

Runtime Execution Monitoring (REM) to Detect and Prevent
Malicious Code Execution

A. Murat Fiskiran and Ruby B. Lee
Department of Electrical Engineering

Princeton University
{fiskiran, rblee}@princeton.edu

Abstract

1
Many computer security threats involve execution of

unauthorized foreign code on the victim computer.
Viruses, network and email worms, Trojan horses,
backdoor programs used in Denial of Service attacks are
a few examples. In this paper, we present an architectural
technique, which we call Runtime Execution Monitoring
(REM), to detect program flow anomalies associated with
such malicious code. The key idea in REM is the
verification of program code at the hash block (similar to
a basic block) level. This is achieved by pre-computing
keyed hashes (HMACs) for each hash block during
program installation, and then verifying these values
during program execution. By verifying program code
integrity at the hash block level, REM can monitor
instructions whose behavior is typically exploited by
malicious code, such as branch, call, return instructions.
Performance degradation with REM averages 6.4% on
our benchmark programs, which can be reduced to under
5% by increasing the size of the L1 instruction cache.

1. Introduction

The increasing complexity of modern computer
systems has also contributed to the increase in computer
security vulnerabilities. The most dangerous type of
vulnerabilities allows an attacker to cause program flow
anomalies during program execution, leading to arbitrary
code execution on the victim computer [1]. Many of the
most disruptive network worms recently encountered (e.g.
Blaster, Slammer, Code Red, Nimda) have exploited such
vulnerabilities [1][2]. Malicious code of this kind can
propagate very fast and cause severe network disruption
and data loss even before it can be identified [2]. For
example, the Slammer network worm (released January
2003) infected more than 90% of all the vulnerable
systems in under 10 minutes, before any meaningful
human response was possible [2][3].

This work was supported in part by Kodak (A.M. Fiskiran is a Kodak
Fellow) and by NSF Research Grants CCR-0208946 and CCR-0326372.

We use the term unauthorized code to refer to any
executable (or a malicious instruction sequence embedded
in an otherwise legitimate executable) that was injected
into a computer system without user authorization.
Security threats related to unauthorized code include:
viruses (excluding macro viruses); Trojan horses; spyware
and adware (programs that monitor system activity such
as browsing habits and display unsolicited ads); and
backdoor programs used in Distributed Denial of Service
(DDoS) attacks. Clearly, a reliable mechanism to detect
and prevent unauthorized code execution will contribute
significantly to computer security.

In this paper, we describe an architectural technique,
which we call Runtime Execution Monitoring (REM), to
monitor program execution and to detect flow anomalies
that may be linked to malicious code execution. The key
idea in REM is the real-time verification of program code
at the hash block (similar to a basic block) level.
Therefore, REM can detect program flow anomalies that
occur during execution such as buffer overrun attacks
commonly used by network and email worms.

The rest of this paper is organized as follows. In
Section 2, we overview the related past work. In Section
3, we describe the REM architecture. In Section 4, we
present performance data. Section 5 is the conclusion.

2. Related work

2.1. Code encryption and integrity checking

The line of research that most closely parallels ours is
the code encryption and integrity verification methods
proposed for Digital Rights Management. Earliest works
in this field proposed bus-encrypted microprocessors,
where the program code is encrypted when it is in the
memory, and exists in decrypted form only inside the
processor chip [4]. Subsequent studies expanding on this
idea are presented in [5]-[10]. We focus on the eXecute
Only Memory (XOM) and the memory integrity
verification architectures described in [6] and [7].

In the XOM architecture, software is distributed in
encrypted form by the vendor and decrypted during
execution on the target processor using a secret key. A

simplified illustration of this scheme is shown in Figure
1(a). The encryption/decryption unit is between the L2
cache and the main memory. On an L2 read miss, the data
from the memory is first decrypted before it is written to
the L2 cache. On a write back, the dirty L2 line is first
encrypted before being written to the memory. Because
the memory is untrusted, integrity verification is also
required. This is done by tagging each memory block (L2-
line-sized) with a keyed hash (HMAC)12[6][11].

