
Analyzing Power Consumption of Message Passing Primitives
in a Single-chip Multiprocessor

Mirko Loghi Luca Benini Massimo Poncino
Università di Verona Università di Bologna Università di Verona
37134 Verona, Italy 40134 Bologna, Italy 37134 Verona, Italy
loghi@sci.univr.it lbenini@deis.unibo.it massimo.poncino@univr.it

Abstract

In this work we propose a methodology for the accurate
analysis of the power consumption of interprocessor com-
munication in a MPSoC, and the construction of high-level
power macromodels.

The models leverage a complete MPSoC power estima-
tion environment, that allows to evaluate the power con-
sumption of various software functions, including message
passing primitives, which could not be fully characterized
in single-processor analysis framework developed in the
past. Based on this data we built power macromodels that
achieve average estimation errors below 5%.

1. Introduction
Multiprocessor systems-on-chip (MPSoCs) are becoming
widespread in high-end consumer applications. One of the
distinctive challenges in the evolution of MPSoCs, and a
key differentiating factor with respect to traditional high-
end, large scale multiprocessors, is the energy efficiency
requirement. For instance, cellular handsets feature dual-
processor SoCs (DSP and RISC micro-controller), and fu-
ture mobile multimedia and ambient intelligence platforms
will integrate a much larger number of processor cores [1].
Mobile multimedia and ambient intelligence systems are
characterized by tight power budgets [2], which drive en-
ergy optimization efforts across the entire design flow, from
technology to software.
Software power estimators are strategic for energy-aware
software development. While several power estimators for
single processor platforms have been developed in the re-
cent past [6, 7, 9, 5], none of the published approaches is
flexible and general enough to analyze the power consumed
in a complex MPSoC with several communicating cores.
This work provides a first attempt in this direction, with
three contributions. First, we developed a complete power
estimation environment for MPSoCs, using technology-
homogeneous and silicon-validated power models for all
major hardware modules (processors, memories, communi-
cation links). Second, we performed a detailed and accurate

analysis of the power consumption of interprocessor com-
munication in a MPSoC setting. Third, we propose simple
and accurate high-level power macromodels for the com-
munication primitives of the underlying operating systems,
which allow to correlate of power consumption with of
high-level metrics of increasing levels of abstraction, rang-
ing from the number of bus accesses to message size.
The accuracy of the models is quite good, especially for the
very high-level ones, for which the average error is below
5%.

2. Related Work
Software power modeling has been actively studied in re-
cent years. However, most of the research has been focused
onto single-processor systems. The seminal work by Tiwari
et al. [3] introduced the popular instruction-level power
analysis approach, which builds a model associating power
consumption to instructions or instruction pairs, based on a
set of characterization experiments. Better accuracy can be
achieved by micro-architectural power models [4, 5], which
rely on the knowledge of the main functional units of a mi-
croprocessor.
All the above-mentioned approaches focus on the CPU;
however, software execution consumes power also in the
memory system, system buses, and peripherals. Several re-
searchers [6, 7, 8, 9] proposed thus full-system estimators,
that couple instruction set simulators with CPU, memory,
bus and peripherals power models.
To avoid full instruction-level simulation, several tech-
niques have been proposed for characterizing software
power consumption at a coarser level of granularity. Macro-
modeling techniques have been proposed for sub-routine
calls [10], for operating system calls [11, 12, 13], and even
for entire tasks [14, 15]. The main advantage of these tech-
niques is that they can provide early feedback on the power
consumed by complex programs without the computa-
tional cost of instruction-level simulation.
A completely different class of approaches is based on an
abstract representation of the system, in terms, for instance,
of a queue network or a Petri net, where processors are

modeled as requesters, and buses and memories as queues
or places [16, 17, 18]. These approaches provide analyti-
cal performance models which are in principle applicable
at a very high-level of abstraction, provided that the suit-
able parameters can be extracted from the inspection of the
application.

3. Multiprocessor Platform
The simulation platform [19] used in this work consists of
(i) a configurable number of 32-bit ARM processors, (ii)
their private memories, (iii) a shared memory, (iv) a hard-
ware interrupt module, (v) a hardware semaphore module,
(vi) a 32-bit interconnect (ST Microelectronics’ STBus).
The interrupt device allows processors to send interrupt sig-
nals to each other, while the semaphore device implements
test-and-set operations. Both these devices are mapped in
the addressing space and are used for interprocessor com-
munication and synchronization purpose.
The system is configurable in several of its components,
such as the memory latencies, the number and the size of the
caches, the topology of the bus, and many others. The spe-
cific instance of the platform used in this work consists of a
four-CPU system, with (8KB I-cache, 4KB D-cache) mem-
ories, each with a two-cycle latency.
The platform provides cycle-accurate power models for its
components [20], which are referred to the same technology
(0.13 µm by STM). Since the simulation is cycle-accurate
and the power models are invoked at each cycle, MPARM
provides, on a cycle-by-cycle basis, the energy spent by all
the components (core, cache, memories and bus).
The platform also includes a complete operating system and
its support APIs, RTEMS [21], a light-weight OS suitable
for embedded systems, which offers complete support for
multiprocessing, and provides an API for inter-processor
communication and synchronization. Applications can di-
rectly use the communication primitives provided by the
API to implement parallel programs. The target of this
work is exactly the characterization of these communica-
tion primitives.

