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Abstract 

 
   Networks-on-Chip (NoC), a new SoC paradigm, has 
been proposed as a solution to mitigate complex on-chip 
interconnect problems. NoC architecture consists of a 
collection of IP cores or processing elements (PEs) 
interconnected by on-chip switching fabrics or routers. 
Hardware virtualization, which maps logic processing 
units onto PEs, affects the power consumption of each PE 
and the communications among PEs. The communication 
among PEs affects the overall performance and router 
power consumption, and it depends on the placement of 
PEs. Therefore, the temperature distribution profile of the 
chip depends on the IP core virtualization and placement. 
In this paper, we present an IP virtualization and 
placement algorithm for generic regular Network on Chip 
(NoC) architecture.  The algorithm attempts to achieve a 
thermal balanced design while minimizing the 
communication cost via placement. Our framework can 
also realize hardware virtualization which can further 
accomplish better performance. A case study on Low 
Density Parity Checks (LDPC) decoder is presented to 
evaluate our algorithm.  
 
1. Introduction  
 

Network-on-chip architecture has been proposed as a 
potential solution for the interconnect demands that arise 
with the nanometer era [2]. In the network-on-chip 
architecture, a general purpose on-chip interconnection 
network replaces the traditional design-specific global 
on-chip wiring, by the use of switching fabric or routers to 
connect IP cores or processing elements (PEs). The PEs 
communicate with each other by sending messages in 
packets, through the routers. This is usually called 
packet-based interconnect. An example implementation is 
shown in Figure 1. The diagram on the left illustrates a 
tiled single PE per node architecture arranged in a 2-D 
mesh network, where as the diagram on the right illustrates 
the underlying interconnect, where each router 

communicates to the PE via a local port, and to its 
neighboring routers via four global ports.  

A particular property of Network-on-chip architecture is 
the concept of hardware virtualization, which maps one or 
more logical processing units onto a single PE, thus 
allowing the PE to virtually perform the computation of 
one or more (depending on the degree of virtualization) 
logical processing units. This method requires the presence 
of additional logic and memory as part of the PE hardware 
in order to identify the particular computation that is 
performed at any given time, and to read/write the required 
data per computation. It is possible that computations on 
virtualized PEs happen out of order; as a result 
synchronization mechanisms are implemented within the 
PEs in order to allow for out of order computation, as well 
as to synchronize the completed computations with the rest 
of the PEs. This attributes to a larger overall PE which 
consequently consumes more power; however it also 
increases the amount of logical units that can be mapped 
on the chip, which depending on the computation type, can 
result in computation performance gain [1]. 

 
Figure 1. Left – an NoC Layout showing the physical 
placement of the PEs and routers. Right – an individual NoC 
router shown in detail with, the connections to the rest of the 
routers. 
 
  After the hardware virtualization (i.e., mapping of the 
computation onto a single PE), the energy consumption 
and the computation time for each PE is fixed. However, 
the communication delay between PEs depends on the PE 
locations. For example, message from PE1 has to go 
through at least seven routers to reach PE16 in Figure 1 



(which means it needs six hops). On the other hand, the 
communication energy consumption depends on the 
location of the PE as well as the message volume sent 
through routers and the distance between PEs. 
Consequently, the performance and the overall energy 
consumption are determined by the IP placement.       
If two PEs exchange a lot of packets, it is better to place 
them closer to reduce both the communication energy and 
latency.  
  As the technology scales, the temperature in modern 
high-performance VLSI circuit increases dramatically due 
to smaller feature size, higher packing density and rising 
power consumption. The hotspot in a modern chip might 
have a temperature of more than 100oC, while the 
intra-chip temperature differentials can be larger than 
10~20oC.  Temperature can have dramatic impacts on 
circuit behavior. For example, interconnect (Elmore) delay 
increases approximately 5% for every 10oC increase, and 
the leakage current increases exponentially with the 
temperature increase. Therefore, it is very important to 
reduce or eliminate hotspots and have a thermally balanced 
design. For NoC architecture, the thermal distribution 
profile of a design is largely determined by the PE 
locations, consequently, the IP placement algorithm is the 
key to achieve the thermal balance design goals. 
   In this paper, we present a thermal-aware IP 
virtualization and placement algorithm based on genetic 
algorithm. We demonstrate that a careful IP virtualization 
and placement can reduce the hotspots temperature and 
provide a thermally balanced design. 
   This paper is organized as follows: section 2 presents 
related work; section 3 discusses how to estimate 
temperature; section 4 gives a brief background on genetic 
algorithms; section 5 presents our mapping framework 
based on genetic algorithm; section 6  presents the case 
study on LDPC with the experimental result and finally we 
conclude the paper in section 7. 
  
