Graph Automorphism-based Algorithm for Determining Symmetric Inputs

Chen-Ling Chou*, Chun-Yao Wang, Geeng-Wei Lee*, and Jing-Yang Jou*
* Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
{nicy, gwlee, jyjou}@eda.ee.nctu.edu.tw
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
weyao@cs.nthu.edu.tw

Abstract

We propose a graph automorphism-based algorithm
for computing maximal sets of symmetric inputs of circuits.
It can be used to identity nonsymmetric inputs in a circuit
and enhance the efficiency of input matching, library bind-
ing, as well as logic verification problems. We conduct the
experiments on some benchmarks. The experimental results
demonstrate that our approach distinguishes more non-
symmetric inputs than that of previous work.

1. Introduction

Two inputs x;an x; of a logic function f(X) are said to
be symmetric, if exchanging x; and x; does not change f,
ie, f(Xpeeos Xigeoss XjsooiXa) = f(Xypi005 Kjssows Xisews; Xa)[12]).
The problem of finding maximal symmetric input sets is
discussed in [11-13]. The definition of this symmetry trans-
lates into the following requirements for the cofactors of

function /x5 = f%y with respect to any two inputs x; and X; .

Symmetric input sets are important in problems of de-
sign verification and diagnosis [3]-[5][7]-[10] and of tech-
nology mapping [2][6][14][17].

For these applications, our goal in this paper is to effi-
ciently compute maximal symmetric input sets of a given
function, i.e., focus on nonskew nonequivalence symmetry
only. In parallel to our work on this problem [13][15][16],
methods using BDD’s [1] are investigated in [13][15].
However, these BDD-based algorithms are not applicable
to the designs that described in behavior level or RT-level,
e.g., soft Intellectual Property, or that do not have compact
BDD representation. Thus, simulation-based approach [16]
was proposed to compute the maximal sets of symmetric
inputs. [16] establishes two steps to accomplish the input
symmetric identification. The first step uses heuristic to
identify inputs that do not belong to the same symmetric
input set. Although the signature-based heuristic used in
[2][14][17] can be used for this purpose, they were applied
to circuits having compact BDD representation. The second
step uses test generation techniques to further identify the
inputs that were not distinguished by the heuristic. The ef-
ficiency of [16]-like approach for computing the maximal

This work was supported in part by ROC National Science Council
under Grant NSC89-2215-E-009-009

sets of symmetric inputs in circuits without compact BDD
representation depends on the “ability” of heuristics. Good
heuristics can distinguish more nonsymmetric inputs prior
to entering computation intensive test generation step. Thus,
this paper focuses on the first step of [16]-like approach.
We propose a graph automorphism-based heuristic to dis-
tinguish nonsymmetric inputs as many as possible. The ex-
perimental results show that our heuristic can distinguish
much more nonsymmetric inputs than [16] for most
benchmarks circuits, where we only apply the heuristic
while [16] applies both heuristic and test generation tech-
nique.

2. Symmetric-ASymmetric Inputs (SASIs)
representation

SASIs represent the maximal symmetric inputs sets.
For an N-input circuit, we assume that all inputs are sym-
metric initially, and the corresponding SASIs representa-
tion is (1 2 3 ... N). If we claim that input i is asymmetric
to the other inputs by our methods, the input i is isolated
from original group and can be expressed as (i)(1 2 ... i-1
i+1 ... N). By the SASIs representation, if any two inputs
are not placed in the same group, then they are nonsymmet-
ric inputs. Otherwise they are “possibly” symmetric.

3. Graph automorphism-based ACSP

The proposed heuristic for finding maximal symmetric
input sets is named Automatic Computing Symmetric Pro-
cedure (ACSP). Its flow chart is shown in Fig. 1 which is
similar to the concept proposed in [16]. We observe that
the stages which profoundly influence the efficiency of
ACSP are Pattern_Generation and SASIs_Calculation.

[Pattem Simulation _

SASIs_Calculation

Figure 1. The flowchart of the ACSP.

3.1. Pattern_Generation

Definition 3.1 : For an N-input combinational circuit,
the set that consists of all patterns with m 1s and (N-m) Os
is denoted as 8" ,where me [0, 1,2, ... N -1, N].

