
Thermal-Aware IP Virtualization and Placement for Networks-on-Chip Architecture

W. Hung, C. Addo-Quaye, T. Theocharides, Y. Xie, N. Vijaykrishnan, and M. J. Irwin
Embedded & Mobile computing Design Center

The Pennsylvania State University
University Park, PA 16802, USA

{whung,addoquay,yuanxie,vijay,theochar,mji@cse.psu.edu}

Abstract

 Networks-on-Chip (NoC), a new SoC paradigm, has
been proposed as a solution to mitigate complex on-chip
interconnect problems. NoC architecture consists of a
collection of IP cores or processing elements (PEs)
interconnected by on-chip switching fabrics or routers.
Hardware virtualization, which maps logic processing
units onto PEs, affects the power consumption of each PE
and the communications among PEs. The communication
among PEs affects the overall performance and router
power consumption, and it depends on the placement of
PEs. Therefore, the temperature distribution profile of the
chip depends on the IP core virtualization and placement.
In this paper, we present an IP virtualization and
placement algorithm for generic regular Network on Chip
(NoC) architecture. The algorithm attempts to achieve a
thermal balanced design while minimizing the
communication cost via placement. Our framework can
also realize hardware virtualization which can further
accomplish better performance. A case study on Low
Density Parity Checks (LDPC) decoder is presented to
evaluate our algorithm.

1. Introduction

Network-on-chip architecture has been proposed as a
potential solution for the interconnect demands that arise
with the nanometer era [2]. In the network-on-chip
architecture, a general purpose on-chip interconnection
network replaces the traditional design-specific global
on-chip wiring, by the use of switching fabric or routers to
connect IP cores or processing elements (PEs). The PEs
communicate with each other by sending messages in
packets, through the routers. This is usually called
packet-based interconnect. An example implementation is
shown in Figure 1. The diagram on the left illustrates a
tiled single PE per node architecture arranged in a 2-D
mesh network, where as the diagram on the right illustrates
the underlying interconnect, where each router

communicates to the PE via a local port, and to its
neighboring routers via four global ports.

A particular property of Network-on-chip architecture is
the concept of hardware virtualization, which maps one or
more logical processing units onto a single PE, thus
allowing the PE to virtually perform the computation of
one or more (depending on the degree of virtualization)
logical processing units. This method requires the presence
of additional logic and memory as part of the PE hardware
in order to identify the particular computation that is
performed at any given time, and to read/write the required
data per computation. It is possible that computations on
virtualized PEs happen out of order; as a result
synchronization mechanisms are implemented within the
PEs in order to allow for out of order computation, as well
as to synchronize the completed computations with the rest
of the PEs. This attributes to a larger overall PE which
consequently consumes more power; however it also
increases the amount of logical units that can be mapped
on the chip, which depending on the computation type, can
result in computation performance gain [1].

Figure 1. Left – an NoC Layout showing the physical
placement of the PEs and routers. Right – an individual NoC
router shown in detail with, the connections to the rest of the
routers.

 After the hardware virtualization (i.e., mapping of the
computation onto a single PE), the energy consumption
and the computation time for each PE is fixed. However,
the communication delay between PEs depends on the PE
locations. For example, message from PE1 has to go
through at least seven routers to reach PE16 in Figure 1

(which means it needs six hops). On the other hand, the
communication energy consumption depends on the
location of the PE as well as the message volume sent
through routers and the distance between PEs.
Consequently, the performance and the overall energy
consumption are determined by the IP placement.
If two PEs exchange a lot of packets, it is better to place
them closer to reduce both the communication energy and
latency.
 As the technology scales, the temperature in modern
high-performance VLSI circuit increases dramatically due
to smaller feature size, higher packing density and rising
power consumption. The hotspot in a modern chip might
have a temperature of more than 100oC, while the
intra-chip temperature differentials can be larger than
10~20oC. Temperature can have dramatic impacts on
circuit behavior. For example, interconnect (Elmore) delay
increases approximately 5% for every 10oC increase, and
the leakage current increases exponentially with the
temperature increase. Therefore, it is very important to
reduce or eliminate hotspots and have a thermally balanced
design. For NoC architecture, the thermal distribution
profile of a design is largely determined by the PE
locations, consequently, the IP placement algorithm is the
key to achieve the thermal balance design goals.
 In this paper, we present a thermal-aware IP
virtualization and placement algorithm based on genetic
algorithm. We demonstrate that a careful IP virtualization
and placement can reduce the hotspots temperature and
provide a thermally balanced design.
 This paper is organized as follows: section 2 presents
related work; section 3 discusses how to estimate
temperature; section 4 gives a brief background on genetic
algorithms; section 5 presents our mapping framework
based on genetic algorithm; section 6 presents the case
study on LDPC with the experimental result and finally we
conclude the paper in section 7.