2. Related work 
 
   One of the major challenges for a successful adoption 
of the network-on-chip paradigm is in reducing the energy 
consumed during the interactions between the IPs (PEs) [2]. 
Hu and Marculescu [8, 9] proposed an energy-aware 
mapping algorithm which minimizes the total 
communication cost for a 2-D mesh NoC architecture 
under real-time performance constraints. Murali et al. [14] 
proposed an algorithm that maps IP cores onto a mesh NoC 
architecture under bandwidth constraints, minimizing the 
average communication delay. The potential bandwidth 
requirements were reduced by the partitioning of inter-core 
traffic across multiple paths. Al-Rawi et al. [1] also 
explored an optimal mapping on a set of LDPC nodes to 
physical computation units, with the purpose of 
minimizing the communication between the nodes. 

  Thermal placement for standard cell ASIC design has 
been investigated for several years. For example, Chu and 
Wong used matrix synthesis problem (MSP) to model the 
thermal placement problem and three algorithms were 
proposed to solve it [4]. Tsai and Kang also proposed a 
method [18] to calculate temperature based on power 
estimation for standard cell placement. Thermal placement 
can also be refined by partitioning; for example, Chen et al. 
proposed a partition-driven thermal placement model [3] 
for standard cells, making use of multigrid-like approach to 
simplify the thermal problem at each level of finer 
granularity, facilitating the inclusion of temperature 
constraints on the placement. For standard cell thermal 
placement, since the physical interconnect parasitic 
information is not available yet, the power consumption of 
interconnect is usually ignored. While in NoC architecture, 
the communication cost (latency and power consumption) 
can be affected by the IP placement.   
  The contribution of our work is that we map the IP 
virtualization and placement problem in NoC into genetic 
algorithm. By modifying the fitness function, we can 
achieve different design goals. We compare different 
optimization strategies (power-balanced placement, 
thermal-balanced placement as well as communication cost 
minimization placement), and the experimental result 
indicates that with the thermal-balanced placement, we can 
achieve the best thermal distribution profile for the NoC 
architecture. 
  
3. Temperature estimation 
 
  The temperature of each IP block depends on the power 
consumption and the position of the IP blocks. Skadron et 
al. [17] proposed a thermal modeling tool called HotSpot, 
which is easy to use and computationally efficient for 
modeling thermal effects at the IP block level. HotSpot 
provides a simple compact model, where the heat 
dissipation within each functional block and the heat flow 
among blocks are accounted for. The basic idea is that, if 
we define the transfer thermal resistance Rij of IP block PEi 
with respect to PEj as the temperature rise at PEi due to one 
unit of power dissipated at PEj:  
 

Rij = ∆ Tij/∆Pj  
 

such that we can get a transfer thermal resistance matrix as 
below:     

Rt
11  R

t
12  ………………..  R

t
1m 

 

Rt
21  R

t
22  ………………..  R

t
2m 

 

Rt
m1  R

t
m2  ………………..  R

t
mm 

 

Rt = 

 



For any power distribution on the NoC architecture, we 
can calculate each block’s temperature by applying the 
following equation:  
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where Pi is the power consumed by IP block PEi and Ti is 
the temperature of the IP block PEi. The transfer thermal 
resistance matrix can be obtained from Hotspot, given the 
IP block placement. 
   
4. Genetic algorithm  

 
  Genetic algorithms (GA) [7] are a class of search and 
optimization methods that mimic the evolutionary 
principles in natural selection. Figure 2 shows a genetic 
algorithm optimization flow. 
  The solution is usually encoded into a binary string 
called chromosome. Instead of working with a single 
solution, the search begins with a random set of 
chromosomes called initial population. Each chromosome 
is assigned a fitness score that is directly related to the 
objective function of the optimization problem. 
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     Figure 2. Genetic algorithm flow. 

 
   The population of chromosomes is modified to a new 
generation by applying three operators similar to natural 
selection operators – reproduction, crossover and mutation. 
Reproduction selects good chromosomes based on the 
fitness function and duplicates them. Crossover picks two 
chromosomes randomly and some portions of the 
chromosomes are exchanged with a probability Pc. Finally, 

mutation operator changes a 1 to a 0 and vice versa with a 
small mutation probability Pm. A genetic algorithm 
successively applies these three operators in each 
generation until a termination criterion is met. It can very 
effectively search a large solution space while ignoring 
regions of the space that are not useful. This methodology 
leads to very time-efficient searches. In general, a genetic 
algorithm has the following steps: 
 

1. Generation of initial population. 
2. Fitness function evaluation. 
3. Selection of chromosome. 
4. Reproduction, Crossover, Mutation operations. 

