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Abstract

Formal and dynamic (simulation, emulation, etc.) veri-
fication techniques are both needed to deal with the over-
all challenge of verification. Ideally, the same specifica-
tion/testbench would work with both formal and dynamic
techniques, with the same semantics in both. Unfortunately,
this is typically not the case. In particular, Generalized
Symbolic Trajectory Evaluation (GSTE) is a powerful for-
mal verification technique developed by Intel and success-
fully used on next-generation microprocessor designs, but
the specification formalism for GSTE relies on “symbolic
constants”, which intrinsically exploit the underlying for-
mal verification engine and cannot be reasonably handled
via non-symbolic means. In this paper, we propose a modi-
fied version of GSTE specifications, and we present efficient,
automatic constructions to convert from the new simulation-
friendly GSTE specifications into conventional GSTE speci-
fications (to access the formal verification tool flow) as well
as into completely non-symbolic monitor circuits suitable
for conventional dynamic verification. We demonstrate em-
pirically that our simulation-friendly specification style is
expressive enough for almost all real GSTE specifications,
that our monitor construction is linear-size, and that our
monitor construction imposes minimal overhead over a pre-
viously published monitor construction that was not fully
non-symbolic.

1. Introduction

Formal verification and dynamic verification (i.e., sim-
ulation, emulation, etc.) are both needed to deal with the
overall challenge of verification. Formal techniques provide
unparalleled coverage, whereas dynamic techniques have
superior capacity, ramp-up more quickly, and support more
detailed modeling. Ideally, the same specification/testbench
would work with both formal and dynamic techniques, with
the same semantics in both, allowing a methodology that
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seamlessly chooses whatever technique is most appropri-
ate at any given point in the verification process. Unfortu-
nately, this is typically not the case: formal specifications
often have a declarative aspect that can be difficult to con-
vert to the operational style needed for dynamic verifica-
tion, and vice-versa.

A particularly convenient bridge between formal and dy-
namic specifications is the monitor circuit or assertion mon-
itor. A monitor is simply a small circuit that watches, with-
out interfering, the system being verified and flags whether
or not the system is obeying a formal correctness property.
Monitor circuits have the declarative style of typical formal
specifications, yet are operational and can be used with con-
ventional simulation. Extensive research has demonstrated
the value of monitor circuits as the cornerstone of a prac-
tical verification methodology [1], as an enabler of hierar-
chical, compositional verification [6, 12, 5], and as a test-
bench generator for simulation [17]. Monitor circuits could
even be synthesized into an emulation system to aid error
observability and debugging.

In this paper, we focus on Generalized Symbolic Trajec-
tory Evaluation (GSTE) [15]1. GSTE was developed by In-
tel and is emerging as an important formal verification tech-
nique that has been successful on leading-edge designs in
industry, where users reported superior efficiency and ca-
pacity (e.g., [2]), as well as having demonstrated efficiency
advantages in academic research [11].

GSTE uses a particular specification formalism, called
an assertion graph, and the efficiency of GSTE depends, in
part, on the specifics of assertion graphs. Assertion graphs,
in turn, rely on a concept called “symbolic constants” (de-
scribed in Section 2), which intrinsically exploit the under-
lying formal verification engine. Furthermore, when spec-
ifications become retriggerable and multi-threaded, the se-
mantics of symbolic constants become even more complex.
Previous work building monitor circuits for GSTE assertion

1 GSTE is important in its own right, but we also hope that these ideas
can prove helpful for other specification formalisms. In particular,
GSTE symbolic constants are used similarly to auxiliary variables in
temporal logics, so our ideas may be more broadly applicable.
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graphs could not handle symbolic constants, so the result-
ing monitor “circuit” needed a symbolic simulator to have
correct (i.e., agreeing with the formal verification) simula-
tion semantics [4].