2. Related work

 One of the major challenges for a successful adoption
of the network-on-chip paradigm is in reducing the energy
consumed during the interactions between the IPs (PEs) [2].
Hu and Marculescu [8, 9] proposed an energy-aware
mapping algorithm which minimizes the total
communication cost for a 2-D mesh NoC architecture
under real-time performance constraints. Murali et al. [14]
proposed an algorithm that maps IP cores onto a mesh NoC
architecture under bandwidth constraints, minimizing the
average communication delay. The potential bandwidth
requirements were reduced by the partitioning of inter-core
traffic across multiple paths. Al-Rawi et al. [1] also
explored an optimal mapping on a set of LDPC nodes to
physical computation units, with the purpose of
minimizing the communication between the nodes.

 Thermal placement for standard cell ASIC design has
been investigated for several years. For example, Chu and
Wong used matrix synthesis problem (MSP) to model the
thermal placement problem and three algorithms were
proposed to solve it [4]. Tsai and Kang also proposed a
method [18] to calculate temperature based on power
estimation for standard cell placement. Thermal placement
can also be refined by partitioning; for example, Chen et al.
proposed a partition-driven thermal placement model [3]
for standard cells, making use of multigrid-like approach to
simplify the thermal problem at each level of finer
granularity, facilitating the inclusion of temperature
constraints on the placement. For standard cell thermal
placement, since the physical interconnect parasitic
information is not available yet, the power consumption of
interconnect is usually ignored. While in NoC architecture,
the communication cost (latency and power consumption)
can be affected by the IP placement.
 The contribution of our work is that we map the IP
virtualization and placement problem in NoC into genetic
algorithm. By modifying the fitness function, we can
achieve different design goals. We compare different
optimization strategies (power-balanced placement,
thermal-balanced placement as well as communication cost
minimization placement), and the experimental result
indicates that with the thermal-balanced placement, we can
achieve the best thermal distribution profile for the NoC
architecture.

3. Temperature estimation

 The temperature of each IP block depends on the power
consumption and the position of the IP blocks. Skadron et
al. [17] proposed a thermal modeling tool called HotSpot,
which is easy to use and computationally efficient for
modeling thermal effects at the IP block level. HotSpot
provides a simple compact model, where the heat
dissipation within each functional block and the heat flow
among blocks are accounted for. The basic idea is that, if
we define the transfer thermal resistance Rij of IP block PEi
with respect to PEj as the temperature rise at PEi due to one
unit of power dissipated at PEj:

Rij = ∆ Tij/∆Pj

such that we can get a transfer thermal resistance matrix as
below:

Rt
11 R

t
12 ……………….. R

t
1m

Rt
21 R

t
22 ……………….. R

t
2m

Rt
m1 R

t
m2 ……………….. R

t
mm

Rt =

For any power distribution on the NoC architecture, we
can calculate each block’s temperature by applying the
following equation:

Rt
11 R

t
12 ……………….. R

t
1m

Rt
21 R

t
22 ……………….. R

t
2m

Rt
m1 R

t
m2 ………………. R

t
mm

T1

T1

Tm

=

P1

P1

Pm

where Pi is the power consumed by IP block PEi and Ti is
the temperature of the IP block PEi. The transfer thermal
resistance matrix can be obtained from Hotspot, given the
IP block placement.