Theorem 3.1: For an N-input circuit, the pattern set €6,
X 6,3 X...X 0 withn;+ np+ ...+ n,= N, 0 <m, <n, where
p = 1,2,....k and satisfies at least one group with different
logic assignments can be the generated pattern sets in the
SASIs (a,a,a,)bb, b,) (nr,--r,) and each of them is
capable of distinguishing more nonsymmetric inputs.

For example, given a 5-input circuit, assume the
SASIs becomes (123)(45) after 6/ , 6; simulations. In this
case, the further generated pattern sets come from 6., x 6,
where mye [0, 1, 2, 3] and m,€ [0, 1, 2]. Therefore, the
possible generated pattern sets are listed in Table 1. Note
that through Theorem 3.1, the real generated pattern sets
are As~ Ag. Table II shows the selected generated patterns
of ; and their corresponding outputs. The patterns in As
can be separated into three sets according to their outputs.
Assume handling the set {01010} first, we can know that
inputs 1 and 2 are nonsymmetric and inputs 2 and 3 are
nonsymmetric, either. For the same reason, we continue
handling other sets if it really can distinguish the inputs.
Notice that assume these generated pattern sets have p dif-
ferent groups and certainly can be separated into p sets. Af-
ter arbitrary (p-1) sets are processed, we ensure that the last
one cannot distinguish any nonsymmetric inputs. Thus,
only gray patterns in Table II are used to be the valid gen-
erated pattern sets to figure out the updated SASIs which is
discussed in SASIs_Calculation using the graph automor-
phism algorithm in Section 3.2.

3.2. SASIs_Calculation

An undirected, weighted graph G(V,E) is constructed
in this step, which corresponds to the set S1 with |S1]| pat-
terns, P, to Pg;; . P;[j] in S1 denotes the j bit in P; where i
=1~|S1l|and j=1~N. The vertex Vk in G corresponds to
the & input variable in S1. For all patterns P, to P in S1,
when P; [k] = P; [k’] = 1, an edge VkVk’ is added into G
and W(VkVk’)=1. The problem of distinguishing the non-

symmetric inputs in SASIs by S1 patterns is now trans-
formed to finding all automorphisms of G.

Definition 3.2 : DV of a graph is a vector that contains
of each vertex’s degree, that is, DV[i] = degree of i" vertex.

Definition 3.3 : The partial vector of vertex V; is the
i™ row of Adj(G). Besides, if vertex i is not in a single ele-
ment group (SEG) in the SASI representation, it is called
automorphism message of i, denoted as AM_i.

Now, there are four steps in finding automorphism of
G, Aut(G), where G is an undirected graph with N vertices.

Step 1(Disjoint Graph - DG): If the graph is composed
by t disconnected subgraphs with different number of ver-
tices, the SASI representation is divided into t groups.

Step 2(Degree Vector - DV): Calculate the DV of the
graph G. Then group the vertices with the same degrees
into one group.

The updated SASIs can be obtained from the intersec-
tion of automorphisms derived from Step 1 and Step 2 now.

Step 3(Repeated Automorphism - RA): Grouping the
partial vector of each SEG vertex and intersect this group-
ing result with the updated automorphism representation. If
the updated automorphism representation has newly gener-
ated SEG, then repeat Step 3, otherwise go to Step 4.

Step 4(Automorphism Message - AM): Keeping AM i
if vertex 1 has different neighbors in its group.

We demonstrate the SASIs_Calculation stage using
the following example in Fig. 2. The four steps of
SASI_Calculation are shown in Fig. 2(d). Notes that the
partial vector of the first group and the 4™ group is useless
because the neighbors of each group are the same. Thus,
the updated SASI remains unchanged. This iteration of
SASI_Calculation is now finished.

4. Experimental results

The GA-based algorithm is implemented in Program-
ming Language Interface (PLI) environment. Experiments
are conducted over a set of ISCAS-85 and some MCNC
benchmarks. The benchmarks are described in Verilog
HDL format. The first four columns show the parameters
of each benchmark. The remaining columns show the sets
of inputs that cannot be distinguished. In fact, these input
sets are possibly symmetric inputs sets. They are expressed
by pairs (size, number of sets), where size is the size of an
input set and the following is the number of sets of that size.