 
5. IP virtualization and placement 

framework 
  
  The proposed NoC mapping optimization flow uses a 
genetic algorithm as shown in Figure 2. The IP 
virtualization and placement information is encoded into 
integer strings called chromosomes.  The optimization 
flow begins with a randomly generated initial population, 
which consists of many randomly generated IP placements. 
The optimization flow is an iterative procedure. The 
chromosomes with better fitness will survive at each 
generation and are operated on with three different 
operations (reproduction, crossover and mutation) to form 
a new set of chromosomes – or new IP virtualization and 
placement. The iteration continues until the termination 
criterion is met. 

 
5.1 Chromosome encoding 
    
   One example of the chromosome encoding is shown in 
Figure 3. It contains 16 unique integers, which represents 
the 16 IP cores (physical PEs). The position of each integer 
indicates its placement location. For example, chromosome 
A in Figure 3 represents the placement as shown in Figure 
1, while chromosome B represents the placement where 
the PE 1 and PE 6 in Figure 1 are swapped. With 
virtualization, logical processing units 22, 73, 19 and 31 
are clustered into physical PE 4 while logical processing 
unit 44, 37, 56 and 85 are grouped together in physical PE 
11 in chromosome A. With this representation, the 
optimizations of mapping and virtualization can be done 
simultaneously. 

1  2  3   4  5  6  7  8   9  10  11  12   13   14   15   16 

6  2  3   4  5  1  7  8   9  10  11  12   13   14   15   16 

chromosome A  

chromosome B 

22 73 19 31 44 37 56 85 

   
Figure 3. Chromosome encoding for IP placement.   



5.2 Fitness function 
   
  The fitness function, which decides the survival chance 
for a specific chromosome, is related to the mapping goals. 
Depending on the optimization goal, the fitness function of 
the genetic algorithm is different.     
 
5.2.1 Thermal balanced design  
The goal of thermal placement is to distribute temperature 
across a chip evenly and minimize the hotspot temperature. 
We use an approach similar to that proposed by Chu, et al. 
[4]. Their work tried to solve the problem of thermal 
placement for gate arrays. Here, we model our NoC 
architecture as an m x n matrix with the given temperatures 
such that the maximum sum among all t x t submatrices is 
minimized. The number assigned to each cell in the matrix 
is a nonnegative temperature value. The parameter t is used 
to account for the heat transfer ability. Increasing t means 
that the heat transfer is good, so the number of affected 
cells near the heat source cell will be larger. For any matrix 
M, let St(M) be the set of all t x t submatrices, the fitness of 
a solution can be defined as follow: 
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5.2.2 Power balanced design 
This optimization strategy is to achieve a balanced power 
distribution on the chip. Basically, we use the same 
approach to calculate the fitness of a chromosome here as 
in thermal balanced design. The only difference is the 
numbers in the matrix. For power-balanced design, we 
provide the power consumption of each IP and its 
corresponding router. The power consumption for the IP is 
fixed when the hardware virtualization is done. However, 
the router power consumption depends on the 
communication links. The temperature in one IP location 
will not be equal to that of another IP location, since the 
heat can flow to the adjacent IPs. But power consumption 
of each IP will remain the same even when placed in 
different physical locations. Thus, we can observe the 
different temperature results from Power and Thermal 
balanced designs. 

  
5.2.3 Communication cost minimization design  
The communication cost is given by: 
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where the di is any communication between two IPs 
(where the source(di) is the source IP core and the dest(di) 
is the destination IP core), vol(di) is the message volume 
that has to flow between these two IP cores. The dist is the 
number of hops that the messages have to go through. To 

minimize the communication cost, the fitness function of 
our algorithm is given by: 

Commcst
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5.3 Crossover operator and mutation operator 
 
   Due to the nature of Genetic Algorithms, the number in 
a chromosome will be generated randomly. For our 
placement problem, we map each physical IP as a 
nonnegative unique number as the encoding method. When 
doing crossover operation, the offspring’s chromosome is 
generated from mating of parents’ chromosomes. At this 
stage, there are possibilities that some numbers are 
redundant. It’s important to guarantee that each number 
should only exist once in a chromosome to make the 
evolution proceeds. As for mutation operation, we have 
two different operators to explore more solution spaces. 
One is the mutation by swapping and another is mutation 
by shifting. Either operator can be used with a random 
probability.   
  