Main Memory

Chip
Boundary

Encryption /
Decryption Unit

L2 Cache

Write Buffer

Main Memory

Chip
Boundary

Hash Unit

L2 Cache

Root Hash

Write Buffer

(a)

(b)

Figure 1: (a) XOM, (b) Memory Hashing

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

H1

H2

H3

H4

H0

Data blocks
at leaves

Hashes at
parent nodes

Root hash in
secure memory

Figure 2: Memory organization in MH
architecture

One of the shortcomings of XOM is that it does not

completely protect against an attacker tampering with
memory (in particular against replay attacks) [11]. To
address this problem, the memory hashing (MH) scheme
in [7] was proposed. It was later described how the two
methods can be used together [10].

The MH architecture is shown in Figure 1(b). The
memory is structured as a tree where the program data is
placed at the leaves (Figure 2). Every node of the tree
contains the hash of the nodes (or leaves) below it. At the
root of the tree is the root hash, which is permanently
kept in secure memory. On an L2 read miss, the integrity
of the incoming data block is checked by recursively
verifying its hash and all the hashes of its parent nodes, up
to the root hash. If there is a mismatch at any level, an
exception is raised. On a write back, all hashes depending
on the dirty line are updated, including the root hash.

1 A hash algorithm produces a fixed-size digest (hash) of a variable-size
input. While it is easy to compute the hash of any input, it is
computationally infeasible to find an input that hashes to a given value.
An HMAC (Hashed Message Authentication Code, or keyed hash) is a
hash algorithm that incorporates a secret key into the hash computation.

While XOM and MH architectures provide important
security functions, they have several shortcomings that
limit their usefulness. First, XOM only protects encrypted
code whereas most of today’s software is unencrypted and
a significant fraction is open source. Second, XOM does
not protect shared library code, which always exists in
plaintext form, whereas virtually all modern applications
rely on shared code. Third, neither XOM nor MH fully
protects untrusted I/O channels, such as network
interfaces. Fourth, neither architecture reliably detects
flow anomalies that happen during program execution,
which is typical of malicious code activity.

int f()
{
 ...
 g(x, y);
 ...
}

 int g(char *x, char *y)
 {
 int a;
 char b[128];
 ...
 strcpy(b, x);
 ...
 return;
 }

Figure 3: Code with buffer overrun vulnerability

stack frame of f()

x

y

corrupt address

malicious code

higher
addresses

stack
growth

lower
addresses

stack frame of f()

x

y

return address

saved FP

a

b

FP

SP

stack
frame
of g()

strcpy() exploit

Figure 4: Buffer overrun exploit

Consider the buffer overrun exploit shown in Figure 3
and Figure 4, where the unchecked string x is copied into
local variable b. Because x is larger than b, the procedure
return address is overwritten, and the malicious code
passed in x is executed following the procedure return.
This anomaly is not always detected by XOM or MH
because memory integrity verification is not performed
when the stack frame of g is created. Because the hashes
are updated only on L2 write back, they do not always
reflect the value of the correct procedure return address,
hence corruption of this address is not reliably detected.

2.2. Other software and architectural defenses

Software tools and safe programming dialects have
been designed to defend against vulnerabilities most
commonly exploited by malicious code. StackGhost [12],
and Cyclone [13] are two examples. Common drawbacks
of these software methods are: protection of only selected
libraries and functions; significant adverse performance
impact and code bloat; and compiler modifications and/or
rewriting and recompiling of legacy code.

An architectural technique is presented in [14] that
guards against buffer overrun exploits. This is achieved
by keeping the procedure return addresses in a secure
return address stack (SRAS) rather than in data memory.
SRAS causes no code bloat and has minimal adverse
performance impact, but it does not protect against
exploits other than buffer overruns nor against general
unauthorized code execution.

