
Formal Hardware Verification based on Signal Correlation Properties
A PVS LIBRARY FOR REDUNDANT NUMBER REPRESENTATIONS

Nikhil Kikkeri and Peter-Michael Seidel
Southern Methodist University

Computer Science and Engineering
Dallas, TX 75205

{nikhil,seidel}@engr.smu.edu

Abstract

This paper deals with special challenges in the formal
verification of high-performance circuits that involve redun-
dant number representations and partial compressions. Our
particular focus is the verification of circuits where sym-
bolic consideration of number representations is not suf-
ficient, but where additionally properties beyond operand
values need to be considered to show correct operation.
As a solution we consider theorem proving techniques in
PVS and we propose a framework that allows for reason-
ing about signal correlation properties in redundant repre-
sentations. We develop a library for redundant represen-
tations that includes support of basic circuits for partial
compression and that verifies several fundamental proper-
ties regarding signal correlation and partial compression
in the computed results. We outline the applicability of our
library in the verification of several practical circuits.

1. Introduction

The use of redundant number representations is cru-
cial in the design and implementation of many high-
performance circuits. Their flexibility in representing a par-
ticular value can enable design options that keep compu-
tations local and that allow to significantly shorten criti-
cal paths (e.g. carry-save adders for binary addition). On
the other hand some number properties (e.g. signs, lead-
ing zeros) are difficult to determine directly from some re-
dundant number representations (e.g. borrow-save repre-
sentations) and require compression of the redundant rep-
resentation before they can be determined. Instead of full
compressions (e.g. carry-propagate additions), partial com-
pressions (e.g. half-adders, P- or N-recoders [5]) with
much faster implementations are often sufficient to deter-
mine a particular property [6], which is why several practi-

cal high-performance implementations follow this approach
[14, 9, 15].

Showing the correctness of implementations that involve
redundant number representations and partial compressions
requires keeping track of more information of an operand
than just the value represented. On the other hand abstrac-
tion from the bit patterns of a particular number representa-
tion is necessary to cope with verification complexities. The
combination of these two arguments imposes a major chal-
lenge for conventional approaches in formal verification of
arithmetic hardware.

In [5] the concept of the fraction range of a redundant
number representation has been introduced to allow captur-
ing and reasoning on properties of redundant number rep-
resentations beyond their values while still abstracting from
the choice of the number itself. This concept has been used
so show the correctness of significant parts of the imple-
mentations in [9, 15]. The correctness proofs on the lead-
ing zero prediction from [9] are cleaner, more elegant and
easier to follow than the informal explanations for the func-
tionality of comparable circuits in [13] (and the references
that appear there), but they are also not fully formalized
and their translation into a form that can be automatically
checked imposes several challenges.

We focus on formal verification based on theorem prov-
ing and choose PVS [10, 16] as the implementation environ-
ment. PVS has been widely used for hardware verification
[11], e.g. in verifying the VAMP microprocessor [1]. The
PVS bitvectors library [4] is a fundamental tool for the ver-
ification of arithmetic circuits in PVS and the library for
basic circuits from [2] can be of further assistance. We
develop a library that extends the supported number rep-
resentations from binary in [4] to the most popular redun-
dant number representations of carry-save and borrow-save
numbers [5], and that introduces concepts similar to that of
fraction ranges from [5] to capture redundant properties of
these numbers in an abstract way. We specify basic circuits

for the manipulation and partial compression of redundant
number representations in PVS and formally show their ef-
fect on value and redundant features of the redundant in-
puts. Our library can assist in showing the correctness of
high-performance circuits that make use of redundant num-
ber representations and partial compressions. We outline
the applicability of our library in the verification of several
practical cases.

In Section 2 we overview background information, we
formally introduce the redundant number representations
under consideration and show some of their basic proper-
ties. In Section 3 we introduce basic circuits for partial
compression and we formulate and verify their partial com-
pression properties on redundant number representations.
In Section 4 we describe some details of the library imple-
mentation in PVS. In Section 5 we discuss the application
of the proposed PVS library to the verification of practical
implementations and finally conclude our work.