In this paper, we address this problem. We first propose
a modified version of GSTE assertion graphs with clearer
(but somewhat restricted) semantics for symbolic constants.
We then present efficient, automatic constructions to con-
vert from the new simulation-friendly GSTE specifications
into traditional GSTE specifications (in order to access the
existing formal verification tool flow), as well as into com-
pletely non-symbolic monitor circuits suitable for conven-
tional dynamic verification. We demonstrate empirically
that our simulation-friendly specification style is expres-
sive enough for almost all real GSTE specifications, that
our monitor construction is linear-size, and that our moni-
tor construction imposes minimal overhead over the previ-
ously published partially-symbolic monitor construction.

2. GSTE Assertion Graphs

GSTE is a model-checking [3, 10] method based on the
language-containment paradigm [13, 7]: the specification is
given as an automaton, and verification proves that all pos-
sible behaviors of the system are accepted by the automa-
ton. For GSTE, the specification automaton is a variant of
∀-automata [8] called an assertion graph. GSTE is explained
in detail in several sources (e.g., [15, 16, 14], etc.). Here, we
give only a brief overview of assertion graphs to make this
paper self-contained.

Figure 1 shows a generic example (sequential) circuit
with two data inputs, a stall input, and a data output, and
Figure 2 shows a generic example assertion graph. An asser-
tion graph has a set of vertices (with an initial vertex v0), and
a set of edges. Each edge is labeled with an antecedent a i

and a consequent ci, which are boolean formulas on the sig-
nal names in the circuit (and symbolic constants, explained
below). Furthermore, some edges can be labeled as termi-
nal edges. Every path starting from the initial vertex and
ending on a terminal edge represents a distinct temporal as-

sertion, with each edge corresponding to a clock cycle. 2 For
example, the path that goes from v0 to v1, loops back to v1,
and then proceeds to v2 corresponds to the temporal asser-
tion “If a0 holds on the first cycle, and a1 holds on the sec-
ond cycle, and a2 holds on the third clock cycle, then c0

must hold on the first cycle, and c1 must hold on the sec-
ond cycle, and c2 must hold on the third cycle.” In gen-
eral, a run of a circuit satisfies a path if either at least one
antecedent fails (Intuitively, the assertion is satisfied vacu-
ously, because one of the preconditions isn’t met.) or else
all antecedents are satisfied, and so are all the consequents.
Assertion graphs being ∀-automata, a circuit run satisfies
an assertion graph if it satisfies every path from initial ver-
tex to terminal edge. Intuitively, the assertion graph rolls up
an infinite set of temporal assertions into a finite graph.

For example, suppose the circuit in Figure 1 is a stal-
lable adder with one cycle minimum latency. We could ver-
ify that 1 + 1 = 2 (with correct stalling behavior) by hav-
ing a0 be (in0 = 1)∧ (in1 = 1)∧¬stall, having a1 be
the formula stall, having a2 be ¬stall, and having c2 be
(out = 2). (The consequents c0 and c1 are just the formula
true.) The assertion graph would represent an infinite fam-
ily of temporal assertions (for each possible length of stall),
asserting that if the inputs happen to be 1 and 1, then the out-
put must be 2. (If the inputs happen to be other values, then
the assertion graph is vacuously satisfied.)

Symbolic Constants Obviously, we’d like to verify
the adder for all possible input values, not just 1 + 1. To
handle this, GSTE introduces symbolic constants, which
can take arbitrary values. GSTE model checking verifies
the assertion graph for all possible values of the symbolic
constants. Continuing the example, we could change a 0 to
be (in0 = A)∧ (in1 = B)∧¬stall, and c2 to be (out =
A+B). Intuitively, we are using A and B to “remember” the
values seen on the inputs and check that the output is cor-
rect. Formally, the use of symbolic constants is equivalent
to having 22n copies of the original assertion graph, with the
different copies “guessing” all possible numeric values for
A and B. We call each of these copies, with specific values
for all symbolic constants, an assigned instance of the as-
sertion graph. For any given circuit execution, only one as-
signed instance will guess correctly; the others will guess
wrong and accept vacuously. Because of this guessing ef-
fect, we could equally well have specified the adder with a 0

being, for example, (in0 = A−B)∧ (in1 = B)∧¬stall,
and c2 being (out= A). Note that symbolic constants intrin-
sically rely on an underlying formal verification engine —
the different assigned instances are encoded symbolically
via BDDs, and antecedents and consequents can entail arbi-