The AMD64 architecture uses a no-execute (NX) flag
to disable instruction execution from selected memory
segments, such as the data stack [15]. However, it is still
possible to inject malicious code into other unprotected
memory segments, such as the heap or static/global
variables [16]. Furthermore, flow anomalies can also be
triggered without malicious code injection, for example
by simply corrupting the procedure return address and
transferring execution to a random location in the
program.

There are also host-based and network-based intrusion
detection (ID) tools to detect anomalous system and
network activity. Examples include [17][18]. In general,
ID tools can only identify intrusions with a delay [19],
which is often significant. Therefore, their usefulness is
limited against fast-propagating malicious code.

Program Code

Program Appendix
Containing HMACs

...
 jmp hash_block_7

hash_block_13:
 hash_ptr 13
 st R17, R18, 0
 addi R18, R18, 64
 subi R19, R19, 56
 add R20, R18, R19
 ld R21, R20, 0
 st R21, R18, 0
 st R21, R18, 64
 addi R21, R21, 8
 st R21, R18, 4
 jmp hash_block_18

hash_block_14:
 hash_ptr 14

...
0x68ec2df4
0x3ad63046
0x8a3cf73e
0x3f35d840
0x20ab5634
0x59a7c378
0x9e3cb67f
0x3708dc3f
0x69ab4302
0xce360e9c
0x60dc134a
0x0d4052a8

Figure 5: Program code in REM

3. Runtime Execution Monitoring (REM)

3.1. HMAC computation

REM verifies program execution at the basic block
(hash block) level. We define a hash block as “a sequence
of instructions with a single entry point, single exit point,
and no internal flow control instructions, such as branch,
call, return instructions”. While this is generally identical
to the definition of a basic block, we prefer to define a
hash block explicitly since the basic block definition
occasionally excludes the “single entry point”
requirement.

REM involves computing an HMAC (keyed hash) for
each hash block of a program when it is first installed on
the host computer. The HMACs are then appended to the
program. A new instruction, hash_ptr (hash pointer), is
added to the ISA. Each hash block begins with a hash_ptr
instruction, whose immediate operand points to the
corresponding HMAC in the program appendix (Figure
5). This facilitates finding the HMAC of a given hash
block during execution. Since the generation of the
HMACs and the insertion of hash_ptr instructions can be
performed directly on executable code, recompilation and
compiler modifications are not necessary. This makes
REM suitable for protecting proprietary and legacy code,
where source code is not available.

The key used to generate the HMACs is called the
REM key, which is randomly assigned to each processor
and is required for software installation. HMACs can be
generated using a hash algorithm (e.g. SHA-1, MD5 [11])
or a symmetric-key cipher. In this paper, we use the AES
symmetric-key cipher [20] with 128-bit keys because it
has very fast hardware implementations [21]. We set the
default HMAC size equal to the AES block size, which is
128 bits. To compute the HMAC of a hash block, we first
parse the instructions into 128-bit blocks (i.e. groups of
four if the instruction size is 32-bits). Zero padding is
used if a block contains uneven number of instructions.
Each block is then encrypted with AES using the REM
key. Finally, the encrypted blocks are XOR’ed together to
generate a 128-bit HMAC. Using AES in the ECB mode
is acceptable because the hash block size is usually small
[11]. Therefore, we believe that the security of this
scheme is not less than other 128-bit hash algorithms.

There are many hardware designs for fast AES
implementation. One example is described in [21], which
can perform AES encryption in 10 cycles, with an
effective pipelined latency of 1 cycle. The area of this
design is reported as 173,000 gates. Better performance
(or smaller area) can be realized for REM by exploiting
the fact that the REM key is fixed for each processor. In
this paper, we will assume using an AES unit with a 20-
cycle absolute latency and a 1-cycle effective pipelined
latency. As we will discuss in Section 4.2, a longer
encryption latency can be simply accommodated by using
a larger HMAC read buffer.