2 Number Representations

2.1 Notation

We denote binary strings in upper case letters (e.g.
X,Y,Z). The value represented by a binary string is rep-
resented in italics (e.g. x, y, z). Let XkXk−1 · · · Xj ∈
{0, 1}k−j+1 denote a binary string, also written as X[k : j].
The weight associated with the bit Xi is 2i. The binary value
of a binary string is denoted by: 〈X[k : j]〉 =

∑k
i=j X[i] ·2i.

The two’s complement value of a binary string is denoted
by: [X[k : j]] = −X[k] · 2k +

∑k−1
i=j X[i] · 2i.

2.2 Redundant number representations

Redundant number representations introduce multiple
representations for each value represented (for a survey see
for example [12]). The given flexibility can allow for opti-
mizations in circuit design.

The most popular redundant number representations are
redundant carry-save and borrow-save representations [5].
A number representation F[k : j] in carry-save (CS) format
is compounding two binary strings: a carry-string C[k : j]
and a sum-string S[k : j]:

F[k : j] =
(

C[k : j]
S[k : j]

)
=

(
C[k], C[k − 1], . . . , C[j]
S[k], S[k − 1], . . . , S[j]

)

representing the value:

〈F[k : j]〉CS =
∑k

i=j
〈F[i]〉CS · 2i

=
∑k

i=j
(C[i]+S[i])·2i

= 〈C[k : j]〉 + 〈S[k : j]〉.

Each single CS digit is represented by a carry- and by a
sum-bit and has a value from the range {0, 1, 2}. Note, that
an n-digit carry-save representation can represent all values
from the range {0, . . . , 2n+1 − 2}.

Carry-save representations are redundant number repre-
sentations, because a particular value can have multiple rep-
resentations. Therefore, by converting a carry-save number
representation to its corresponding value, structural infor-
mation about the redundancy and about particular bits in
the CS representation are lost.

A number representation in borrow-save (BS) format
F[k :j] compounds a positively weighted sum-string S[k :j]
and a negatively weighted borrow-string B[k :j]:

F[k : j] =
(

B[k : j]
S[k : j]

)
=

(
B[k], B[k − 1], . . . , B[j]
S[k], S[k − 1], . . . , S[j]

)

representing the value:

〈F〉BS =
∑k

i=j
〈F[i]〉BS · 2i

=
∑k

i=j
(S[i]−B[i])·2i

= 〈S[i]〉 − 〈B[i]〉.

Each single BS digit is represented by a borrow- and by
a sum-bit and has a value from the range {−1, 0, 1}. An
n-digit borrow-save representation can represent all values
from the range {−2n−1, . . . , 2n−1} and most values from
this range have redundant representations.

Any BS representation G[k : j] can be easily converted
to a CS representation F[k : j] of the same value by using
the following correspondence:

〈
B[k : j]
S[k : j]

〉
BS

=
〈

B[k : j], 1
S[k : j], 1

〉
CS

.

2.3 Basic Properties

In this section we are discussing basic properties of re-
dundant carry-save and borrow-save representations. The
values and value ranges have already been discussed in the
previous section. Here we review the concept of fraction
ranges from [5]. The consideration of fraction ranges al-
lows the expression of gradual restrictions in the flexibil-
ity of redundant representations based on signal correlation
properties. Informally, the fraction range of a set of carry-
save representations is defined as the interval of fractions
occurring within the numbers when a binary point is virtu-
ally shifted to any position within the number representa-
tions.

For a formal definition of fraction ranges, fractions of
redundant representations need to be defined.