4. Genetic algorithm

 Genetic algorithms (GA) [7] are a class of search and
optimization methods that mimic the evolutionary
principles in natural selection. Figure 2 shows a genetic
algorithm optimization flow.
 The solution is usually encoded into a binary string
called chromosome. Instead of working with a single
solution, the search begins with a random set of
chromosomes called initial population. Each chromosome
is assigned a fitness score that is directly related to the
objective function of the optimization problem.

Initial population

Begin

Terminate?

Fitness evaluation

Reproduction

Mutation

Stop
Y

N

100100
010011
……
101100

Crossover 1001|00
0100|11

1001|11
0100|00

010000 011000

 Figure 2. Genetic algorithm flow.

 The population of chromosomes is modified to a new
generation by applying three operators similar to natural
selection operators – reproduction, crossover and mutation.
Reproduction selects good chromosomes based on the
fitness function and duplicates them. Crossover picks two
chromosomes randomly and some portions of the
chromosomes are exchanged with a probability Pc. Finally,

mutation operator changes a 1 to a 0 and vice versa with a
small mutation probability Pm. A genetic algorithm
successively applies these three operators in each
generation until a termination criterion is met. It can very
effectively search a large solution space while ignoring
regions of the space that are not useful. This methodology
leads to very time-efficient searches. In general, a genetic
algorithm has the following steps:

1. Generation of initial population.
2. Fitness function evaluation.
3. Selection of chromosome.
4. Reproduction, Crossover, Mutation operations.

5. IP virtualization and placement

framework

 The proposed NoC mapping optimization flow uses a
genetic algorithm as shown in Figure 2. The IP
virtualization and placement information is encoded into
integer strings called chromosomes. The optimization
flow begins with a randomly generated initial population,
which consists of many randomly generated IP placements.
The optimization flow is an iterative procedure. The
chromosomes with better fitness will survive at each
generation and are operated on with three different
operations (reproduction, crossover and mutation) to form
a new set of chromosomes – or new IP virtualization and
placement. The iteration continues until the termination
criterion is met.

5.1 Chromosome encoding

 One example of the chromosome encoding is shown in
Figure 3. It contains 16 unique integers, which represents
the 16 IP cores (physical PEs). The position of each integer
indicates its placement location. For example, chromosome
A in Figure 3 represents the placement as shown in Figure
1, while chromosome B represents the placement where
the PE 1 and PE 6 in Figure 1 are swapped. With
virtualization, logical processing units 22, 73, 19 and 31
are clustered into physical PE 4 while logical processing
unit 44, 37, 56 and 85 are grouped together in physical PE
11 in chromosome A. With this representation, the
optimizations of mapping and virtualization can be done
simultaneously.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 2 3 4 5 1 7 8 9 10 11 12 13 14 15 16

chromosome A

chromosome B

22 73 19 31 44 37 56 85

Figure 3. Chromosome encoding for IP placement.

5.2 Fitness function

 The fitness function, which decides the survival chance
for a specific chromosome, is related to the mapping goals.
Depending on the optimization goal, the fitness function of
the genetic algorithm is different.

5.2.1 Thermal balanced design
The goal of thermal placement is to distribute temperature
across a chip evenly and minimize the hotspot temperature.
We use an approach similar to that proposed by Chu, et al.
[4]. Their work tried to solve the problem of thermal
placement for gate arrays. Here, we model our NoC
architecture as an m x n matrix with the given temperatures
such that the maximum sum among all t x t submatrices is
minimized. The number assigned to each cell in the matrix
is a nonnegative temperature value. The parameter t is used
to account for the heat transfer ability. Increasing t means
that the heat transfer is good, so the number of affected
cells near the heat source cell will be larger. For any matrix
M, let St(M) be the set of all t x t submatrices, the fitness of
a solution can be defined as follow:

)(

1

tSMax
Fitness =

5.2.2 Power balanced design
This optimization strategy is to achieve a balanced power
distribution on the chip. Basically, we use the same
approach to calculate the fitness of a chromosome here as
in thermal balanced design. The only difference is the
numbers in the matrix. For power-balanced design, we
provide the power consumption of each IP and its
corresponding router. The power consumption for the IP is
fixed when the hardware virtualization is done. However,
the router power consumption depends on the
communication links. The temperature in one IP location
will not be equal to that of another IP location, since the
heat can flow to the adjacent IPs. But power consumption
of each IP will remain the same even when placed in
different physical locations. Thus, we can observe the
different temperature results from Power and Thermal
balanced designs.