2 We consider here only GSTE over finite-length executions, because
that is what is used most in practice and corresponds to properties that
can be checked using dynamic validation. There is also a theory of
GSTE over infinite-length behaviors.
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Figure 3. Example Pipelined Assertion Graph

trary constraint solving over the symbolic constants.
Retriggering and Knots The formal semantics of

symbolic constants lead to unexpected results when a por-
tion of an assertion graph is reused for a new transaction.
For example, suppose our example in Figure 1 is actually
part of a much larger assertion graph, and there is a path
from v2 back to v0 when the system is ready to perform an-
other addition. Intuitively, we’d like A and B to remember
the new input values for the new addition problem. How-
ever, symbolic constants are fixed for all time. During the
first addition, one assigned instance guesses the correct val-
ues for A and B, and all the other instances vacuously ac-
cept. When the assertion graph returns to v0 for the next ad-
dition, only the one assigned instance is still active, and that
instance is fixated on the previous values of A and B. The
assertion graph is unable to retrigger and check a new trans-
action.

To address this problem, GSTE enhancements intro-
duced the concept of knots to assertion graphs. Intuitively,
a knot is a point in the assertion graph where the value of
a symbolic constant is forgotten. The name knot arises be-
cause conceptually, the knot is a point where the different
assigned instances are “tied together”, allowing a path to
move from one assigned instance to another, with differ-
ent values for symbolic constants. If we introduce a knot at
v0, the assertion graph becomes retriggerable.

The intuitive effect of knots can be subtle. Consider the
assertion graph in Figure 3, based on our previous example,
with a0 being (in0 = A)∧ (in1 = B)∧¬stall, and c2 be-
ing (out = A+ B). This graph specifies a 2-stage pipelined
adder: the self-loop on v0 indicates a 1-cycle issue rate, and
the extra edge from v1 to v2 means the result is available
with a 2-cycle latency. We need a knot at v0 so that the sym-
bolic constants can change for different addition transac-
tions. Intuitively, it may not be obvious that the assertion
graph can keep the different copies of the symbolic con-
stants distinct, but recall that each assigned instance is effec-
tively a separate copy of the assertion graph, so they do not
interfere. Furthermore, it may appear that we could make
infinite-state assertion graphs by, for example, changing a 0

to be (in0 = A)∧ (in1 = B), so that we can load new val-
ues every clock cycle, while delaying the output of results
by asserting stall. However, the resulting assertion graph
is actually finite-state, because the different instances will
all get stuck on the stall self-loops, where the temporal
ordering of the different symbolic constant values will be

lost. The graph will record only the set of symbolic con-
stant values that are possible on each edge, which is ex-
tremely large, but still finite-state, rather than the sequence
of values, which is infinite-state.

3. Simulation-Friendly Assertion Graphs

Three main difficulties appear to prevent creating fully
non-symbolic monitor circuits for assertion graphs: first,
symbolic constants initially take on all possible values, and
then the set of possible values is pruned essentially by con-
straint solving (where the antecedents are the constraints);
second, the semantics of knots are defined specifically ac-
cording to the formal model — how the exponential num-
ber of assigned instances interact; and third, as we saw in
Figure 3, assertion graphs can record an intractable amount
of history, such as the exact set of data values that have
been seen. These difficulties mean that a fully general mon-
itor construction for assertion graphs would need to gen-
erate circuits that are exponential in the number of bits of
symbolic constant and perform constraint solving. Clearly,
such a monitor circuit would not be practical. An additional
drawback of fully general assertion graphs is that the se-
mantics can be unintuitive, requiring a good understand-
ing of the underlying formal model. A unified specification
style for formal and dynamic verification should be simpler
to understand.