Definition 1 For a carry-save representation F[k : j] and
for all integers t with j ≤ t ≤ k, the fraction stating at
position t is defined by:

fract(F[k : j]) = 〈F[t : j]〉CS · 2−t−1

=
∑t

i=j
〈F[i]〉CS · 2i−t−1

=
∑t

i=j
(C[i] + S[i]) · 2i−t−1

= 〈C[t : j]〉 · 2−t−1 + 〈S[t : j]〉 · 2−t−1.

For borrow-save representations F[k : j], fractions are de-
fined correspondingly by replacing the evaluation function
for carry-save numbers 〈〉CS with the evaluation function
for borrow-save numbers 〈〉BS .

The fraction range is defined for a set of redundant number
representations.

Definition 2 For any set of n-digit redundant representa-
tions Q the fraction range FR(Q) is defined as the smallest
interval [a, b], such that for all t with 0 < t ≤ n and for all
F[n − 1 : 0] ∈ Q : fract(F[n − 1 : 0]) ∈ [a, b].

Note, that by applying the definition of fractions for CS
and BS numbers, the definition of fraction ranges applies to
CS and BS numbers correspondingly.

It can be easily shown that for any set of carry-save numbers
fraction range lies within the interval [0, 2) and for any set of
borrow-save numbers fraction range lies within the interval
(−1, 1).

3 Basic Circuits for Partial Compression

The conversion of a redundant number representation
into a non-redundant (e.g. binary or two’s complement)
form is a conceptually slow operation involving long com-
putation chains for carry- or borrow-propagations of at least
logarithmic depth. For the extraction of particular features
of the non-redundant form, the redundant representation
does not necessarily have to be fully compressed. Constant-
delay circuits implementing a partial compression are suffi-
cient to allow for extracting various properties of a redun-
dant representation.

Figure 1 gives an overview of the basic circuits for par-
tial compression that we are considering. Each of these ba-
sic circuits is just used for a single digit position and applied
concurrently to each digit of a redundant number represen-
tation. In their parallel application each of the basic cir-
cuits for partial compression meets two properties: (i) The
value of the operand is preserved from input to output rep-
resentation; and (ii) the redundancy of the representation is
reduced.

FA

FA

FA

HA N P

mmp ppm

P N P N

SC

Y ZX P1

4:2

T

W X Y Z

SC

h)

ppm

mmp

T

P’N’

2:1
BS

Y Z

SC P’ N’

P’ N’

N1 P1 P2 N2

P2PN2N1

i i i

i

i i i

i i i i i Nii i

ii i

i i

i+1T Ti+1

i ii+1 i+1

i+1 i+1 i+1i i i

i+1 i+1 i+1i i iP’N’

P’N’

i iii i

a)

b)

c)

d)

f)

e)

g)

Figure 1. Basic Partial Compression Circuits

Value preservation properties (i) are used in the follow-
ing for the specification of the functionality of each of the
basic partial compression circuits.

Redundancy in the representations of input and output
operands is measured considering fraction ranges. Their re-
duction is discussed to address the redundancy reduction
property (ii).

3.1 Specification

Half-Adder (Fig. 1a). A half-adder has two input bits
Yi, Zi and computes two output bits Ci+1, Si, so that:
2Ci+1 +Si = Yi +Zi. The logic functions for Ci+1 and Si

can be specified as: Ci+1 = Yi ∧ Zi, Si = Yi ⊕ Zi.

Full-Adder (Fig. 1b). A full-adder has three input bits
Xi, Yi, Zi and computes two output bits Ci+1, Si, so that:
2Ci+1 + Si = Xi + Yi + Zi. The logic functions for Ci+1

and Si can be specified as: Ci+1 = (Xi + Yi + Zi ≥ 2),
Si = Xi ⊕ Yi ⊕ Zi.

4:2 Adder (Fig. 1c). A 4:2-adder can be built from two
full-adders as depicted in Figure 1c). It has four primary
input bits Wi, Xi, Yi, Zi and one intermediate carry-in Ti

and computes one intermediate carry-out T i+1 = (Xi +
Yi + Zi ≥ 2) and two primary output bits Ci+1, Si, so that

2Ci+1 + S = Wi + Xi + Yi + Zi + Ti − 2Ti+1.