5.2.3 Communication cost minimization design
The communication cost is given by:

∑
=

=
||

1

))(),((*)(
E

i

iii ddestdsourcedistdvolCommcst

where the di is any communication between two IPs
(where the source(di) is the source IP core and the dest(di)
is the destination IP core), vol(di) is the message volume
that has to flow between these two IP cores. The dist is the
number of hops that the messages have to go through. To

minimize the communication cost, the fitness function of
our algorithm is given by:

Commcst
Fitness

1=

5.3 Crossover operator and mutation operator

 Due to the nature of Genetic Algorithms, the number in
a chromosome will be generated randomly. For our
placement problem, we map each physical IP as a
nonnegative unique number as the encoding method. When
doing crossover operation, the offspring’s chromosome is
generated from mating of parents’ chromosomes. At this
stage, there are possibilities that some numbers are
redundant. It’s important to guarantee that each number
should only exist once in a chromosome to make the
evolution proceeds. As for mutation operation, we have
two different operators to explore more solution spaces.
One is the mutation by swapping and another is mutation
by shifting. Either operator can be used with a random
probability.

5.4 Control parameters

 While generating the initial population, we have to set
an appropriate population size, and the crossover
probability Pc, as well as the mutation probability Pm. If
the population size is too small, the genetic diversity
within the population may not increase for many
generations. On the other hand, a large population size
increases the computation time for each generation but it
may take fewer generations to find the best solution.
Schaffer et al. [16] have conducted extensive simulation on
a wide range of functions and concluded that a small
population of size 20 to 30, a crossover probability in the
range of 0.75 to 0.95, and a mutation probability in the
range of 0.005 to 0.01 perform very well. In our
implementation, we set the population size to be 30~35,
crossover probability Pc to be 0.9 and the mutation
probability Pm to be 0.01.
 The termination of the iterative evolution can be user-
defined. We set a maximum generation to be 5000 and
specify that if the fitness improvement is less than 0.001%
during the last 100 generations, the evolution stops without
going through all generations.

6. Case study on LDPC and experimental

results

 In this section, we present a case study of
implementing Low Density Parity Check (LDPC) decoder
on networks-on-chip architecture, and evaluate our
algorithm by using this real application.

6.1 A brief introduction on LDPC

Low Density Parity Check (LDPC) codes are a form of

iterative error correction codes similar to Turbo codes, that
can achieve near Shannon-limit communication channel
capacity [6,12]. They offer excellent decoding performance
and good block error performance. The most notable
advantage of LDPC codes is their suitability for parallel
hardware implementation. An LDPC code is a linear
message encoding technique, defined by a set of two very
sparse parity check matrices, G and H. The message to be
sent is encoded using the G matrix. When it reaches its
destination, it is decoded using the H-matrix. The LDPC
decoding algorithm consists of a series of intensive
computations derived from a message-passing iterative
bipartite graph, as shown in Figure 4. The bipartite graph
consists of two types of nodes, the bit node, and the check
node [6]. Connections between the two nodes in the
bipartite graph depend on the row and column weight of
the H-Matrix, where the weight is the number of 1-entries
in the row/column. Columns represent the number of bit
nodes and rows represent the number of check nodes. A 1
in the ijth entry of the H-Matrix represents an edge between
the ith check and the jth bit nodes as shown in Figure 4.

Message passing iterations are performed by the two
computation units - the bit node and the check node [12].
Each type of node interacts with a number of other nodes,
all of the opposite type, to decode a word. The number of
nodes involved in the computation depends on the desired
block size.