4. RTEMS Interprocessor Communication
Characterizing the communication primitives requires
a precise identification of what communication primi-
tives are available in RTEMS. The communication archi-
tecture in RTEMS is structured into two layers:

• The top layer consists of a application-level API which
is independent of the implementation of the low-level
communication infrastructure (Multiprocessor Com-
munications Interface Layer (MPCI)). This API is
based on message queues.

• The bottom layer is the MPCI layer, which relies on
a set of platform-specific procedures which enable the
processors to communicate with each other. The MPCI

manages a pool of buffers called packets and their
transmission between system nodes. Packet buffers
contain the messages sent between the nodes.

In RTEMS, the basic inter-thread communication prim-
itives are message queues. Threads communicate by
writing/reading messages into/from a queue using
two system calls: rtems message queue send and
rtems message queue receive (send and receive,
for short).
4.1. Remote send

We assume that a thread T1 (on processor P1) sends a mes-
sage onto a remote queue created on processor P2, which is
received by thread T2 (on processor P2). This is the list
of operation executed by the send:

1. Using the global identifier of the queue, T1 obtains a
packet buffer using the get packet primitive. The
latter returns a pointer in the shared space which will
be used by T1 to access the queue. Synchronized ac-
cesses to this buffer are realized by means of locks,
which can be thought of as an equivalent of a hardware
Test-and-Set, implemented by polling a given location
of the shared memory. The get packet blocks in
case the lock is used.

2. T1 uses this pointer by filling it with the desired data.
This is done by means of a call to the memcpy() func-
tion of the standard C library.

3. Once the shared buffer has been manipulated, T1

sends the buffer to the queue, by means of the
send packet primitive. This operation is actu-
ally implemented as follows. First, it copies the actual
data in an area of the shared memory which works as
a communication channel between the calling threads
and the queue. To access the buffer, it must first ac-
quire a lock. After this has been done, it sends an in-
terrupt; the relative ISR wakes up the multiprocessing
server (i.e., the RTEMS module in charge of the man-
agement of the MPCI layer, MP server for short) by
unlocking a semaphore on which the server was wait-
ing. From now on, the processing happens on P2.

4. On P2, the MP server executes a receive packet,
which, after busy waiting on the lock, gets the address
of the shared buffer described above.

5. The data are explicitly copied from this shared buffer
to a local buffer (via memcpy).

6. Finally, the MP server sends a response (via
send packet) to the MP server on P1, used as
an acknowledge. Again, this operation requires busy
waiting on a lock.

In this case, T2 simply copies from the local buffer in the
kernel space to a local buffer into its address space.

4.2. Remote receive

The remote receive (i.e a receive system call invoked
on a remote queue) works in a similar manner, even if not
fully symmetrically. The MP server on the processor which
owmns the queue is in charge to fill the shared buffers for
the requesting thread, which will copy (via memcpy) the
data into its local memory.
Figure 1 summarizes the sequence of operations of the two
primitives. Symbol “*” denotes operations which requires
acquisition of a lock, while arrows between operations in-
dicate actions triggered by interrupts.

���

send_message(buffer,REMOTE) {
1 p = get_packet() *
2 memcpy(p,buffer);
3 send_packet(p); *

}

�������	��
�����������

4 p = receive_packet() *
5 memcpy(local_buffer,p);
6 send_packet(p); *

� ���

����� ������ "! #� $! %

3 p = receive_packet() *
4 memcpy(p,local_buffer);

5 send_packet(p); *

�&�

receive_message(buffer,REMOTE) {
1 p = get_packet() *
2 send_packet(p); *

}

� '(�

���)� ���*�+ $! #" "! %

�������	��
�����������

6 p = receive_packet() *
7 memcpy(buffer,p);

Figure 1. Remote send (a) and receive (b).

5. Measuring Performance and Power
In order to evaluate the cost of the communication primi-
tives we inserted an ARM-specific instruction (SWI, Soft-
Ware Interrupt) into the OS source code. When the simula-
tor identifies one of these instructions, it triggers the mea-
suring related tasks. We have implemented several specific
actions in RTEMS that used the special SWI mechanism to
be activated. Four of them are strictly related to measure-
ment functions:
• start: activates all counters that are used to accumulate

all the energy and performance statistics.
• stop: deactivate the counters, thus stopping the gath-

ering of data by disabling all counters. It must have a
matching start.