N-Recoder (Fig. 1d). An N-recoder has two input bits
Pi, Ni and computes two output bits N ′

i+1, P
′
i , so that: P ′

i −
2N ′

i+1 = Pi − Ni. The logic functions for P ′
i and N ′

i+1

can be specified as: N ′
i+1 = Ni ∧ Pi, P ′

i = Pi ⊕ Ni.

P-Recoder (Fig. 1e). A P-recoder has two input bits
Pi, Ni and computes two output bits N ′

i , P
′
i+1, so that:

2P ′
i+1 − N ′

i = Pi − Ni. The logic functions for P ′
i+1

and N ′
i can be specified as: P ′

i+1 = Ni∧Pi, N ′
i = Pi⊕Ni.

mmp-Recoder (Fig. 1f). An mmp-recoder has three
input bits Pi, N1i, N2i and computes two output bits
N ′

i+1, P
′
i , so that: P ′

i − 2N ′
i+1 = Pi − N1i − N2i.

ppm-Recoder (Fig. 1g). A ppm-recoder has three input
bits P1i, P2i, Ni and computes two output bits P ′

i+1, N
′
i ,

so that: 2P ′
i+1 − N ′

i = P1i + P2i − Ni.

2:1 BS-Adder (Fig. 1h). A 2:1-BS Adder has two BS
input digits (P1i, N1i) and (P2i, N2i) and a temporary
carry-in Ti and computes one temporary carry-out T i+1 =
(P1i + P2i − N2i ≥ 1) and two primary output bits
N ′

i+1, P
′
i , so that:

P ′
i − 2N ′

i+1 = P1i − N1i + P2i − N2i + Ti − 2Ti+1.

3.2 Properties and Theorems

We are interested in the value preservation and partial
compression properties of the above circuits.

Value Preservation Properties. Value Preservation from
input to output operands is achieved for parallel application
of basic partial compression circuits to whole operands and
follows from the specification of each basic circuit for par-
tial compression. Considering the example of an HA-line
that operates on an n-bit carry-save operand

F[n − 1 : 0] =
(

Y[n − 1 : 0]
X[n − 1 : 0]

)

with carry-string Y[n−1:0] and sum-string X[n−1:0] yields
the carry-save representation

G[n : 0] = HA(F[n − 1 : 0]) =
(

C[n : 1], 0
0, S[n − 1 : 0]

)

with carry-string (C[n : 1], 0) and sum-string (0, S[n−1 :0])
that has the same value:

〈
Y[n − 1 : 0]
X[n − 1 : 0]

〉
CS

=
〈

C[n : 1], 0
0, S[n − 1 : 0]

〉
CS

,

but is partially compressed (as we will see later). Similarly,
we have for the operands in P-Recoding:〈

N[n − 1 : 0]
P[n − 1 : 0]

〉
BS

=
〈

0, N′[n − 1 : 0]
P′[n : 1], 0

〉
BS

,

for N-Recoding:〈
N[n − 1 : 0]
P[n − 1 : 0]

〉
BS

=
〈

N′[n : 1], 0
0, P′[n − 1 : 0]

〉
BS

,

and for the 2:1 BS-Adder operands:〈
N1[n−1:0]
P1[n−1:0]

〉
BS

+
〈

N2[n−1:0]
P2[n−1:0]

〉
BS

=
〈

N′[n :1], 0
T [n], P′[n−1:0]

〉
BS

In the following we will further extend the notation to
apply a whole set of CS operands A instead of a single n-
bit operand as the argument of a HA line, resulting in the
image of the HA line considering the set of input operands:

HA(A) = {G[n : 0]=HA(F[n−1 :0]) | F[n−1 :0]∈A}.
This notation applies to describe the image of a set of
BS operands considering P-recoder, N-recoder and 2:1 BS-
adder lines correspondingly.

