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Abstract 

1 
Many computer security threats involve execution of 

unauthorized foreign code on the victim computer. 
Viruses, network and email worms, Trojan horses, 
backdoor programs used in Denial of Service attacks are 
a few examples. In this paper, we present an architectural 
technique, which we call Runtime Execution Monitoring 
(REM), to detect program flow anomalies associated with 
such malicious code. The key idea in REM is the 
verification of program code at the hash block (similar to 
a basic block) level. This is achieved by pre-computing 
keyed hashes (HMACs) for each hash block during 
program installation, and then verifying these values 
during program execution. By verifying program code 
integrity at the hash block level, REM can monitor 
instructions whose behavior is typically exploited by 
malicious code, such as branch, call, return instructions. 
Performance degradation with REM averages 6.4% on 
our benchmark programs, which can be reduced to under 
5% by increasing the size of the L1 instruction cache. 
 
 

1. Introduction 
 

The increasing complexity of modern computer 
systems has also contributed to the increase in computer 
security vulnerabilities. The most dangerous type of 
vulnerabilities allows an attacker to cause program flow 
anomalies during program execution, leading to arbitrary 
code execution on the victim computer [1]. Many of the 
most disruptive network worms recently encountered (e.g. 
Blaster, Slammer, Code Red, Nimda) have exploited such 
vulnerabilities [1][2]. Malicious code of this kind can 
propagate very fast and cause severe network disruption 
and data loss even before it can be identified [2]. For 
example, the Slammer network worm (released January 
2003) infected more than 90% of all the vulnerable 
systems in under 10 minutes, before any meaningful 
human response was possible [2][3].  
                                                 
This work was supported in part by Kodak (A.M. Fiskiran is a Kodak 
Fellow) and by NSF Research Grants CCR-0208946 and CCR-0326372. 

We use the term unauthorized code to refer to any 
executable (or a malicious instruction sequence embedded 
in an otherwise legitimate executable) that was injected 
into a computer system without user authorization. 
Security threats related to unauthorized code include: 
viruses (excluding macro viruses); Trojan horses; spyware 
and adware (programs that monitor system activity such 
as browsing habits and display unsolicited ads); and 
backdoor programs used in Distributed Denial of Service 
(DDoS) attacks. Clearly, a reliable mechanism to detect 
and prevent unauthorized code execution will contribute 
significantly to computer security. 

In this paper, we describe an architectural technique, 
which we call Runtime Execution Monitoring (REM), to 
monitor program execution and to detect flow anomalies 
that may be linked to malicious code execution. The key 
idea in REM is the real-time verification of program code 
at the hash block (similar to a basic block) level. 
Therefore, REM can detect program flow anomalies that 
occur during execution such as buffer overrun attacks 
commonly used by network and email worms.  

The rest of this paper is organized as follows. In 
Section 2, we overview the related past work. In Section 
3, we describe the REM architecture. In Section 4, we 
present performance data. Section 5 is the conclusion. 
 
2. Related work 
 

2.1. Code encryption and integrity checking 
 

The line of research that most closely parallels ours is 
the code encryption and integrity verification methods 
proposed for Digital Rights Management. Earliest works 
in this field proposed bus-encrypted microprocessors, 
where the program code is encrypted when it is in the 
memory, and exists in decrypted form only inside the 
processor chip [4]. Subsequent studies expanding on this 
idea are presented in [5]-[10]. We focus on the eXecute 
Only Memory (XOM) and the memory integrity 
verification architectures described in [6] and [7].  

In the XOM architecture, software is distributed in 
encrypted form by the vendor and decrypted during 
execution on the target processor using a secret key. A 



simplified illustration of this scheme is shown in Figure 
1(a). The encryption/decryption unit is between the L2 
cache and the main memory. On an L2 read miss, the data 
from the memory is first decrypted before it is written to 
the L2 cache. On a write back, the dirty L2 line is first 
encrypted before being written to the memory. Because 
the memory is untrusted, integrity verification is also 
required. This is done by tagging each memory block (L2-
line-sized) with a keyed hash (HMAC)12[6][11].  
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Figure 1: (a) XOM, (b) Memory Hashing 
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Figure 2: Memory organization in MH 
architecture 

 
One of the shortcomings of XOM is that it does not 

completely protect against an attacker tampering with 
memory (in particular against replay attacks) [11]. To 
address this problem, the memory hashing (MH) scheme 
in [7] was proposed. It was later described how the two 
methods can be used together [10].  