5.4 Control parameters  
  
   While generating the initial population, we have to set 
an appropriate population size, and the crossover 
probability Pc, as well as the mutation probability Pm. If 
the population size is too small, the genetic diversity 
within the population may not increase for many 
generations. On the other hand, a large population size 
increases the computation time for each generation but it 
may take fewer generations to find the best solution.   
Schaffer et al. [16] have conducted extensive simulation on 
a wide range of functions and concluded that a small 
population of size 20 to 30, a crossover probability in the 
range of 0.75 to 0.95, and a mutation probability in the 
range of 0.005 to 0.01 perform very well. In our 
implementation, we set the population size to be 30~35,   
crossover probability Pc to be 0.9 and the mutation 
probability Pm to be 0.01.  
   The termination of the iterative evolution can be user- 
defined. We set a maximum generation to be 5000 and 
specify that if the fitness improvement is less than 0.001% 
during the last 100 generations, the evolution stops without 
going through all generations. 
 
6. Case study on LDPC and experimental 

results 
 
   In this section, we present a case study of 
implementing Low Density Parity Check (LDPC) decoder 
on networks-on-chip architecture, and evaluate our 
algorithm by using this real application.   
 



6.1 A brief introduction on LDPC  
 
Low Density Parity Check (LDPC) codes are a form of 

iterative error correction codes similar to Turbo codes, that 
can achieve near Shannon-limit communication channel 
capacity [6,12]. They offer excellent decoding performance 
and good block error performance. The most notable 
advantage of LDPC codes is their suitability for parallel 
hardware implementation. An LDPC code is a linear 
message encoding technique, defined by a set of two very 
sparse parity check matrices, G and H. The message to be 
sent is encoded using the G matrix. When it reaches its 
destination, it is decoded using the H-matrix. The LDPC 
decoding algorithm consists of a series of intensive 
computations derived from a message-passing iterative 
bipartite graph, as shown in Figure 4. The bipartite graph 
consists of two types of nodes, the bit node, and the check 
node [6]. Connections between the two nodes in the 
bipartite graph depend on the row and column weight of 
the H-Matrix, where the weight is the number of 1-entries 
in the row/column. Columns represent the number of bit 
nodes and rows represent the number of check nodes. A 1 
in the ijth entry of the H-Matrix represents an edge between 
the ith check and the jth bit nodes as shown in Figure 4.  

Message passing iterations are performed by the two 
computation units - the bit node and the check node [12]. 
Each type of node interacts with a number of other nodes, 
all of the opposite type, to decode a word. The number of 
nodes involved in the computation depends on the desired 
block size.  

The H-matrix is usually sparse, and needs to be large, in 
order to decode large blocks of data; that consequently 
implies a relatively large amount of edges in the bipartite 
graph [12]. Hence, the two major challenges identified 
when designing LDPC decoders are the interconnect 
structure between the nodes, and the amount of memory 
required for computation as well as configuration purposes 
per node [19]. 
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Figure 4: Derivation of the Bipartite Graph from the 
H-Matrix. 
 
  For the reasons explained, we therefore use the LDPC 
decoder as an example to evaluate our mapping algorithms 
for NoC architecture. The underlying interconnections 
between the LDPC nodes are implemented as a NoC 
architecture as described in Section 1. We explore the 

mapping of the check and bit nodes on the NoC 
architecture, in such a way to obtain an even temperature 
distribution and reduce the overall communication on-chip. 
It has been shown [11] that while architectural 
modifications in the PE can reduce the overall power 
consumption; most of the chip power is consumed in the 
communication links and the routers which are constantly 
active. In addition, the LDPC nodes consume different 
amounts of power because of the variations in the number 
of connections per node [12], hence the thermal 
distribution problem. As a result, an emphasis is also 
placed on reducing both the number of hops (defined as a 
message transmission between two on-chip routers) as well 
as the number of messages transmitted overall. The 
mapping and placement problems are magnified by the 
hardware constraints in terms of area however. Initially we 
have the H-matrix, which provides the total number of 
nodes, as well as the connections between them and their 
degrees (# of inputs). Based on the area constraints, we 
then have a limited number of processing units that we can 
place on the chip. The problem therefore becomes mapping 
the pool of computation nodes given by the H-Matrix, into 
the limited area we have on the chip. The overall 
computation can be enhanced by hardware virtualization; 
this is again a technique that thrives from the NoC 
architecture, as described in Section 1. Using hardware 
virtualization, we can have a physical PE function as two 
or more logical PEs (depending on the virtualization 
factor). The tradeoff comes in the PE area and power 
consumption, which increase by a small factor to 
incorporate the extra memory and logic required for node 
identification. 