Partial Compression Properties. We overview the par-
tial compression properties of the above circuits that can
be described using the framework of fraction ranges from
[7]. The theorems to state the corresponding reductions in
the fraction ranges are listed in the following. An intuitive
proof for most of the theorems can be found in [9].

Theorem 1 For any set of CS representations R and any
set of BS representations B:

• HA lines:

FR(Q)=[a, b] =⇒ FR(HA(Q))=[a/2, b/2+1/2].

• P-, N-Recoder lines:

FR(R) = [c, d] =⇒ FR(P (R)) = [c/2 − 1/2, d/2],
FR(R) = [c, d] =⇒ FR(N(R)) = [c/2, d/2 + 1/2].

• 2:1 BS-Adder lines:
FR(R) = [c, d] =⇒
FR(ADD2BS(R, R)) = [c/2 − 1/2, d/2 + 1/2].

In the following we consider formalizing redundant number
representations and the concept of fraction ranges in PVS
with the ultimate goal to formally verify the above theo-
rems on the fraction range reductions. Generally, fraction
ranges indicate a measure of the correlation between bits in
the number representations of a set of operands. With the
above theorems the increase in the correlation between bits
in output operand representations can be measured indepen-
dent of the values considered.

4 Implementation and Formal Verification in
PVS

The implementation of the proposed PVS library in-
volves three parts: (i) defining redundant number repre-
sentation types in PVS and defining value and projection
functions for redundant number representations, (ii) defin-
ing signal correlation measures similar to fraction ranges
and (iii) specifying the implementations of basic circuits for
partial compression. Based on the implementation we de-
scribe and prove basic properties of redundant number rep-
resentations and basic circuits partial compression in PVS.

4.1 Implementation in PVS

Redundant Number Representations in PVS. The PVS
library for redundant number representations is based on
the PVS bitvectors library [4]. The library makes use of
bit vectors to specify the carry-save and borrow-save num-
bers. Each of these number representations is specified as
a record with two fields. Hence in PVS carry-save and
borrow-save representations are represented as a new types
called CSVec(n) and BSVec(n):

CSV ec(n) : TY PE = [#C : bvec[n], S : bvec[n]#],
BSV ec(n) : TY PE = [#B : bvec[n], S : bvec[n]#],

where C is the Carry part, B is the Borrow part and S is
the Sum part of the carry-save and borrow-save vectors and
each of these is a bitvector of length n. As in the case with
binary representations, CS and BS representations also need
to be converted to their values. Our library provides PVS
expressions ”CSVec2nat” and ”BSVec2int” to achieve these
conversions.

CSV ec2nat(n : nat, csv : CSV ec(n)) nat =
bv2nat(csv‘C) + bv2nat(csv‘S)

BSV ec2int(n : nat, bsv : BSV ec(n)) int =
bv2nat(bsv‘C) − bv2nat(bsv‘S)

The library also provides functions for extracting projec-
tions of the CS and BS Vectors.

Fraction Ranges in PVS. The introduction of fraction
ranges in PVS involved several challenges. Arithmetic
other than on integers is not well supported in PVS.

Moreover, a fraction range is described as an interval that
requires simultaneous consideration of its two delimiters,
an upper and a lower bound which complicates formulation
and manipulation in PVS.

For a simplified handling in PVS, we have considered
upper and lower bound of the fraction range interval sep-
arately. Each of the two bounds is stated as a separate

predicate on the redundant number representation argument
and a boundary description. To avoid arithmetic on frac-
tions, the values to be compared for predicate evaluation
are scaled to integers. This is achieved by representing a
fraction range boundary for a n-digit CS representation as a
n + 1-digit bit vector that is aligned with the CS represen-
tation at its least significant digit.