0010001)
i g _— 00001 10 Initial SASIs(1234567)
(1234567) 1001002
PIITFI 010001 Ad(G) = | 6010001 Swp 1> DG:(1234567) (1234567)
P70 1001 10 a0 Step2 CV:(124(356XT) (124)3 5 6K7)
P70 1 1001
P{ITRO 0001 11 0100201 Step3 Targeton 7

[umna PV:(1456X27)3) (1 4X2)3 X5 6XT)

TABLE | TABLE Il
All possible pattern sets. ¢ pattern sets.
Further _ . Geusratad _
Pattern Set SASIs = (123)(45) |Explanation Png:tcm SASIs=(123)(45)| Outputs
et
Ay (m=0m,=0) [e 0 o
A (m=0m=) _|c & 10010 al
A (m=0m>=2) _|e 0, g;%g “ﬁf
Ay (m;=1,m,=0) e 6 AS 0110 a
— L 10001 a3
As (mymlLmy=l) ‘e & 01001 a3
As (my=1,m;=2) € 0, 00101 a3
A, (my=2,m;=0) e 6;
Ay (my=2,m,=1) e 0
Ay (m=2m=2) [e 0 11000 b1
A (m}=3,m,=0) e & A7 10100 b2
An (m,=3,m;=1) e 0, 01100 b2
A (m;=3,m,=2) € 0;

()

Figure 2. SASIs_Calculation with GA technique.

Targeton 2

PV:(12347x56)

Targeton 3

PV: (14X2356K7)
Step4> AM: keep nothing

(18)2)X3XS 6XT)

(14X2)3)5 6XT)
(1 4)2)3)5 6XT)

@

The iteration bound is set to 100. The CPU time is meas-
ured in second on a SUN Sparc II workstation. The algo-
rithm will be terminated automatically if iterations are over
the bound or all inputs are nonsymmetric, and SASIs are
returned. According to Table III, we can find that in previ-
ous approach, 499, ¢1355, and c1908 still have potentially
symmetric input sets, but our approach can distinguish each
input as a nonsymmetric input. Table IV also shows the re-
sults on some MCNC benchmarks. Most nonsymmetric in-
puts are distinguished efficiently as usual for most bench-
marks. These results demonstrate that our approach acts as
a good filter to identify nonsymmetric inputs as many as
possible in a circuit such that significant efforts can be
saved for other succeeding applications.

5. Conclusions

We propose a pattern generation algorithm to generate
pattern sets and a GA-based technique to improve the
SASIs_Calculation stage in ACSP. The combination of
these two algorithms efficiently distinguishes more non-
symmetric inputs and therefore accelerates the computation
of maximal sets of symmetric inputs.

Table lll
Comparisons on experimental results.

Parameters Previous approach in [16] GA approach

Cireuit [\on 1 ipoy | Lits. | (size, number of sets) TE;')‘” (size, number of sets) T(';')'e
cl7 5 2 12](1,5) 0.04 1,5 0.23
880 60 | 26 | 703 [(1.54)2,3) 2.86 [(1.54)(2,3) 1.74
cl355 41 32 1032 [(1,32)(9,1) 3.16 |(1,41) 0.91
c1908 33 | 25 | 1497 [(1,22)(5,1)(6,1) 1.81 [(1,33) 0.93
432 36 | 7 | 382 |(1.36 024 |(1.36) 041
499 a1 | 32 | 616 |(1,32)0,1) 1.07 |(1.41) 0.72
3540 | 50 | 22 | 2934 |(1,50) 19.52 {(1,50) 10.70
¢5315 178 | 123 | 4369 |(1,178) 33.95 |(1,178) 33.42
c2670 233 | 140 | 2043 [(1,221)(2,2)(8,1) 59.95 |(1,223)(2,2)(6,1) 42.55
c7552 207 | 108 | 6098 |[(1,166)(2,6)(3,1) 5514 |(1,183)2,8)(3,1) 191.33

(5.2)(4,4) 5.1
6288 | 32 | 32 | 4800 |(1,32) 6.53 [(2,16) 2.84
Table IV
Results of some MCNC benchmarks.
Circuit |P1_| [PO| Lits. (size, number of sets) Time(s)