The MH architecture is shown in Figure 1(b). The 
memory is structured as a tree where the program data is 
placed at the leaves (Figure 2). Every node of the tree 
contains the hash of the nodes (or leaves) below it. At the 
root of the tree is the root hash, which is permanently 
kept in secure memory. On an L2 read miss, the integrity 
of the incoming data block is checked by recursively 
verifying its hash and all the hashes of its parent nodes, up 
to the root hash. If there is a mismatch at any level, an 
exception is raised. On a write back, all hashes depending 
on the dirty line are updated, including the root hash. 
                                                 
1 A hash algorithm produces a fixed-size digest (hash) of a variable-size 
input. While it is easy to compute the hash of any input, it is 
computationally infeasible to find an input that hashes to a given value. 
An HMAC (Hashed Message Authentication Code, or keyed hash) is a 
hash algorithm that incorporates a secret key into the hash computation.  

While XOM and MH architectures provide important 
security functions, they have several shortcomings that 
limit their usefulness. First, XOM only protects encrypted 
code whereas most of today’s software is unencrypted and 
a significant fraction is open source. Second, XOM does 
not protect shared library code, which always exists in 
plaintext form, whereas virtually all modern applications 
rely on shared code. Third, neither XOM nor MH fully 
protects untrusted I/O channels, such as network 
interfaces. Fourth, neither architecture reliably detects 
flow anomalies that happen during program execution, 
which is typical of malicious code activity. 
 

 
 

int f() 
{ 
  ... 
  g(x, y); 
  ... 
} 
 

 int g(char *x, char *y) 
 { 
   int a; 
   char b[128]; 
   ... 
   strcpy(b, x); 
   ... 
   return; 
 } 

 

Figure 3: Code with buffer overrun vulnerability 
 

 
 
 

stack frame of f() 
 

x 
 

y 
 

corrupt address 
 

 
 

malicious code 
 

 
 

higher 
addresses 

stack 
growth 

lower 
addresses 

 
 

stack frame of f() 
 

x 
 

y 
 

return address 
 

saved FP 
 

a 
 

b 
 

FP 

SP 

stack  
frame  
of g() 

strcpy() exploit 

 
 

Figure 4: Buffer overrun exploit 
 

Consider the buffer overrun exploit shown in Figure 3 
and Figure 4, where the unchecked string x is copied into 
local variable b. Because x is larger than b, the procedure 
return address is overwritten, and the malicious code 
passed in x is executed following the procedure return. 
This anomaly is not always detected by XOM or MH 
because memory integrity verification is not performed 
when the stack frame of g is created. Because the hashes 
are updated only on L2 write back, they do not always 
reflect the value of the correct procedure return address, 
hence corruption of this address is not reliably detected.  
 
2.2. Other software and architectural defenses 
 

Software tools and safe programming dialects have 
been designed to defend against vulnerabilities most 
commonly exploited by malicious code. StackGhost [12], 
and Cyclone [13] are two examples. Common drawbacks 
of these software methods are: protection of only selected 
libraries and functions; significant adverse performance 
impact and code bloat; and compiler modifications and/or 
rewriting and recompiling of legacy code. 



An architectural technique is presented in [14] that 
guards against buffer overrun exploits. This is achieved 
by keeping the procedure return addresses in a secure 
return address stack (SRAS) rather than in data memory. 
SRAS causes no code bloat and has minimal adverse 
performance impact, but it does not protect against 
exploits other than buffer overruns nor against general 
unauthorized code execution. 

The AMD64 architecture uses a no-execute (NX) flag 
to disable instruction execution from selected memory 
segments, such as the data stack [15]. However, it is still 
possible to inject malicious code into other unprotected 
memory segments, such as the heap or static/global 
variables [16]. Furthermore, flow anomalies can also be 
triggered without malicious code injection, for example 
by simply corrupting the procedure return address and 
transferring execution to a random location in the 
program. 

There are also host-based and network-based intrusion 
detection (ID) tools to detect anomalous system and 
network activity. Examples include [17][18]. In general, 
ID tools can only identify intrusions with a delay [19], 
which is often significant. Therefore, their usefulness is 
limited against fast-propagating malicious code. 
 