Fortunately, the assertion graphs we have observed in
practice are not fully general. In particular, the typical usage
of symbolic constants is intuitively an assignment statement
to the “constant” to record some information, followed by
subsequent use of that information. The key to simulation-
friendly assertion graphs is to capture this intuitive usage.

A simulation-friendly assertion graph is basically the
same as a normal assertion graph. However, we introduce
explicit assignment statements and eliminate the knot con-
struct. Assignment statements can be placed on edges, and
they assign to a symbolic constant some value computed
as an arithmetic/logical expression over the signal names
in the circuit. The assignment takes effect before the an-
tecedent and consequent on that edge are evaluated. We im-
pose the additional restriction that on every path from the
initial vertex, each symbolic constant must be assigned be-
fore it is used.

Simulation-friendliness eliminates the need for con-
straint solving, provides retriggerability automatically with-
out knots, and is intuitively clear. For example, for the
pipelined adder in Figure 3, on the edge from v 0 to v1, we
would have assignment statements (assign A = in0) and
(assign B = in1), and would make a0 be ¬stall. Retrig-
gering is obvious from the assignment statements. Each to-
ken carries its own copy of the values of A and B, so the
pipelined nature of the assertion graph is clear.



The translation of a simulation-friendly assertion graph
into an equivalent traditional assertion graph is straightfor-
ward. Each assignment statement is converted into a clause
in the antecedent, asserting equality between the symbolic
constant and the value being “assigned” to it. To get the
retriggering effect, we also introduce a partial knot on an
edge. (A partial knot erases the value of only the variable
being assigned. Formally, it corresponds to connecting only
the assigned instances that agree on all symbolic constants
except for the one being assigned.)

The remaining questions are: (1) Are simulation-friendly
assertion graphs general enough for practical industrial us-
age? (2) Can we build a fully non-symbolic monitor circuit
efficiently? And (3) how can we limit the size of the mon-
itor circuit to avoid recording intractable amounts of his-
tory information? We address the first question empirically
in Section 5. The next section addresses the other two.

4. Monitor Circuit Construction

Overall, the monitor circuit construction for simulation-
friendly assertion graphs is based on the assertion-graph-
to-monitor construction proposed in [4], with added com-
plexity to properly handle symbolic constants. To limit the
amount of history information the monitor needs to record,
we assume the user provides a constant k, the maximum
number of assertion graph instances that the monitor can
handle at a time. Section 4.6 contains a brief discussion on
determining the value of k. The monitor circuit observes the
system under verification and determines whether the exe-
cution trace is legal according to the assertion graph. It has
two output signals, accept and overflow. The accept sig-
nal is asserted when the assertion graph accepts the trace.
The overflow signal is asserted when the monitor deter-
mines that it has run out of storage space to monitor sys-
tem execution, rendering the accept output incorrect. The
monitor inputs include system signals that appear on an-
tecedents and consequents, and reset, which initializes the
monitor for a new trace when asserted.

Intuitively, the monitor circuit has an internal copy of
the assertion graph and uses tokens to track relevant paths.
It starts by placing a token on edges that start from the ini-
tial vertex (and clearing tokens on the rest). A token arriv-
ing on an edge means that at least one path ends on that
edge, on that clock cycle. Tokens also carry history infor-
mation about their represented paths. An edge receiving a
token checks its antecedent/consequent, and forwards a to-
ken to its outgoing edge(s) on the next cycle if necessary.
Multiple tokens arriving on the same edge at the same time
with the same histories (described below) are merged, be-
cause those paths share the same future. To determine trace
acceptance, the monitor checks the terminal edges for any
token that suggests violation of the assertion.