• clear: resets all counter (but keeps them active). This
feature is useful for activating measures of specific op-
erations, so as to obtain local statistics.

• dump: writes out the data collected so far on a log file.
As an example, this is how the measurements is triggered
for a generic send packet.
start_metric();
status = send_packet(p,REMOTE);

stop_metric();
dump_metric();
clear_metric();

6. Quantitative Analysis
After the software probing has been inserted into RTEMS,
we wrote the benchmarks for the characterization. In partic-
ular, we designed a synthetic benchmark relative to a four-
processor configuration of the simulation platform and pa-
rameterized with respect to the message size (8, 16, 32, 64,
128 and 256 Bytes). In the benchmark, one of the proces-
sors sends a message to another one, while the other two
generate tunable dummy traffic on the bus.
In the various runs, energy values are collected so that dis-
tributions of the energy consumption can be built. Figure 2
shows the plots of the distributions for the send and the
receive.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 350000 450000 550000

send

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 450000 550000 650000

receive

Figure 2. Distribution of Energy for send and
receive.

We can notice the multi-modal nature of the distribution,
with peaks corresponding to the various message sizes used
in the characterization.
From the raw data, we derived three models, with param-
eters of different abstraction levels, corresponding the the
following templates:

1. E = E0; this model assumes a constant value for each
send and receive. Although very abstract (it is suf-
ficient to keep the count of the messages exchanged to
obtain an estimation of the cost of communication), it
has the worst accuracy.

2. E = A · Nba + B · Tbus + C; this model depends on
two low-level parameters, the number of bus accesses
(Nba), and the time spent for the whole communica-
tion task (Tbus). This model yields a very good accu-
racy, but it requires the knowledge of low-level quan-
tities, which require a full cycle-accurate simulation to
be extracted.

3. E = α · S + β; this model is based on one parame-
ter only, the size of the exchanged messages (S). It has
slightly worse accuracy than the previous model, but
message size S can be easily extracted from the source
code, without even requiring simulation.

Table 1 shows the parameters (in pJ) for the three models,
related to send as well as to receive, obtained by run-
ning least-mean-square regression on the raw data (Models
2 and 3).
In order to measure the actual error of the models, we ran
another benchmark, similar to the one used for characteriza-

tion, but with different message sizes (24, 30, 40, 100, 150
and 200 Bytes), and a different behavior of the traffic gen-
erator tasks.

Model 1 Model 2 Model 3
E0 A B C α β

send 373674 -456 199 18284 743 311250
receive 469589 -582 215 -42797 832 399718

Table 1. Coefficients of the Energy Models.

Table 2 shows the errors of the three models, measured
against the energy values measured by cycle-accurate sim-
ulations.

Average Worst-Case
Error [%] Error [%]

send receive send receive

Model 1 10.11 8.36 25.42 27.59
Model 2 1.08 1.08 4.48 3.77
Model 3 4.79 4.63 10.45 17.89

Table 2. Estimation Relative Error.

Due to its high error, the Model 1 does not provide good es-
timations and its use is limited to preliminary, rough evalu-
ations. Conversely, Model 2 supplies very accurate results,
but it needs low-level parameters which require accurate
simulations. Model 3 relies on a high level parameter and
fits very well the data. Even if some seldom worst-cases
show errors above 10%, the average error is under 5% and
this exhibits the good behavior of the model in the most
common cases. This model can be successful used into the
inner loop of a software optimization, because it can be used
without resorting to simulation.
The surprisingly good result of Model 3 is actually based
on the statistical properties of the quantity under measure.
Sending (and receiving) a message, in fact, requires a very
large number of operation whose cost is nearly constant,
while a minor fraction of operations depends on variable is-
sues, such as the traffic on the bus. Furthermore the number
of operations, whose cost depends on the traffic, is strictly
related to the message size, so the unpredictability is fur-
ther reduced.

7. Conclusions
We have proposed a first solution towards high-level mod-
eling of software energy consumption in MPSoCs. We fo-
cused on the consumption of the interprocessor communi-
cation primitives provided by the operating system.
Leveraging a cycle-accurate simulation framework which
accurately models the hardware as well as the software ar-
chitecture of the system, we devised a novel energy measur-
ing strategy based on software probes, which allows to pre-
cisely monitor the energy of selected operations.
The energy values thus measured have been used to extract
an empirical energy macro-model which provides average
errors below 5%.