Program Code 
 

Program Appendix 
Containing HMACs 

 

... 
  jmp    hash_block_7 
 
hash_block_13: 
  hash_ptr         13 
  st    R17, R18,   0 
  addi  R18, R18,  64 
  subi  R19, R19,  56 
  add   R20, R18, R19 
  ld    R21, R20,   0 
  st    R21, R18,   0 
  st    R21, R18,  64 
  addi  R21, R21,   8 
  st    R21, R18,   4 
  jmp   hash_block_18 
 
hash_block_14: 
  hash_ptr         14 

 
 
 
 
 
... 
0x68ec2df4 
0x3ad63046 
0x8a3cf73e 
0x3f35d840 
0x20ab5634 
0x59a7c378 
0x9e3cb67f 
0x3708dc3f 
0x69ab4302 
0xce360e9c 
0x60dc134a 
0x0d4052a8 

 

Figure 5: Program code in REM 
 
3. Runtime Execution Monitoring (REM) 
 

3.1. HMAC computation 
 

REM verifies program execution at the basic block 
(hash block) level. We define a hash block as “a sequence 
of instructions with a single entry point, single exit point, 
and no internal flow control instructions, such as branch, 
call, return instructions”. While this is generally identical 
to the definition of a basic block, we prefer to define a 
hash block explicitly since the basic block definition 
occasionally excludes the “single entry point” 
requirement. 

REM involves computing an HMAC (keyed hash) for 
each hash block of a program when it is first installed on 
the host computer. The HMACs are then appended to the 
program. A new instruction, hash_ptr (hash pointer), is 
added to the ISA. Each hash block begins with a hash_ptr 
instruction, whose immediate operand points to the 
corresponding HMAC in the program appendix (Figure 
5). This facilitates finding the HMAC of a given hash 
block during execution. Since the generation of the 
HMACs and the insertion of hash_ptr instructions can be 
performed directly on executable code, recompilation and 
compiler modifications are not necessary. This makes 
REM suitable for protecting proprietary and legacy code, 
where source code is not available. 

The key used to generate the HMACs is called the 
REM key, which is randomly assigned to each processor 
and is required for software installation. HMACs can be 
generated using a hash algorithm (e.g. SHA-1, MD5 [11]) 
or a symmetric-key cipher. In this paper, we use the AES 
symmetric-key cipher [20] with 128-bit keys because it 
has very fast hardware implementations [21]. We set the 
default HMAC size equal to the AES block size, which is 
128 bits. To compute the HMAC of a hash block, we first 
parse the instructions into 128-bit blocks (i.e. groups of 
four if the instruction size is 32-bits). Zero padding is 
used if a block contains uneven number of instructions. 
Each block is then encrypted with AES using the REM 
key. Finally, the encrypted blocks are XOR’ed together to 
generate a 128-bit HMAC. Using AES in the ECB mode 
is acceptable because the hash block size is usually small 
[11]. Therefore, we believe that the security of this 
scheme is not less than other 128-bit hash algorithms. 

There are many hardware designs for fast AES 
implementation. One example is described in [21], which 
can perform AES encryption in 10 cycles, with an 
effective pipelined latency of 1 cycle. The area of this 
design is reported as 173,000 gates. Better performance 
(or smaller area) can be realized for REM by exploiting 
the fact that the REM key is fixed for each processor. In 
this paper, we will assume using an AES unit with a 20-
cycle absolute latency and a 1-cycle effective pipelined 
latency. As we will discuss in Section 4.2, a longer 
encryption latency can be simply accommodated by using 
a larger HMAC read buffer.  
 
3.2. REM architecture 
 

Figure 6 shows the elements in the REM datapath. L1 
I-cache is shared to store both the instructions and 
HMACs. The HMAC compute logic (HCL) reads 
instructions in 128-bit blocks and computes the HMAC 
corresponding to the current hash block. HCL is 
connected to the pipeline control and processes an 
instruction block only after all the instructions in the 
block are committed. This simplifies the handling of 
instructions that are speculatively issued and instructions 

HMAC of 
hash_block_12 

HMAC of 
hash_block_13 

HMAC of 
hash_block_14 

Operand of the leading hash_ptr
instruction points to the starting 

address of the corresponding 
HMAC.  



issued in branch delay slot(s), when these may be 
conditionally nullified. HCL also interfaces to the L1 D-
cache to save (restore) its internal state on context 
switches and interrupts (the dotted data line). 
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Figure 6: REM datapath 
 

Concurrent to the HMAC computation, the stored 
HMAC of the current hash block is read from the memory 
and stored in the first-in-first-out (FIFO) hash read buffer. 
This buffer is necessary because the HMAC computation 
latency is longer than the HMAC lookup latency. The 
address of the HMAC corresponding to the current hash 
block can be computed simply by scaling the operand of 
the leading hash_ptr instruction, and then adding this 
value to the starting address of the HMAC appendix. 
When the HMAC computation is finished, it is compared 
to the stored HMAC, and an exception is raised if the 
values mismatch. 
 