Following the terminology in [4], there are three types of
paths: blessed, happy and condemned. A blessed path has
at least one failed antecedent and therefore accepts the trace
vacuously. Furthermore, any extension of a blessed path is
also blessed. A happy path has all its antecedents and con-
sequents satisfied and accepts the current trace, but may re-
ject its extensions. A condemned path has all its antecedents
satisfied but at least one consequent failed. A condemned
path rejects the current trace, but its extensions may later be
blessed.

When any token arrives on an edge and the antecedent
fails, the represented path(s) and all its(their) extensions are
blessed. The token disappears on the next cycle. When a
happy token arrives, an edge forwards a happy token to
its outgoing edges if both the antecedent and the conse-
quent hold. If the consequent fails, the edge forwards a con-
demned token. An edge receiving a condemned token for-
wards a condemned token if its antecedent holds. The mon-
itor asserts its accept signal if and only if no condemned
token is generated on any terminal edge.

To evaluate antecedents/consequents that contains sym-
bolic constants, the history of a path should also include
the assigned values to symbolic constants. Therefore, to-
kens remember assigned values, updating them when they
visit an edge with an assign statement, which we call an
assigning edge. Tokens with different assigned values can-
not be merged. (If the execution requires more that k dif-
ferent values, overflow is asserted.) A key optimization is
to clear the assigned value on a token as soon as all future
edges the token may visit do not need symbolic constants.
It is straightforward to decide which edges should receive
tokens with assigned values. We will refer to them as in-
stance edges, as opposed to simple edges, which do not re-
quire assigned values on tokens. Instance vertices are start-
ing vertices of instance edges; simple vertices are not. Fig-
ure 4 presents an algorithm for finding instance edges.

The hardware implementation closely follows the above
intuition. The monitor circuit is structured like the assertion
graph, with modules for each vertex and edge, connected
as in the graph. Tokens are passed around the circuit via a
pair of signals, happy and condemned, indicating the for-
warding/arrival of the corresponding type of token. Simple
edges need not track multiple assigned instances, so they
communicate via a single happy/condemned pair; instance
edges, however, might need to distinguish between up to k
instances, so they have k happy/condemned pairs, that oper-
ate in parallel. Each pair is labeled with its instance id from
1 to k. The instance manager module is responsible for allo-
cating instance ids. A token on an assigning edge activates a
request to the instance manager. The instance manager also
maintains k banks of latches storing up to k assigned val-
ues for each symbolic constant. For each instance id i, the
ith bank of latches is connected only to the parts of the cir-



1: function findInstanceEdges(G)
2: instanceEdges ← /0
3: for all symbolic constants C of G do
4: visited ← /0
5: frontier ← edges that have C in labels
6: while frontier �= /0 do
7: e ← a member of frontier
8: frontier ← frontier−{e}
9: visited ← visited∪{e}

10: if e does not assign C then
11: incoming ← incoming edges of e that do not as-

sign C
12: frontier ← frontier∪ (incoming− visited)
13: end if
14: end while
15: instanceEdges ← instanceEdges∪ visited
16: end for
17: return instanceEdges

Figure 4. An algorithm for finding instance edges in
assertion graph G

cuit with instance id i, so all instances can read/write their
assigned values simultaneously.

4.1. Vertices

A vertex module is just a bit of combinational logic
that forwards tokens from incoming to outgoing edges. For
simple vertices, the output happy and condemned signals
are the disjunction (OR) of all the incoming happy and
condemned signals, respectively. Some incoming edges to a
simple vertex might be instance edges, but their k token sig-
nals can be merged (by disjunction) since the assigned val-
ues become irrelevant at this point. Instance vertices, on the
other hand, always have instance edges as inputs, so there
are k pairs of token signals on each incoming edge, and each
output signal is the disjunction of the corresponding input
signals with the same instance id.