The H-matrix is usually sparse, and needs to be large, in
order to decode large blocks of data; that consequently
implies a relatively large amount of edges in the bipartite
graph [12]. Hence, the two major challenges identified
when designing LDPC decoders are the interconnect
structure between the nodes, and the amount of memory
required for computation as well as configuration purposes
per node [19].

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 0 0

Parity check matrix, H

Check nodes

Bit nodes

r q

A B C D E F G H I

a
b
c
d
e
f

A B C D E F G H I

a b c d e f

Figure 4: Derivation of the Bipartite Graph from the
H-Matrix.

 For the reasons explained, we therefore use the LDPC
decoder as an example to evaluate our mapping algorithms
for NoC architecture. The underlying interconnections
between the LDPC nodes are implemented as a NoC
architecture as described in Section 1. We explore the

mapping of the check and bit nodes on the NoC
architecture, in such a way to obtain an even temperature
distribution and reduce the overall communication on-chip.
It has been shown [11] that while architectural
modifications in the PE can reduce the overall power
consumption; most of the chip power is consumed in the
communication links and the routers which are constantly
active. In addition, the LDPC nodes consume different
amounts of power because of the variations in the number
of connections per node [12], hence the thermal
distribution problem. As a result, an emphasis is also
placed on reducing both the number of hops (defined as a
message transmission between two on-chip routers) as well
as the number of messages transmitted overall. The
mapping and placement problems are magnified by the
hardware constraints in terms of area however. Initially we
have the H-matrix, which provides the total number of
nodes, as well as the connections between them and their
degrees (# of inputs). Based on the area constraints, we
then have a limited number of processing units that we can
place on the chip. The problem therefore becomes mapping
the pool of computation nodes given by the H-Matrix, into
the limited area we have on the chip. The overall
computation can be enhanced by hardware virtualization;
this is again a technique that thrives from the NoC
architecture, as described in Section 1. Using hardware
virtualization, we can have a physical PE function as two
or more logical PEs (depending on the virtualization
factor). The tradeoff comes in the PE area and power
consumption, which increase by a small factor to
incorporate the extra memory and logic required for node
identification.

An optimal mapping of the LDPC nodes into the
physical PEs of the NoC architecture provides potential
reduction both in the communication (# of hops) between
the PEs as well as the number of messages transmitted.
The proposed NoC architecture provides a fast and reliable
underlying structure, allowing the bit and check nodes to
effectively communicate with each other.

6.2 Design methodology

 In order to obtain the power models for each PE, we used
the following tool flow. Firstly, the LDPC Software [12]
was used in order to generate both the H-Matrix and the
encoded messages. We used three types of LDPC codes – a
(7, 4) Hamming code, a (2000, 1000) LDPC code with three
checks per bit and six bits per check, and a (10000, 5000)
LDPC code with three checks per bit and six bits per check.
For the (7, 4) Hamming code, we transmitted the message
using a Binary Symmetric Channel (with error probability
5%) and for all three codes, we transmitted the messages
using Additive White Gaussian Noise channels, with noise
standard deviation of 5%. Once the bipartite graph was
obtain, we then used NOCSim [12] to set up either a 4x4 or

5x5 2-D mesh network, with different physical bit nodes
and check nodes and an I/O communication-oriented node.

 NOCSim sets up a predefined network of PE’s and
routers, and in addition provides mechanisms to handle
virtualized nodes. NOCSim takes as input the Network
topology defined by the H-Matrix and the encoded message
to be decoded. It then simulates the Network, generating
real network traffic by packetizing data and headers and
simulating cycle-accurate data transmission between
routers and PE’s. NOCSim generates the entire network
traffic between physical nodes, taking into consideration
potential mapping of more than one virtual node on a
physical PE (virtualization). NOCSim outputs include the
number of messages from PE to PE and the routing path
they follow, in the form of the real binary data that travels
across the network. In parallel with NOCSim simulations,
we created and synthesized in commercial 160nm
technology using Synopsys Design Compiler, Verilog
models of each PE as well as the entire underlying NoC
architecture.These NOCSim outputs were then used as our
test vectors for the synthesized models of the physical PE’s,
and Synopsys Power Compiler was used to give the power
models of the individual PE’s. The operating clock
frequency was at 500MHz, with Vdd of 1.8V. Figure 5
shows the overall modeling methodology.