3.2. REM architecture

Figure 6 shows the elements in the REM datapath. L1
I-cache is shared to store both the instructions and
HMACs. The HMAC compute logic (HCL) reads
instructions in 128-bit blocks and computes the HMAC
corresponding to the current hash block. HCL is
connected to the pipeline control and processes an
instruction block only after all the instructions in the
block are committed. This simplifies the handling of
instructions that are speculatively issued and instructions

HMAC of
hash_block_12

HMAC of
hash_block_13

HMAC of
hash_block_14

Operand of the leading hash_ptr
instruction points to the starting

address of the corresponding
HMAC.

issued in branch delay slot(s), when these may be
conditionally nullified. HCL also interfaces to the L1 D-
cache to save (restore) its internal state on context
switches and interrupts (the dotted data line).

Hash
Read

Buffer

Main Memory

Chip
Boundary

L2 Cache

L1 I-Cache

L1 D-Cache

HMAC
Compute

Logic

To I-Fetch Unit

 ?

Load/Store Pipe

Exception

Figure 6: REM datapath

Concurrent to the HMAC computation, the stored
HMAC of the current hash block is read from the memory
and stored in the first-in-first-out (FIFO) hash read buffer.
This buffer is necessary because the HMAC computation
latency is longer than the HMAC lookup latency. The
address of the HMAC corresponding to the current hash
block can be computed simply by scaling the operand of
the leading hash_ptr instruction, and then adding this
value to the starting address of the HMAC appendix.
When the HMAC computation is finished, it is compared
to the stored HMAC, and an exception is raised if the
values mismatch.

3.3. Security

REM can detect flow anomalies that occur during
program execution. Consider the buffer overrun example
in Figure 3 and assume that the infused malicious code
attempts to spawn a command shell to execute arbitrary
system commands. This normally requires using a flow
control instruction to invoke the kernel mode (for
example, the int instruction on x86 [22]). With REM, this
raises an exception since there will be no HMAC(s)
associated with the hash block(s) in the malicious code.
Even though there will be a 20-cycle delay before this
anomaly is detected, the exception will be raised before
the kernel can transfer execution to the unauthorized
command shell. Any attempt to skip legitimate
instructions will also be detected with REM, since the
HMACs are computed only on executed instructions.

To circumvent REM protection, an inside attacker (or
the malicious code itself) may attempt to modify a
program and also update the associated HMAC appendix.
However, this requires recovering the REM key by
breaking 128-bit AES encryption, which is not
computationally feasible. While the default HMAC size in
REM is 128 bits, 64-bit or 32-bit HMACs can also be
used for storage-constrained or less security-critical
systems. In this case, it may be possible to recover the
REM key by examining installed code. Even in these

instances, REM can still offer protection against
automated attack tools on the network that cannot launch
host-specific exploits.

We have so far assumed using a trusted operating
system (OS) to prevent the REM key from being
compromised during program installation. If the OS
cannot be trusted, it is possible to guard the REM key by
using a combination of public-key/symmetric-key
encryption as in the XOM architecture [6]. The REM
architecture does not provide memory integrity
verification or program code confidentiality. If these
functions are required, XOM or MH architectures may be
used in combination with REM.

Table 1: Architectural parameters

Architectural Parameter Value
L1 I-Cache 64 kB, 2-way, 32 B lines
L1 D-Cache 64 kB, 2-way, 32 B lines

L2 Cache (unified) 1 MB, 4-way, 64 B lines
L1 latency 1 cycles
L2 latency 10 cycle

Memory latency 100 cycle
Number of load/store pipes 2

Fetch/Decode/Issue/Commit Width 4
Number of Register Update Units 128

HMAC Latency 20 cycles (1 cycle pipelined)
Hash Read Buffer 16 entries

0

10

20

30

40

50

60

70

80

90

100

gzip vpr gcc m cf parser Average

32-b it 64-bit 128-b itH M AC Size:

% Storage
Overhead

Figure 7: Code size increase in REM

4. Performance

To evaluate the performance impact of the REM
architecture, we perform simulations on five SPEC 2000
integer benchmarks [23]. We use the SimpleScalar
toolset, a cycle-accurate out-of-order superscalar
processor simulator, configured for the PISA instruction
set [24]. The default values for the architectural
parameters we use are summarized in Table 1.

