intractable for the LP-based solver are approachable for the
SAT-based solver. This demonstrates how the two solvers may
complement one another. Overall, the results show that both types
of solvers may significantly benefit from preprocessing the ILP in-
stances.

4.2 Peak current estimation
In the peak current problem, we would like to estimate the maxi-
mum amount of current that is drawn by a circuit during any state
transition. For simplification, we use a zero-delay model, however,
more elaborate delay models can be accommodated in a straight-
forward manner.

For modeling dynamic current, we create two copies of a circuit,
and create an XOR between each net and its copy to represent the
net switching for a pair of inputs. The XOR is weighted with the
the associated switching capacitance; in our case, we simply use
the fanout count.

Linear programming can effectively obtain a bound on the opti-
mum. By relaxing the integral constraints, we can often achieve an
approximate solution relatively fast. However, typically solutions
obtained without preprocessing are not useful. For example, the
following inequalities reflect the circuit graph depicted in Figure 3:

x1 + (1 − y2) ≥ 1

(1 − x2) + (1 − y2) ≥ 1

(1 − x1) + x2 + y2 ≥ 1

x1 + (1 − y4) ≥ 1

x2 + (1 − y4) ≥ 1

(1 − x1) + (1 − x2) + y4 ≥ 1

For this formulation, the relaxed solution x1 = x2 = y2 = y4 =
0.5 is valid. This means that the estimation based on the linear pro-
gram yields an upper bound for which all circuit nets may switch,
which is of little use. The following equation tightens the con-
straints, by excluding the case where x1 = y2 = y4 = 0.5.

−y2 + x1 − y4 = 0

In general, ILP solvers based on LP will find these types of equal-
ities, albeit extremely slowly. By including these equations in the
formulation beforehand during the preprocessing step, we may of-
ten get a better LP solution and speed up ILP.

Linear programming is less sensitive than SAT to the structure
of the problem, because it rewrites the problem as part of the solu-
tion process. However, LP can still benefit from a more compact
formulation. For this reason, the specific version of the preprocess-
ing loop outlined previously for this application aims to minimizes
the number of terms in the objective for reducing the number of
auxiliary constraints.

4.2.1 Experimental Results
To measure the effectiveness of adding the derived equations from
Section 3.3, we allow variables to take on continuous values in
[0, 1] and run the problems through OSL using the dual simplex
method for obtaining infeasibility bounds. Without the derived
equations, the obtained upper bound is invariably the trivial upper
bound. As the results in Table 3 show, easily identifiable constraints
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Table 2: Minimizing Leakage with SAT- and LP- based ILP.
Circuit Random Simulation GA SAT-based ILP (galena) LP-based ILP (OSL)

Name PIs Levels Mean Min Min Unprepped Preprocessed Unprepped Preprocessed
C1908 33 33 11059.4 10562.2 10536.1 10669.2 10498.4 (104435) 72s (104435) 64s
C2670 233 35 14112.2 13616.2 13407.2 13537.9 13029.8 (12875) 23s (12875) 5s
C6288 32 111 53027.9 50925.3 50463 50317.8 50317.8 ————– ————–
C7552 207 36 49527 48199.7 47998.3 47584.3 47981.2 ————– 469946
C880 60 25 6759.69 6225.2 5932.4 5870.7 5868.5 (5868.5) 3.8s (5868.5) 1.8s
apex6 135 15 11925.2 11062. 10931 10819.3 10693.3 (10289.8) 8.9s (10289.8) 8.0s
b9 41 9 1714.06 1510.2 1462 (1438.8) 20s (1438.8) 2.75s (1438.8) 0.2s (1438.8) 0.1s
cht 47 7 2918.9 2602.3 2506.6 2458.0 (2458.0) 33s (2458) 0.2s (2458) 0.1s
cm150a 21 11 869.103 788.8 779.2 (777.8) 0.1s (777.8) 0.2s (777.8) 0.1s (777.8) 0.1s
des 256 23 70153.2 68861. 67951.1 67223.7 66794.4 ————– ————–
frg1 28 17 1913.91 1658.7 1593.7 (1587.3) 8.2s (1587.3) 6.1s (1587.3) 0.2s (1587.3) 0.1s
frg2 143 15 13439.8 12404. 12343.6 12400.8 12863.0 (11827.9) 226s (11827.9) 11s
i10 257 39 38170.1 36873.4 36497.4 36388.0 35901.2 ————– ————–
i6 138 9 8633.88 8236.4 8140.7 8184.1 8184.1 (7878.5) 3.3s (7878.5) 1.0s
k2 45 18 21871.6 21037.1 20936.8 21478.9 20997.6 ————– ————–
pair 173 20 24731.5 23520.5 23134 23161.8 23055.7 22464.8 22496.2
vda 17 15 14023.9 13495 13495 (13438.2) 2.4s (13438.2)2.2s ————– ————–
x3 135 13 11236.7 10445.6 10247.2 10581.8 10332.4 (9925.9) 4.3s (9925.9) 6.8s

Table 3: Peak current estimation
Circuit Original

Bound
Tightened
Bound

% Difference

C1908 1455 1259 13.5
C2670 1713 1479.5 13.6
C6288 6884 6104 11.3
C7552 6320 5521.5 12.6
C880 797 756 5.1
apex6 1494 1339.5 10.3
b9 194 189 2.6
cht 357 320 10.4
cm150a 90 75 16.7
des 9333 7302.5 21.8
frg1 194 192 1
frg2 1807 1641 9.2
i10 5040 4297 14.7
i6 1026 896 12.7
k2 2837 1953.25 31.2
pair 3027 2756.5 9
vda 1831 1217 33.5
x3 1462 1305.5 10.7

are often quite effective in tightening the bounds returned by an LP
solver.

5 Conclusions
In this paper we illustrate a general framework for simplifying an
integer program defined over an AND/INVERTER graph. By us-
ing structural properties of the graph, effective simplification can
be achieved. Assuming that the integer program is hard to solve
exactly, we show how these inexpensive manipulations can lead to
the optimum or to tighter approximations.

When searching for feasibility bounds with a SAT-based ILP
solver, preprocessing allows us to find higher-quality solutions in
a shorter amount of time. When searching for a feasible solution
with an LP-based ILP solver, the same preprocessing allows a dra-
matic speedup in the search time.

We show that the structure of the graph can be used for deriving
equations to help eliminate logically inconsistent assignments from
the continuous relaxation of an ILP. For the peak current problem,
these equations result in tighter bounds on the maximum power
dissipated.
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