LDPC
Software

Simulation

Create
Physical NoC

Topology

Generate
H Matrix,

messages and
LDPC simulation

Data

Generate
Network Traffic
data & Routing
Paths as test

vectors

Check & Bit Nodes,
NoC Underlying

Architecture Power
Models

Synthesizable Veri log
Models of Bit Node,

Check Node and
underlying NoC

Architecture

Synopsys
Design

Compiler

NOCSim

Synthesized
160nm Bit,
Check and

NoC
components

Synopsys
Power

Compiler

Figure 5. The overall design methodology for NoC LDPC
Power Estimation.

 In the genetic algorithm, we use an intelligent crossover
mechanism which guarantees that bit nodes are always
swapped with bit nodes only and similarly for check nodes.
Also in the case of virtualization logical PE node is
decoupled from its physical PE mapping in the previous
generation during crossover and mutation i.e. the physical
to logical mapping is not static.

6.3 Experimental results

 First we implement a 10x10 NoC architecture with 100
PEs on the chip to choose the window parameter value t.
Each PE has a size of 1 mm x 0.8 mm in a commercial
160nm standard cell library. Based on the physical layout,
we use Hotspot to obtain the transfer thermal resistance
matrix and estimate the temperature for each IP block, as
described in section 3.
 Figures 6 and Figure 7 show the peak and average
temperature respectively by using two different windows
(1x1 window and 2x2 window, as defined in section 5.2).
From the figures we can see that 1x1 window performs
better in both, reducing peak and average temperatures.
For the following experiments, we use t =1 to obtain better
results. The IP virtualization and mapping algorithm is
implemented in C and the experiment is done on an Intel
Pentium 4 processor machine (2.8 GHz 512M RAM)
running Linux, the runtime is about 15~18 minutes for
3000 generations in 10x10 NoC example.

Peak Temperature Comparison (10x10)

102

104

106

108

110

112

114

116

118

120

122

124

2x2 window 1x1 window

T
em

p
er

at
u

re
 (

'C
)

Temp

Power

Comm

Figure 6. Peak temperature comparison of 1x1 and 2x2
window schemes.

Average Temperature Comparison (10x10)

98

100

102

104

106

108

110

112

114

116

2x2 window 1x1 window

T
em

p
er

at
u

re
 (

'C
)

Temp

Power

Comm

Figure 7. Average temperature comparison of 1x1 and 2x2
window schemes.

6.3.1 Thermal-aware IP placement

 The first experiment we conduct is to do the hardware
virtualization manually using a custom algorithm that
sequentially places virtual nodes to same physical PE and
use the proposed algorithm to do thermal-aware IP
placement. Table 1 shows the set up data for the LDPC
nodes used in our experiment. The degree of a node is the
number of outgoing connection edges to complementary
nodes. Each node in the setup has two different degree
values. The virtualization is done through manual

assignments before the mapping process.
 Figures 8, 9 and 10 show the comparisons for 5
different sets of LDPC codes implemented on a 4x4 NoC.

Table 1. LDPC Nodes Configuration Profile
Data Set Bit Node Degrees Check Node Degrees Volume

set 1 3,4 6,8 16087000

set 2 3,4 8,10 13315840

set 3 3,4 8,12 14128000

set 4 5,6 6,12 20591360

set 5 3,9 6,9 16473088

 Figure 8 shows the average temperature for the NoC
chip. We can see that the temperature optimization
approach performs better than the others. The running
times for these experiments are 12~15 seconds for 1000
generations. Beyond 1000 generation, there is little
improvement.

Average Temperature

80

82

84

86

88

90

set1 set2 set3 set4 set5

T
em

p
er

at
u

re
 (

'C
)

Temp

Power

Comm

Figure 8. Average temperature for a 4x4 LDPC decoder with
5 sets of hardware virtualization under different optimization
strategies.