References
[1] E. Aarts, R. Roovers, ”IC Design Challenges for Ambient Intelli-

gence,” Design, Automation and Test in Europe, pp. 3-7, 2003.
[2] L. Benini, M. Poncino, ”Ambient Intelligence: A Computational

Platform Perspective” in: Ambient Intelligence: Impact on Embed-
ded System Design, T. Basten, M. Geilen, H. de Groot eds. Kluwer
Academic Publishers, 2003.

[3] V. Tiwari, S. Malik, A. Wolfe, ”Power Analysis of Embedded Soft-
ware: a First Step Towards Software Power Minimization,” IEEE
Transactions on VLSI Systems, Vol. 2, no. 4, pp. 437-445, Dec. 1994.

[4] D. Brooks et al., ”Power-Aware Micro-Architecture: Design and
Modeling Challenges for Next-Generation Microprocessors,” IEEE
Micro, Vol. 20, no. 6, pp. 24-44, Nov.-Dec. 2000.

[5] N. Vijaykrishnan et al.”Evaluating Integrated Hardware-Software
Optimizations using a Unified Energy Estimation Framework,”
IEEE Transactions on Computers, Vol. 52, no. 1, pp. 59-76, Jan.
2003.

[6] T. Simunic, L. Benini, G. De Micheli, “Energy-Efficient Design of
Battery-Powered Embedded Systems,” IEEE Transactions on Very
Large-Scale Integration Systems, Vol. 9, no. 1, pp. 15–28, Feb 2001.

[7] S. Gurumurthi, et al. ”Using Complete Machine Simulation for Soft-
ware Power Estimation: the SoftWatt Approach,” International Con-
ference on High-Performance Computer Architecture, pp. 124-133,
2002.

[8] J. Henkel, Y. Li, ”Avalanche: an Environment for Design Space
Exploration and Optimization of Low-Power Embedded Systems,”
IEEE Transactions on VLSI Systems, Vol. 10, no. 4, pp. 454-468,
Aug. 2002

[9] T. Givargis, F. Vahid. J. Henkel, ”Instruction-Based System-Level
Power Evaluation of System-on-a-Chip Peripheral Cores,” IEEE
Transactions on VLSI Systems, Vol. 10, no. 6, pp. 856-863, Dec.
2002.

[10] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, ”Cosimulation-
Based Power Estimation for System-on-Chip Design,” IEEE Trans-
actions on VLSI Systems, Vol. 10, no. 3, pp. 253-266, June 2002.

[11] T. Tan, A. Raghunathan, N. Jha, ”Embedded Operating System En-
ergy Analysis and Macro-Modeling,” International Conference on
Computer Design, pp. 515-222, 2002.

[12] A. Acquaviva, L. Benini, A. Ricco’, ”Energy Characterization of
Embedded Real-Time Operating Systems,” in L. Benini, M. Kan-
demir, J. Ramanujam, Compilers and Operating Systems for Low
Power, Kluwer Academic Publishers 2003.

[13] R. Dick, G. Lakshminarayana, A. Raghunathan, N. Jha, ”Analysis
of Power Dissipation in Embedded Systems using Real-Time Op-
erating Systems,” IEEE Transactions on CAD, Vol. 22, no. 5, pp.
615-627, May 2003.

[14] R. Dick, N. Jha, ”MOGAC: a Multi-Objective Genetic Algorithm for
Hardware-Software co-synthesis of distributed embedded systems,”
IEEE Transactions on CAD, Vol. 17, no. 10, pp. 920-935, Oct. 1998.

[15] A. Acquaviva, E. Lattanzi, A. Bogliolo, L. Benini, ”A Simulation
Model for Streaming Applications over a Power Manageable Wire-
less Link,” European Simulation and Modeling Conference, Oct.
2003.

[16] “System-level Performance Analysis for Designing On-Chip Com-
munication Architectures,” K. Lahiri, A. Raghunathan, S. Dey, IEEE
Transactions on CAD, Vol. 20, No. 6, June 2001, pp. 768–783.

[17] “SPI - A System Model for Heterogeneously Specified Embedded
Systems,” D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, J. Teich,
IEEE Transactions on VLSI Systems, Vol. 10, No. 4, August 2002,
pp. 379–389.

[18] “A Formal Approach to MpSoC Performance Verification,” K.
Richter, M. Jersak, R. Ernst, IEEE Computer, Vol. 36, No. 4, April
2003, pp. 60–67.

[19] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, R. Zafalon, “Analyz-
ing On-chip communication in a MPSoC Environment”, DATE’04:
Design, Automation and Test in Europe, Feb. 2004, pp. 752–757.

[20] M. Loghi, M .Poncino, L. Benini, “Cycle-Accurate Power Analysis
for Multiprocessor Systems-on-a-Chip”, GLSVLSI’04: Great Lake
Symposium on VLSI, Apr. 2004 pp. 401–406.

[21] RTEMS home page, www.rtems.com.