4.2. Edges

Each edge module contains logic and latches to evaluate
the antecedent and consequent, to determine whether (and
what) tokens to forward, and to delay tokens one clock cy-
cle. (Details of the basic edge module logic are available in
[4].) This is true for both simple and instance edges, but in-
stance edges have everything duplicated k times. Each of
the k copies connects to a separate set of assigned values (if
needed) and outputs its own pair of token signals.

An assigning edge module invokes the instance man-
ager by passing it the current results (happynow and

condemnednow). The instance manager (Section 4.3) re-
turns the correct values for the k pairs of outgoing token
signals. A special case is when the edge assigns a sym-
bolic constant that its own antecedent/consequent uses. In-
stead of looking up latches for the assigned value, the an-
tecedent/consequent logic should replace references to the
symbolic constant with the signal assigned to it. This en-
ables the immediate use of assigned value to evaluate the
antecedent/consequent on an assigning edge. Moreover, the
monitor avoids unnecessarily storing the assigned value if
the antecedent fails on the assigning edge.

4.3. Instance Manager

The instance manager module allocates instance ids to
assigning edges, updates assigned values, and determines if
overflow has occurred. The main challenge is to arbitrate
among all the requests for new instance ids. To simplify ar-
bitration, we impose a fixed, arbitrary priority order on all
assigning edges. At each cycle, the instance manager looks
at the set of all requests and the set of all available instance
ids, and matches them up in priority order. Overflow occurs
when there is any unacknowledged request.

We give the formal definition of the instance manager
logic below. Subscripts denote instance ids. We will use the
notation ∀e′ < e to denote the set of all edges with higher
priority than an edge e. Intuitively, the signal inUse i indi-
cates whether instance id i is being used by any token, and
for any assigning edge e, the signal ack(e) j or ack(e)i, j in-
dicates that the request (from instance id i) has been granted
an instance id of j.

inUsei =
_

all instance vertices v

(happy(v)i ∨condemned(v)i)

Each assigning edge e has signals that interact with the in-
stance manager. To save space, we show the signal names
implicitly assuming that they are local to e, except in cases
where there are formulas that refer to signals from multi-
ple edges. For each assigning simple edge (ASE) e,

active = happy now∨condemned now
ack(e) j = active∧¬inUse j

∧
^

g< j

¬ack(e)g ∧
^

∀e′<e

¬ack(e′) j

happy next j = happy now∧ack(e) j

happy out j = DFF(happy next j)
condemned next j = condemned now∧ack(e) j

condemned out j = DFF(condemned next j)
overflow(e) = active∧

^

g∈1..k

¬ack(e)g

For each assigning instance edge (AIE) e,

activei = happy nowi ∨condemned nowi



ack(e)i, j = activei ∧¬inUse j

∧
^

g< j

¬ack(e)i,g

∧
^

∀e′<e

^

h∈1..k

¬ack(e′)h, j

∧
^

all ASE a
¬ack(a) j

ack(e) j =
_

i∈1..k

ack(e)i, j

happy next j =
_

i∈1..k

(happy nowi ∧ack(e)i, j)

happy out j = DFF(happy next j)
condemned next j =

_

i∈1..k

(condemned nowi ∧ack(e)i, j)

condemned out j = DFF(condemned next j)
overflow(e) =

_

i∈1..k

(activei ∧
^

j∈1..k

¬ack(e)i, j)

The instance manager controls the storage of assigned
values via the write-enable and input signals to the latches.
Intuitively, write is enabled if any edge assigning to that in-
stance of a constant has requested and been acknowledged.
The data input is basically a multiplexor that selects the new
assigned value or existing value based on which edges were
acknowledged; the only complication is when an instance
i assigns some of its constants and gets allocated new in-
stance id j, the new instance must copy over the values of
the other constants from instance i. Formally, for a given bit
position of a given symbolic constant, let l1, . . . , lk denote
the k latches for storing this bit of the constant. We partition
the set of assigning edges into three sets: Ea, those that as-
sign to this constant; Eb, those instance edges that do not as-
sign to this constant; and, Ec, those simple edges that do not
assign to this constant. For e ∈ Ea, let s(e) denote the value
that e wants to assign to the symbolic constant. The sig-
nals we, Din, and Dout denote the write-enable, input, and
the output signals of a latch.