9symml 9 1 277 |(9.1) 0.95

bl 3 4 17 (L2, 0.24

b9 41 21 236 |(1,31)2.5) 3.88

cml38a 6 8 35 (L4)2,1) 0.29

cml62a 14 5 58 (1,12)2,1) 0.37

cml63a 16| s 53 |azn@.n 0.36

cm82a 5 3 26 |(1,3)2,1) 0.39

cmb 16 | 4 62 [(42)38,1) 0.98

count 35 6 174 |(1,33)(2,1) 0.58

frgl 28 3 130 |(1,26)(2,1) 0.41

lal 26 19 223 |(1,16)(2,5) 1.87

pml 16 13 85 (1,93,1)(4,1) 0.31

term| 34 10 625 [(1,32)(2,1) 0.48

x1 51 35 2141 [(1,49)(2,1) 20.97

x2 10 7 71 (1,8)2,1) 0.49

x3 135 | 99 1816 [(1,133)2,1) 9.37

x4 94 71 1040 ((1,92)(2,1) 5.14

z4m] 7| 4 77 |(1,2X2.2)3,1) 0.77

alud 14 8 1278 |[(1,14) 0.51

apex6 135 | 99 | 904 |(1,135) 12.88

des 256 | 245 7412 [(1,256) 5.47

i5 133 66 556 [(1,133) 10.65

i6 138 67 1037 |(1,138) 10.12

i7 199 | 67 1311 [(1,199) 12,77

i8 133 81 4626 [(1,133) 13.65

i9 88 63 1453 ((1,88) 112

pair 173 | 137 2667 |(1,173) 21.38

rot 135 | 107 1424 |(1,115)(2,5)(3.2)(4,1) 17.4

6. References

[1] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” /EEE Transactions on Computer, Aug. 1986, pp.
677-691.

[2] D. I. Cheng and M. Marek-Sadowska, “Verifying equivalence
of functions with unknown input correspondence,” in Proceedings
of European Design Automation Conference (EDAC), 1993,
pp-81-85.

[3] P. Y. Chung and I. N. Hajj, “ACCORD: Automatic catching
and correction of logic design errors in combinational circuits,” in
Proceedings of International Test Conference, 1992, pp. 742-751.
[4] S. Devadas, H. K. T. Ma, and A. R. Newton, “On the verifica-
tion of sequential machinesat differing levels of abstraction,”
IEEE Transactions on Computer-Aided Design, June 1988, pp.
713-722.

[5] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, “Probabil-
istic design verification,” in Proceedings of International Confer-
ence Computer-Aided Design, Nov. 1991, pp. 468-471.

[6] K. Keutzer, “DAGON: Technology binding and local optimi-
zation by DAG matching,” in Proceedings of Design Automation
Conference, 1987, pp. 341-347.

[7] S. Y. Kuo, “Locating logic design errors via test generation
and don’t-care propagation,” in Proceedings of European Design
Automation Conference (EDAC), Sep. 1992, pp. 466-471.

[8] H. T. Liaw, J. H. Tsaih, and C. S. Line, “Efficient automatic
diagnosis of digital circuits,” in Proceedings of International
Conference Computer-Aided Design, Nov. 1990, pp. 464-467.
[9]J. C. Madre, O. Coudert, and J. P. Billon, “Automating the di-
agnosis and the rectification of design errors with PRIAM,” in
Proceedings of International Conference Computer-Aided Design,
Nov. 1989, pp. 30-33.

[10] F. Maruyama and M. Fujita, “Hardware verification,” I[EEE
Computer, Feb. 1985, pp. 22-32.

[11] E. J. McCluskey, “Detection of group invariance or total
symmetry of a Boolean function,” Bell System Tech, J., Nov.
1956, pp. 1445-1453.

[12] E. J. McCluskey, Logic Design Principles with Emphasis on
Testable Semicustom Circuits, Prentice-Hall, 1986.

[13] Alan Mishchenko, “Fast computation of symmetries in Boo-
lean functions” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 22, No. 11, Nov. 2003, pp.
1588-1593.

[14] J. Mohnke and S. Malik, “Permutation and phase independ-
ent Boolean comparison,” in Proceedings of European Design
Automation Conference (EDAC), 1993, pp. 86-92.

[15] D. Moller, J. Mohnke, and M. Weber, “Detection of symme-
try of Boolean functions represented by ROBDDs,” in Proceed-
ings of International Conference Computer-Aided Design, Nov.
1993, pp. 608-684.

[16] 1. Pomeranz and S.M. Reddy, “On determining symmetries in
inputs of logic circuits,” /EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 13, No. 11, Nov.
1994, pp. 1428-1434.

[17] U. Schlichtmann, F. Brglez., and M. Hermann, “Characteri-
zation of Boolean functions for rapid matching in EPGA technol-
ogy mapping,” in Proceedings of Design Automation Conference,
June 1992, pp. 347-379.