In the case of the upper boundary, U Boundary? is the
predicate which tests the n-digit carry-save number repre-
sentation csv against the n + 1-bit upper boundary vector
ubound. In PVS the predicate is stated as follows:

U Boundary(n,csv,ubound): bool =
IF FORALL(i:below(n)):

CSVec2nat(i+1,CSVProj(n,csv,i,0))≤ ubound ˆ (n,n-i-1)
THEN TRUE
ELSE FALSE
ENDIF

The predicate for the lower boundary is defined corre-
spondingly with replacing the ≤ condition with ≥.

Note, that the fraction range boundary pattern always has
to be one bit longer than the CS argument that it is applied
to (even if subranges are considered), and that the actual
comparison with fragments of the number representations
involve projections of both the boundary pattern and the CS
representation.

Basic Circuits for Partial Compression in PVS. Speci-
fication of basic circuits are based on gate level implemen-
tations of the specifications from Section 3. The imple-
mentations for HA-lines and FA-lines are also considered
in the basic circuits library in [2]. Based on a single ba-
sic HA/FA implementation, they are defined recursively for
wider operands. We follow this approach and also initially
define all partial compression circuit implementations for
wider operands recursively from right to left. In the context
of [2], this recursive definition is sufficient, because input
and output operands are supposed to be accessed as a whole
or directly converted into their values. Because the value
functions from the bitvectors library are defined recursively
in the same way, their evaluation does not cause any com-
plications.

In our setting single bits or subranges of the input and
output operand representation need to be extracted and indi-
vidually processed. The above specification requires solv-
ing a recurrence equation for each of these tasks. We get
around this complication by showing lemmas for the closed
form representations of single bits of the circuit computa-
tions. These lemmas can then be used for compact substitu-
tion and resolution of many expressions.

4.2 Formal Verification in PVS.

The main properties that we have to verify in PVS are
the value preservation of basic circuits from section 3.2 and
the fraction range reductions from theorem 1.

The value preservation is easily shown based on the
closed form description that we have derived for each par-
allel application of basic circuits. Each theorem on fraction
range reductions is split into two versions: one for the up-
per fraction range boundary and one for the lower fraction
range boundary.

As an example we consider the theorem on the upper
boundaries for HA lines in the following. In PVS the theo-
rem states as follows:

Theorem 2 Let n > 0, input vector csin ∈ CSV ec(n),
input upper fraction range boundary pattern ubound ∈
CSV ec(n + 1), HA line output CS vector csout =
HA(csin) ∈ CSV ec(n + 1) and the modified upper frac-
tion range boundary pattern of the output mubound ∈
CSV ec(n + 2) being defined as

mubound :=
ubound(n) o (NOT (ubound(n))) o uboundˆ (n-1,0),

where ”o” is the concatenation operator and ” ˆ ” is
the bitvector extraction operator from the PVS bitvectors
library. Then,

U Boundary?(n, csin, ubound) =⇒
U Boundary?(n + 1, csout, mubound),

Observe that in the above theorem the definition of
mubound calculates the modified upper fraction range
boundary as 〈ubound〉 + 2n in a bitwise fashion. Consid-
ering that the modified upper boundary pattern is wider by
one bit and thus the reference binary radix point is shifted
by one bit position to the left this corresponds to the com-
putation of b/2 + 1/2 as modified upper bound in the first
part of theorem 1.

Further three challenges in proving this type of theorem
are given by: (i) the accessibility of closed form expressions
that make local computations independent of prior bits in re-
cursive definitions, (ii) the correspondence of properties of
bit, CS or BS vector projections as arguments and as func-
tion values, (iii) the bit length alignment between carry-,
borrow-, and sum-strings in recursive definitions and appli-
cations in the fraction range theorems.