we(l j) =
_

e∈Ea∪Eb

ack(e) j

Din(l j) =
_

e∈Ea

(ack(e) j ∧ s(e))

∨
_

e∈Eb

_

i∈1..k

(ack(e)i, j ∧Dout(li))

4.4. Monitor Output

The accept signal is asserted when any terminal simple
edge (TSE) or terminal instance edge (TIE) has generated
a condemned token. The overflow signal is asserted when
any assigning edge asserts its overflow.

accept =
^

all TSE e
¬condemned now(e)

∧
^

all TIE e

^

i∈1..k
¬condemned now(e)i

overflow =
_

all assigning edge e
overflow(e)

4.5. Special Case: k = 1

It is possible to significantly reduce the size of the mon-
itor circuit when k = 1. As there is only one place to store
each constant, the instance manager becomes redundant ex-
cept for the overflow logic. If the user is certain that over-
flow is impossible (Section 4.6), our implementation allows
the user the option to build the monitor circuit without the
instance manager and related signals when k = 1.

4.6. Bounding k

A natural question is what value of k should the user sup-
ply. We have observed that it is often easy to determine an
upper bound on the k that a given assertion graph requires.

A common special case is when, on all outgoing edges
from each vertex, the antecedents are mutually exclusive. In
this case, the number of instances required is k = 1. For ex-
ample, the unpipelined adder example in Section 2 obeys
this constraint and only needs k = 1, whereas the pipelined
adder example does not obey this constraint and requires
k > 1. As noted in the preceding subsection, this is a very
desirable special case because the monitor circuit can be
built with no overhead for instance management.

More generally, note that edges with assignment state-
ments request a new instance id every time they are ac-
tive; we call these the requesting edges. If there is only one
requesting edge in the assertion graph, the number of in-
stances required is the same as the maximum number of
times that that edge receives a new token before a previ-
ously assigned token is released. For example, returning to
the pipelined adder in Section 2, Figure 3, the edge from v 0

to v1 is the requesting edge. If we set antecedent a0 correctly
as ¬stall, then the requesting edge can only receive three
tokens (that aren’t immediately blessed) during the lifetime
of any token, so k = 3. On the other hand, if we set the an-
tecedent a0 to be true, then an unbounded number of new
tokens can pass through the requesting edge while another
token is stuck in a loop, so our analysis conservatively de-
termines that k is unbounded. If there are multiple request-
ing edges, the same analysis can be performed for them
individually, and the edges can be partitioned into groups
where the lifetimes of the assigned tokens by group mem-
bers may overlap. The sum of required number of instances
of all group members is taken. The overall number of in-
stances required for the assertion graph is bounded by the
largest sum amongst all the requesting edge groups.



5. Experimental Results

Experiments have been conducted to test our assump-
tions about simulation-friendly assertion graphs and mon-
itors. We implemented our monitor construction method
in FL, an interpreted, functional language used by Intel’s
FORTE verification system.

5.1. Simulation Friendliness in Real Life

We have inspected 18 GSTE assertion graphs used in
real, industrial verification to study the practicality of our
simulation-friendly assertion graphs. The 18 specifications
cover various units in a microprocessor design, ranging
from memory to datapath to control intensive circuits and
from the frontend to the backend of the microarchitecture
flow. Each of the specifications describes a non-trivial func-
tionality of a circuit. A majority of them cover the en-
tire circuit from inputs to outputs. The sizes of the circuits
range from ∼500 latches and ∼12k gates all the way to
∼45k latches and ∼240k gates. All the specifications have
been verified using GSTE without any prior model abstrac-
tion/pruning.