An optimal mapping of the LDPC nodes into the 
physical PEs of the NoC architecture provides potential 
reduction both in the communication (# of hops) between 
the PEs as well as the number of messages transmitted. 
The proposed NoC architecture provides a fast and reliable 
underlying structure, allowing the bit and check nodes to 
effectively communicate with each other.   

 
6.2 Design methodology 
 
   In order to obtain the power models for each PE, we used 
the following tool flow. Firstly, the LDPC Software [12] 
was used in order to generate both the H-Matrix and the 
encoded messages. We used three types of LDPC codes – a 
(7, 4) Hamming code, a (2000, 1000) LDPC code with three 
checks per bit and six bits per check, and a (10000, 5000) 
LDPC code with three checks per bit and six bits per check. 
For the (7, 4) Hamming code, we transmitted the message 
using a Binary Symmetric Channel (with error probability 
5%) and for all three codes, we transmitted the messages 
using Additive White Gaussian Noise channels, with noise 
standard deviation of 5%. Once the bipartite graph was 
obtain, we then used NOCSim [12] to set up either a 4x4 or 



5x5 2-D mesh network, with different physical bit nodes 
and check nodes and an I/O communication-oriented node. 
 
   NOCSim sets up a predefined network of PE’s and 
routers, and in addition provides mechanisms to handle 
virtualized nodes. NOCSim takes as input the Network 
topology defined by the H-Matrix and the encoded message 
to be decoded. It then simulates the Network, generating 
real network traffic by packetizing data and headers and 
simulating cycle-accurate data transmission between 
routers and PE’s. NOCSim generates the entire network 
traffic between physical nodes, taking into consideration 
potential mapping of more than one virtual node on a 
physical PE (virtualization). NOCSim outputs include the 
number of messages from PE to PE and the routing path 
they follow, in the form of the real binary data that travels 
across the network. In parallel with NOCSim simulations, 
we created and synthesized in commercial 160nm 
technology using Synopsys Design Compiler, Verilog 
models of each PE as well as the entire underlying NoC 
architecture.These NOCSim outputs were then used as our 
test vectors for the synthesized models of the physical PE’s, 
and Synopsys Power Compiler was used to give the power 
models of the individual PE’s. The operating clock 
frequency was at 500MHz, with Vdd of 1.8V. Figure 5 
shows the overall modeling methodology. 
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Figure 5.  The overall design methodology for NoC LDPC 
Power Estimation. 
 
  In the genetic algorithm, we use an intelligent crossover 
mechanism which guarantees that bit nodes are always 
swapped with bit nodes only and similarly for check nodes. 
Also in the case of virtualization logical PE node is 
decoupled from its physical PE mapping in the previous 
generation during crossover and mutation i.e. the physical 
to logical mapping is not static. 
 

6.3 Experimental results 
 
  First we implement a 10x10 NoC architecture with 100 
PEs on the chip to choose the window parameter value t. 
Each PE has a size of 1 mm x 0.8 mm in a commercial 
160nm standard cell library. Based on the physical layout, 
we use Hotspot to obtain the transfer thermal resistance 
matrix and estimate the temperature for each IP block, as 
described in section 3.    
  Figures 6 and Figure 7 show the peak and average 
temperature respectively by using two different windows 
(1x1 window and 2x2 window, as defined in section 5.2). 
From the figures we can see that 1x1 window performs 
better in both, reducing peak and average temperatures. 
For the following experiments, we use t =1 to obtain better 
results. The IP virtualization and mapping algorithm is 
implemented in C and the experiment is done on an Intel 
Pentium 4 processor machine (2.8 GHz 512M RAM) 
running Linux, the runtime is about 15~18 minutes for 
3000 generations in 10x10 NoC example. 
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Figure 6. Peak temperature comparison of 1x1 and 2x2 
window schemes. 
 

Average Temperature Comparison (10x10)
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Figure 7. Average temperature comparison of 1x1 and 2x2 
window schemes. 
 