3.3. Security 
 

REM can detect flow anomalies that occur during 
program execution. Consider the buffer overrun example 
in Figure 3 and assume that the infused malicious code 
attempts to spawn a command shell to execute arbitrary 
system commands. This normally requires using a flow 
control instruction to invoke the kernel mode (for 
example, the int instruction on x86 [22]). With REM, this 
raises an exception since there will be no HMAC(s) 
associated with the hash block(s) in the malicious code. 
Even though there will be a 20-cycle delay before this 
anomaly is detected, the exception will be raised before 
the kernel can transfer execution to the unauthorized 
command shell. Any attempt to skip legitimate 
instructions will also be detected with REM, since the 
HMACs are computed only on executed instructions.  

To circumvent REM protection, an inside attacker (or 
the malicious code itself) may attempt to modify a 
program and also update the associated HMAC appendix. 
However, this requires recovering the REM key by 
breaking 128-bit AES encryption, which is not 
computationally feasible. While the default HMAC size in 
REM is 128 bits, 64-bit or 32-bit HMACs can also be 
used for storage-constrained or less security-critical 
systems. In this case, it may be possible to recover the 
REM key by examining installed code. Even in these 

instances, REM can still offer protection against 
automated attack tools on the network that cannot launch 
host-specific exploits.  

We have so far assumed using a trusted operating 
system (OS) to prevent the REM key from being 
compromised during program installation. If the OS 
cannot be trusted, it is possible to guard the REM key by 
using a combination of public-key/symmetric-key 
encryption as in the XOM architecture [6]. The REM 
architecture does not provide memory integrity 
verification or program code confidentiality. If these 
functions are required, XOM or MH architectures may be 
used in combination with REM.  
 

Table 1: Architectural parameters 
 

Architectural Parameter Value 
L1 I-Cache 64 kB, 2-way, 32 B lines 
L1 D-Cache 64 kB, 2-way, 32 B lines 

L2 Cache (unified) 1 MB, 4-way, 64 B lines 
L1 latency 1 cycles 
L2 latency 10 cycle 

Memory latency 100 cycle 
Number of load/store pipes 2 

Fetch/Decode/Issue/Commit Width 4 
Number of Register Update Units 128 

HMAC Latency 20 cycles (1 cycle pipelined) 
Hash Read Buffer 16 entries 
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Figure 7: Code size increase in REM 
 
4. Performance 
 

To evaluate the performance impact of the REM 
architecture, we perform simulations on five SPEC 2000 
integer benchmarks [23]. We use the SimpleScalar 
toolset, a cycle-accurate out-of-order superscalar 
processor simulator, configured for the PISA instruction 
set [24]. The default values for the architectural 
parameters we use are summarized in Table 1. 
 
4.1. Code size 
 

The REM architecture increases the program size due 
to the hash_ptr instructions and the appended HMACs. 
Figure 7 shows the total storage overhead when 32-bit, 
64-bit, 128-bit HMACs are used. The dashed lines on the 
columns indicate the size increase due to the hash_ptr 
instructions, which is 17.3% on average. The total 
overhead is 34.6%, 51.9%, and 86.6% for 32-bit, 64-bit, 



and 128-bit HMACs respectively. While the 86.6% 
overhead of the 128-bit HMACs is high, the total size 
increase on a system may be limited by using REM only 
on vulnerable applications, such as webservers and 
mailservers that maintain continuous network 
connections. For resource-constrained environments, 
smaller 32-bit HMACs may be preferred to limit the total 
overhead to about 35%.  
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Figure 8: Impact of hash read buffer size 
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Figure 9: Impact of L1 I-cache size 
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Figure 10: Off-chip bandwidth consumption 
 
4.2. Hash read buffer size 
 

The optimal size of the hash read buffer depends on 
the HMAC computation latency. In the worst case, a 
consecutive sequence of unconditional branch instructions 
is executed, thereby starting a new hash block each cycle. 
To avoid pipeline stalls in this case, an n-deep hash read 
buffer is necessary, where n is the HMAC computation 
latency. Because such an instruction sequence is rare, the 
actual read buffer size can be significantly smaller.  