The value-preservation lemmas for whole operands also
had to be modified to match the case of projections of inputs
and outputs without involving unrelated bits of the recursive
definitions. In this contest also some additional lemmas re-
garding the concatenation and extraction of bitvectors were
needed as these are not known to be available in the PVS
bitvectors library. With these additional lemmas discharg-
ing the proof in PVS was a matter of using a couple of

case-splits and about fifteen rewrite rules and the expansion
of the predicate definition. The other parts of Theorem 1
have been proven correspondingly with a very similar proof
structure.

More details on the library, its implementation and veri-
fication can be found on our website at [8].

5 Applications and Conclusions

To show the practicality of the proposed PVS library, we
have applied the library in the verification of four differ-
ent circuits that involve redundant number representations
and/or partial compressions. We only give some details on
the verification of one of the cases (leading zero prediction
from redundant number representations (RNR)) and refer to
[8] for more details on the other applications.

Leading Zero Prediction from RNR. We consider the
implementation of approximately counting the number of
leading zeros from BS representations in Nielsen et al. [9].
The method is based on P- and N-recoding of a borrow-save
encoded string followed by a bitwise XOR-operation to a
binary vector. The number of leading zeros in the binary
vector almost equals the number of leading zeros in the bi-
nary representation of the absolute value of the number rep-
resented by the borrow-save encoded string. We summarize
the main details of the application of this reduction below.

The input consists of a borrow-save encoded digit string
F[1 :−52]. The borrow-save encoded string F ′[2 :−52] =
P (N(F[1 :−52])) is computed and the borrow and sum
vectors of the result are applied to a bitwise XOR-operation,
where P () and N() denote P -recoding and N -recoding.
The application of the technique is based on the following
claim.

Theorem 3 [9] Suppose the borrow-save encoded string
F′[2 :−52] is of the form F′[2 :−52] = 0k ·σ ·t[−1:−54+k],
where · denotes concatenation of strings, 0k denotes a block
of k zeros, σ ∈ {−1, 1}, and t ∈ {−1, 0, 1}54−k. Then the
following holds:

1. If σ = 1, then the value represented by the borrow
encoded string σ.t satisfies:

σ +
∑54−k

i=1
t[i] · 2−i ∈ (

1
4
, 1).

2. If σ = −1, then the value represented by the borrow
encoded string σ.t satisfies:

σ +
∑54−k

i=1
t[i]·2−i∈(−3

2
,−1

2
).

The implication of Theorem 3 is that after PN -recoding,
the number of leading zeros in the borrow-save encoded

string F′[−2 : 53] (denoted by k in the claim) can be used
as an approximate normalization shift amount to bring the
normalized result into one of two binades (i.e. in the pos-
itive case either (1

4 , 1
2) or [12 , 1), and in the negative case

after negation either (1
2 , 1) or [1, 3

2)). This is used to pre-
pare for the normalization shift in parallel with the signifi-
cand addition in the N-path of the IEEE floating-point adder
implementation in [15].

We formulate and verify the above theorem as an appli-
cation of our library to demonstrate its use in the verification
of circuit implementations that are of practical interest.

The other four types of circuits that we have considered
as case studies for the verification with our library are: (i) a
circuit to test a BS representation for zero, (ii) a circuit for
the fast detection of the sign from signed redundant number
representations like BS (signed sticky bit), (iii) implemen-
tations for Booth Recoding from redundant number repre-
sentations following the description from [6].

The circuits specified in PVS can be synthesized to cor-
rect Verilog implementations by using the translation tools
described in [3].

The use of redundant number representations and of par-
tial compressions is far more popular than in the few case
studies presented. For example the whole field of on-line
arithmetic involves redundant representations and their par-
tial compressions and could make use of our library for their
verification. Moreover, implementations for division and
square root computations on binary operands often use re-
dundant representations and partial compressions for inter-
mediate results.

We hope that our library will be applied and can also be
found useful in the verification of several of these cases and
improve the confidence in the corresponding designs.