6.3.1 Thermal-aware IP placement  
 
 The first experiment we conduct is to do the hardware 
virtualization manually using a custom algorithm that 
sequentially places virtual nodes to same physical PE and 
use the proposed algorithm to do thermal-aware IP 
placement. Table 1 shows the set up data for the LDPC 
nodes used in our experiment. The degree of a node is the 
number of outgoing connection edges to complementary 
nodes. Each node in the setup has two different degree 
values. The virtualization is done through manual 



assignments before the mapping process.  
   Figures 8, 9 and 10 show the comparisons for 5 
different sets of LDPC codes implemented on a 4x4 NoC.      

Table 1.  LDPC Nodes Configuration Profile 
Data Set Bit Node Degrees Check Node Degrees Volume 

set 1 3,4 6,8 16087000 

set 2 3,4 8,10 13315840 

set 3 3,4 8,12 14128000 

set 4 5,6 6,12 20591360 

set 5 3,9 6,9 16473088 

 
  Figure 8 shows the average temperature for the NoC 
chip. We can see that the temperature optimization 
approach performs better than the others. The running 
times for these experiments are 12~15 seconds for 1000 
generations. Beyond 1000 generation, there is little 
improvement.     
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Figure 8. Average temperature for a 4x4 LDPC decoder with 
5 sets of hardware virtualization under different optimization 
strategies. 
 
  Figure 9 shows the peak temperature, or hotspot 
temperature. It shows that among all three optimization 
strategies, the temperature optimization strategy results in 
the lowest peak temperature, with the average difference of 
4oC for all the sets of optimization approaches.     
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Figure 9. Peak temperature comparison for a 4x4 LDPC 
decoder with 5 sets of hardware virtualization under different 
optimization strategies. 
  
  Figure 10 shows the communication cost for different 
optimization strategies. It is obvious that the 
communication cost minimization strategy is the best 
choice in a communication critical environment.  
  The conclusion we draw from our experimental result 

for thermal-aware mapping with manual hardware 
virtualization is that, to reduce the temperature of the 
hotspot, we should use the thermal balanced optimization 
strategy.    
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Figure 10. Communication cost comparison for a 4x4 LDPC 
decoder under different optimization strategies. 
         
6.3.2 Thermal-aware IP virtualization and 

placement 
 
  Using five different LDPC codes which had different 
bit/check node connectivities, we performed a comparison 
of simulataneously performing virtualization and mapping   
(denoted Virtualized) is shown in Figure 11. As shown in 
the figure the Temp. approach still outperforms the other 
two approaches in both average and peak temperature. This 
confirms the results shown in Figures 8 and 9.  
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Figure 11. The experimental result for virtualized mapping of 
960 virtual nodes of a LDPC decoder. 
 
  Figure 12 shows the comparisons of our custom 
virtualization followed by our genetic algorithm based 
placement approach (denoted non-virtualized) and 
virtualized approach for temperature optimization. The 
number beside the name of a data set is the size of the IP 
array required for this mapping configuration. The 
effectiveness of performing simultaneous virtualization 
and placement is established here as it reduces both the 
peak and average temperature by 2~3oC as compared to the 
non-virtualized approach. The reason of virtualized 
mapping being better than non-virtualized mapping is that 
we consider the connection of virtual nodes at a finer 
granularity that can place closely related nodes onto the 
same physical PE to further reduce the number of 
communication links; as a consequence, achieve further 
temperature reduction. 
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Figure 12. The comparisons of non-virtualized and 
virtualized mapping under temp-based approach. 
 
   The communication-based comparison of virtualized 
mapping and non-virtualized mapping is shown in Figure 
13. We can see that the virtualized approach has about 10% 
of the average communication cost reduction.   
   The runtime for the experiments of doing virtualization 
and placement concurrently is about 9~13 minutes for 
5000 generations. 
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Figure 13. The comparison of communication cost for 
virtualized mapping and non- virtualized mapping. 
 
7. Conclusion and future work 
 
   In this paper, we present a thermal-aware IP placement 
algorithm based on a Genetic Algorithm. Our experimental 
results show that our optimization strategy can reduce the 
hotspot temperature and achieve a thermally balanced 
design. By changing the fitness function, the IP placement 
algorithm can also be applied to minimize the 
communication cost of the NoC, such that the 
communication latency and energy is reduced. 
Incorporating virtualization into the scheme, our results 
showed that a simultaneous virtualization and placement 
optimization is better than sequential virtualization and 
placement. Currently, our IP placement framework works 
for tile-based network-on-chip architecture; we will extend 
our work in the future for irregular Networks-on-chip 
architecture. 
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