 Figure 9 shows the peak temperature, or hotspot
temperature. It shows that among all three optimization
strategies, the temperature optimization strategy results in
the lowest peak temperature, with the average difference of
4oC for all the sets of optimization approaches.

Peak Temperature

86
88
90
92
94
96
98

100

set1 set2 set3 set4 set5

Te
m

p
er

at
u

re
 (

'C
)

Temp

Power

Comm

Figure 9. Peak temperature comparison for a 4x4 LDPC
decoder with 5 sets of hardware virtualization under different
optimization strategies.

 Figure 10 shows the communication cost for different
optimization strategies. It is obvious that the
communication cost minimization strategy is the best
choice in a communication critical environment.
 The conclusion we draw from our experimental result

for thermal-aware mapping with manual hardware
virtualization is that, to reduce the temperature of the
hotspot, we should use the thermal balanced optimization
strategy.

Communication Cost

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

set1 set2 set3 set4 set5

D
is

t
x

v
ol

um
e

Temp

Power

Comm

Figure 10. Communication cost comparison for a 4x4 LDPC
decoder under different optimization strategies.

6.3.2 Thermal-aware IP virtualization and

placement

 Using five different LDPC codes which had different
bit/check node connectivities, we performed a comparison
of simulataneously performing virtualization and mapping
(denoted Virtualized) is shown in Figure 11. As shown in
the figure the Temp. approach still outperforms the other
two approaches in both average and peak temperature. This
confirms the results shown in Figures 8 and 9.

Virtualized Mapping Comparisons

60
65
70
75
80
85
90
95

100
105

avg_A peak_A avg_B peak_B avg_C peak_C avg_D peak_D avg_E peak_E

T
em

p
er

at
u

re
 (

'C
)

Temp

Power

Comm

Figure 11. The experimental result for virtualized mapping of
960 virtual nodes of a LDPC decoder.

 Figure 12 shows the comparisons of our custom
virtualization followed by our genetic algorithm based
placement approach (denoted non-virtualized) and
virtualized approach for temperature optimization. The
number beside the name of a data set is the size of the IP
array required for this mapping configuration. The
effectiveness of performing simultaneous virtualization
and placement is established here as it reduces both the
peak and average temperature by 2~3oC as compared to the
non-virtualized approach. The reason of virtualized
mapping being better than non-virtualized mapping is that
we consider the connection of virtual nodes at a finer
granularity that can place closely related nodes onto the
same physical PE to further reduce the number of
communication links; as a consequence, achieve further
temperature reduction.

Virtualized vs Non-Virtualized Mapping
(Temp_based)

75

80

85

90

95

set A (4x4) set B (4x4) set C (5x5) set D (5x5) set E (5x5)

T
em

p
er

at
u

re
 (

'C
)

avg_nonV

peak_nonV

avg_V

peak_V

Figure 12. The comparisons of non-virtualized and
virtualized mapping under temp-based approach.

 The communication-based comparison of virtualized
mapping and non-virtualized mapping is shown in Figure
13. We can see that the virtualized approach has about 10%
of the average communication cost reduction.
 The runtime for the experiments of doing virtualization
and placement concurrently is about 9~13 minutes for
5000 generations.

Virtualized vs Non-Virtualized Mapping
(Comm_based)

0.00E+00

5.00E+05

1.00E+06

1.50E+06

set A
(4x4)

set B
(4x4)

set C
(5x5)

set D
(5x5)

set E
(5x5)

D
is

t
x

vo
lu

m
e

non_Vir

Vir

Figure 13. The comparison of communication cost for
virtualized mapping and non- virtualized mapping.

7. Conclusion and future work

 In this paper, we present a thermal-aware IP placement
algorithm based on a Genetic Algorithm. Our experimental
results show that our optimization strategy can reduce the
hotspot temperature and achieve a thermally balanced
design. By changing the fitness function, the IP placement
algorithm can also be applied to minimize the
communication cost of the NoC, such that the
communication latency and energy is reduced.
Incorporating virtualization into the scheme, our results
showed that a simultaneous virtualization and placement
optimization is better than sequential virtualization and
placement. Currently, our IP placement framework works
for tile-based network-on-chip architecture; we will extend
our work in the future for irregular Networks-on-chip
architecture.