Conceptually, the contribution in the proposed methods
is the utilization of bit correlation properties and their com-
bination with symbolic reasoning in theorem proving (in
PVS). Bit correlation properties are captured by the pattern
vectors for upper and lower bounds to represent fraction
ranges. In the theorems these vectors can be applied and
manipulated symbolically. The case study of the circuit for
leading zero prediction from redundant number represen-
tations shows that the restriction of the (symbolic) bound-
ary patterns can allow the determination of single bit con-
ditions in the result with an accuracy up to one bit without
any restrictions on the inputs of the computations (neither
operands nor boundary patterns at the input). In the verifi-
cation of the case studies this has been shown to be a pow-
erful concept that might be applicable to other cases where
symbolic reasoning should be combined with conditions on
variable bits of the computation.

References

[1] C. Berg, S. Beyer, C. Jacobi, D. Kroening, and D. Leinen-
bach. Formal verification of the VAMP microprocessor. In
Proc. Symp. on the Effectiveness of Logic in Coputer Science
(ELICS02), pages 31–36, 2002.

[2] C. Berg, C. Jacobi, and D. Kroening. Formal verification
of a basic circuits library. In Proc. of the IASTED Inter-
national Conference on Applied Informatics, Innsbruck (AI
2001). ACTA Press, 2001.

[3] S. Beyer, C. Jacobi, D. Kroening, and D. Leinenbach. Cor-
rect hardware by synthesis from PVS. Internal Report, Saar-
land University, accessible from: http://busserver.cs.uni-
sb.de/publikationen/BJKL02.pdf, 2002.

[4] R. Butler, P. Miner, M. Srivas, and D. Greve. A new bitvec-
tors library for PVS. Technical Report TM-110274, NASA
Langley Research Center, 1996.

[5] M. Daumas and D. Matula. Recoders for partial compres-
sion and rounding. Technical Report 97-01, Laboratoire de
l’Informatique du Parallélisme, Lyon, France, 1997.

[6] M. Daumas and D. Matula. A Booth multiplier accepting
both a redundant or a non-redundant input with no additional
delay. In IEEE International Conference on Application-
specific Systems, Architectures and Processors, pages 205–
214, 2000.

[7] M. Daumas and D. Matula. Further reducing the redundancy
of a notation over a minimally redundant digit set. Journal
of VLSI Signal Processing, 33:7–18, 2003.

[8] N. Kikkeri and P.-M. Seidel. A PVS library for Redun-
dant Number Representations and Partial Compressions.
http://engr.smu.edu/˜ seidel/verification/correlation/.

[9] A. Nielsen, D. Matula, G. Even, and C. Lyu. An IEEE com-
pliant floating-point adder that conforms with the pipelined
packet-forwarding paradigm. IEEE Transactions on Com-
puters, 49(1):33–47, January 2000.

[10] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In 11th International Conference on
Automated Deduction (CADE), volume 607 of LNAI, pages
748–752. Springer, 1992.

[11] S. Owre, J. M. Rushby, N. Shankar, and M. K. Srivas. A
tutorial on using PVS for hardware verification. In Theo-
rem Provers in Circuit Design (TPCD ’94), volume 901 of
LNCS, pages 258–279. Springer, 1994.

[12] B. Parhami. Computer Arithmetic: Algorithms and Hard-
ware Designs. Oxford, 2000.

[13] M. Schmookler and K. Nowka. Leading zero anticipation
and detection-a comparison of methods. In Proceedings
15th IEEE Symposium on Computer Arithmetic, pages 7 –
12, 2001.

[14] P.-M. Seidel. High-speed redundant reciprocal approxima-
tion. INTEGRATION, the VLSI Journal, 28:1–12, 1999.

[15] P.-M. Seidel and G. Even. Delay-optimized implementa-
tion of IEEE floating-point addition. IEEE Transactions on
Computers, 53(2):97–113, 2004.

[16] N. Shankar. Specification and verification using PVS, April
1992.