Out of the 18 GSTE specifications, 15 are immediately
convertible into our simulation-friendly assertion graph for-
mat. The test for convertibility was automatic using a short
program. The remaining 3 specifications include the use of
symbolic constants for symbolic indexing [9], which is not
directly simulation-friendly. However, all 3 specifications
were still convertible with some manual effort. Specifically,
typical usage of symbolic indexing is for case-splitting and
for exploiting symmetry. For case-splitting, the number of
bits of symbolic index is small, so a symbolically-indexed
antecedent can be made simulation friendly by duplicat-
ing the edge and enumerating the cases. For symmetry, if
there is an array of n presumed-symmetric storage loca-
tions (e.g., bits in a word, words in a memory, etc.), the
symbolically-indexed assertion graph uses log2 n bits of
symbolic constant to index one of the n locations. To con-
vert to simulation-friendliness, either we can generate n in-
stances, one for each possible value of the symbolic index,
exactly as we handled case splitting, or we can give up on
symmetry and verify all n locations in a single instance.
For example, if we are verifying a 64-bit wide memory, we
might have an antecedent like (din[63 : 0] = D[63 : 0]) with-
out symbolic indexing, or (din[K[5 : 0]]= D) with symbolic
indexing, where D and K are symbolic constants. In the for-
mer case, the antecedent is obviously simulation-friendly.
In the latter case, we can make 64 copies of this edge for
each possible value of K, where the ith copy of the edge
will have antecedent (K[5 : 0] = i)∧ (D = din[i]), which is
simulation-friendly. In general, it may be possible to auto-
mate these conversions for common usage idioms. Overall,
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Figure 5. Monitor Size vs. Previous Construction
for FIFO Example (from [4]). The FIFO example
specifies correct operation of a FIFO. The assertion
graph size scales linearly with FIFO depth.

these results confirm our belief that simulation-friendly as-
sertion graphs are expressive enough for useful real-life ap-
plications.

5.2. Comparison with Previous Construction

The proposed monitor construction removes the need for
symbolic simulation, which arose for assertion graphs with
symbolic constants in the previous monitor construction [4].
That construction relied on the user to guess a single value
(or explore all possible values using symbolic simulation)
for each constant during initialization, which it stored and
used to monitor the whole trace. This is analogous to the
k = 1 case in our translation and provides a point of compar-
ison. We have run experiments with three different monitor
constructions: previous, light, and full using the same asser-
tion graph examples from the previous paper [4]. The light
version differs from the full and the normal version in that
it does not have an overflow signal (See Section 4.5). As
expected, the newly constructed monitors behave similarly
to the previous one; they scale linearly with both the as-
sertion graph size and the antecedent/consequent size. Fig-
ures 5 and 6 show a plot of the results. The new construction
sometimes produced smaller circuits, even with the over-
head of the instance manager module. The reason is that
there is a significant reduction in size after removing logic
for antecedents that become assignment statements.

5.3. Effect of Changing the Parameter k

It is obvious from our translation that the monitor size
should scale linearly with the value of k. For the sub-circuits
that depend on k, which include any sub-circuit that needs
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an instance id, the size always scales linearly with k. Experi-
mental results confirmed this relationship between k and the
generated monitor size. Run time also scales linearly with k.
Figure 7 shows the scaling of monitor size with k for some
of the various assertion graph examples run.

6. Conclusions

We have introduced a novel, simulation-friendly style of
GSTE assertion graph and have presented a method to con-
struct a fully non-symbolic monitor circuit for such asser-
tion graphs with symbolic constants. Combined with our

straightforward translation from simulation-friendly asser-
tion graphs into conventional assertion graphs, our work al-
lows using the same specification with both formal GSTE
model checking as well as dynamic verification. Our empir-
ical results show that simulation-friendly assertion graphs
are expressive enough for real, industrial usage, and that the
monitor circuit generation is efficient, scaling linearly with
assertion graph size and the number of instances needed.
This work is an important step towards seamlessly integrat-
ing formal and dynamic verification.
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