Acknowledgments
 This work was supported in part by a
MARCO/DARPA GSRC Award, NSF Awards CAREER
0093085 and 0130143.

References
[1] G. Al-Rawi, J. Cioffi and M. Horowitz., “Optimizing the
mapping of LDPC Codes on parallel decoding architectures”,
Proceedings of the IEEE ITCC, 2001. pp. 578-586.
[2] L. Benini and G. De Micheli. Networks on chips: a new SoC
paradigm, IEEE Computer, Volume 35, pp. 70--78, January 2002.
[3] Guoqiang Chen and Sachin Sapatnekar, “Partition-Driven
Standard Cell Thermal Placement”, ISPD 2003.
[4] C.N. Chu and D.F. Wong, “Matrix Synthesis Approach to
Thermal Placement”, Proc. Int. Sym. On Physical Design,
pp.163-168, 1997.
[5] W. J. Dally, B. Towles, “Route packets, not wires: on-chip
interconnection networks,” Proc. DAC, pp. 684–689, June 2001.
[6] R. G. Gallager, “Low-Density Parity-Check Codes”, IEEE
Transactions on Information Theory, Jan. 1962, pp. 21-28.
[7] Goldberg, D.E. Genetic Algorithms in Search, Optimization,
and Machine Learning, New York: Addison-Wesley. 1989.
[8] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility
for Energy/Performance Aware Mapping of Regular NoC
Architectures”, Proceedings of DATE 2003, February 2003.
[9] J.Hu, R.Marculescu., “Energy-Aware Mapping for Tile-based
NoC Architectures Under Performance Constraints”, ASP-DAC
2003.
[10] B. Levine et al., “Implementation of Near Shannon Limit
Error-Correcting Codes using Reconfigurable Hardware”,
Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines,2000. Page(s):217-226.
[11] T. Theocharides, G. Link et.al., “Evaluating Alternative
Implementations for the LDPC Check Node Function”,
Proceedings of the IEEE International Symposium on VLSI,
February 2004.
[12] D. Mackay R. Neal, “Near Shannon limit performance of
low density parity check codes”, IEE Electronics Letters, Vol.33,
no. 6, March 1997, pp 457-458.
[13] M. M. Mansour and N. R. Shanbag, “Low-Power VLSI
Decoder Architectures for LDPC Codes”, Proc. of the 2002
International Symposium on Low Power Electronics and Design,
Page(s): 284-289.
[14] S. Murali and G. De Micheli, “Bandwidth-Constrained
Mapping of Cores onto NoC Architectures”, Proceedings of
DATE’04, February 2004.
[15] K. Skadron, T. Abdelzaher, and M. Stan,
"Control-Theoretic Techniques and Thermal-RC Modeling for
Accurate and Localized Dynamic Thermal Management", In
Proceedings of the Eighth International Symposium on
High-Performance Computer Architecture, pp. 17-28, Feb. 2002.
[16] J.Schaffer, J. Caruana, L. Eshelman and R.Das, “A study of
control parameters affecting online performance of genetic
algorithms for function optimization,” Proc. of the Third
international Conference on Genetic Algorithms, pp.51-60, 1989
[17] Kevin Skadron, Mircea R. Stan, Wei Huang, et al.,
“Temperature-Aware Microarchitecture”, ISCA 2003.
[18] Ching-Han Tsai and Sung-Mo Kang, “Stand Cell Placement
for Even On-Chip Thermal Distribution”, ISPD 1999.
[19] E. Yeo, B. Nikolic and V. Anantharam, “Architectures and
Implementations of Low-Density Parity-Check Decoding
Algorithms”, invited paper at IEEE International Midwest
Symposium on Circuits and Systems, Aug 4-7, 2002.
[20] T. Zhang et al, “On Finite Precision Implementation of Low
Density Parity Check Codes Decoder”, Proc. Of the 2001 IEEE
International Symposium on Circuits and Systems.