Figure 8 shows the performance degradation when 
hash buffers with 4, 8, 16, and 32 entries are used. A 
normalized IPC = 1 is the baseline performance of the 
benchmarks (i.e. without REM). With a 4-entry buffer, 
the performance degradation is significant for all 
benchmarks, averaging 35.4%. With an 8-entry buffer, the 
average degradation reduces to 11.0%. There is no 
measurable performance difference for buffers with 16 or 
32 entries. The average slowdown for these cases is 6.4%.  
 
4.3. Cache contention and memory bandwidth 
 

Once a sufficiently large hash buffer is used, any 
performance degradation in REM, which averages 6.4% 
(Figure 8), is due to the additional memory accesses 
needed to bring the stored HMACs into the read buffer. 
The additional memory reads increase both the L1 I-cache 
contention and the off-chip bandwidth consumption. 
Figure 9 shows the impact of the former effect for 
different L1 I-cache sizes. When the I-cache size is 
increased to 128 kB and 256 kB, the average performance 
degradation reduces to 5.1% and 4.1% respectively. 
Figure 10 shows the increase in off-chip bandwidth 
consumption at different HMAC sizes. The average 
additional bandwidth consumption with REM using 128-
bit HMACs is 33.4%. This reduces to 31.6% with 64-bit 
HMACs, and to 28.1% with 32-bit HMACs. The 
reduction is not proportional to the HMAC size because 
the contribution of the hash_ptr instructions to the 
bandwidth consumption is the same at all HMAC sizes. 
 
5. Conclusions 
 

We presented an architectural technique, which we call 
Runtime Execution Monitoring (REM), to detect program 
flow anomalies associated with unauthorized code 
execution on a computer system. The key idea in REM is 
the verification of program code at the hash block (basic 
block) level. This is achieved by pre-computing keyed 
hashes (HMACs) for each hash block during program 
installation, and then verifying these values during 
program execution. Significant implementation variables 
in REM are: (1) size of the HMACs, (2) algorithms used 
to compute the HMACs, (3) hash read buffer size, (4) L1 
I-cache size. HMAC size depends on the desired security 
level of the system. While 128-bit HMACs may be 
needed for security-critical systems, even a smaller (32-
bit) HMAC will provide protection against automated 
attack tools. While we have used the AES symmetric-key 
cipher to generate the HMACs, other symmetric-key or 
hash algorithms may also be used (e.g. SHA, MD5) [11].  

The function of the hash read buffer is to temporarily 
store the looked-up HMACs until they are compared with 
the computed HMACs. We showed that a 16-entry read 
buffer is sufficient to eliminate all HMAC-related 
pipeline stalls when the HMAC computation latency is 20 
cycles (single-cycle pipelined latency). A longer absolute 



HMAC latency does not degrade performance as long as 
the read buffer is large enough. This is because the 
HMAC compute unit is not on the critical memory path. 
In this regard, REM differs from XOM, where the 
encryption unit degrades performance by increasing the 
memory access latency. Once a large-enough hash read 
buffer is used, performance degradation in REM is 
primarily due to the cache contention resulting from the 
shared use of the L1 I-cache to store both instructions and 
HMACs. The impact of this effect is 6.4% on average.  

By verifying program code integrity at the hash block 
level, REM can monitor instructions whose behavior is 
typically exploited by malicious code, such as branch, 
call, return instructions. In this regard, REM differs from 
the previous works, XOM and memory hashing, which 
perform encryption/decryption and integrity verification 
on fixed-size memory blocks. Furthermore, because REM 
requires an explicit installation phase requiring an 
authorization password (the REM key) for each program, 
it also provides protection against other computer security 
threats linked to unauthorized code, such as viruses 
(excluding macro viruses), Trojan horses, and backdoor 
programs. While we do not advocate REM as a one-size-
fits-all solution against all such malicious code, it can 
contribute significantly to computer security if it is 
employed as a new layer of defense concurrently with 
existing security tools.  
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