4.1. Code size

The REM architecture increases the program size due
to the hash_ptr instructions and the appended HMACs.
Figure 7 shows the total storage overhead when 32-bit,
64-bit, 128-bit HMACs are used. The dashed lines on the
columns indicate the size increase due to the hash_ptr
instructions, which is 17.3% on average. The total
overhead is 34.6%, 51.9%, and 86.6% for 32-bit, 64-bit,

and 128-bit HMACs respectively. While the 86.6%
overhead of the 128-bit HMACs is high, the total size
increase on a system may be limited by using REM only
on vulnerable applications, such as webservers and
mailservers that maintain continuous network
connections. For resource-constrained environments,
smaller 32-bit HMACs may be preferred to limit the total
overhead to about 35%.

0.50
0.55

0.60
0.65

0.70
0.75
0.80

0.85
0.90

0.95
1.00

gzip vpr gcc mcf parser Average

4 8 16 32
Normalized

IPC Number of Entries in Hash Read Buffer:

Figure 8: Impact of hash read buffer size

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

gzip vpr gcc mcf parser Average

64 kB 128 kB 256 kB 512 kBL1 I-Cache Size:
Normalized

IPC

Figure 9: Impact of L1 I-cache size

v

1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38

gzip vpr gcc mcf parser Average

32-bit 64-bit 128-bit

HMAC Size:
Normalized Bandwidth
Usage

Figure 10: Off-chip bandwidth consumption

4.2. Hash read buffer size

The optimal size of the hash read buffer depends on
the HMAC computation latency. In the worst case, a
consecutive sequence of unconditional branch instructions
is executed, thereby starting a new hash block each cycle.
To avoid pipeline stalls in this case, an n-deep hash read
buffer is necessary, where n is the HMAC computation
latency. Because such an instruction sequence is rare, the
actual read buffer size can be significantly smaller.

Figure 8 shows the performance degradation when
hash buffers with 4, 8, 16, and 32 entries are used. A
normalized IPC = 1 is the baseline performance of the
benchmarks (i.e. without REM). With a 4-entry buffer,
the performance degradation is significant for all
benchmarks, averaging 35.4%. With an 8-entry buffer, the
average degradation reduces to 11.0%. There is no
measurable performance difference for buffers with 16 or
32 entries. The average slowdown for these cases is 6.4%.

4.3. Cache contention and memory bandwidth

Once a sufficiently large hash buffer is used, any
performance degradation in REM, which averages 6.4%
(Figure 8), is due to the additional memory accesses
needed to bring the stored HMACs into the read buffer.
The additional memory reads increase both the L1 I-cache
contention and the off-chip bandwidth consumption.
Figure 9 shows the impact of the former effect for
different L1 I-cache sizes. When the I-cache size is
increased to 128 kB and 256 kB, the average performance
degradation reduces to 5.1% and 4.1% respectively.
Figure 10 shows the increase in off-chip bandwidth
consumption at different HMAC sizes. The average
additional bandwidth consumption with REM using 128-
bit HMACs is 33.4%. This reduces to 31.6% with 64-bit
HMACs, and to 28.1% with 32-bit HMACs. The
reduction is not proportional to the HMAC size because
the contribution of the hash_ptr instructions to the
bandwidth consumption is the same at all HMAC sizes.

5. Conclusions

We presented an architectural technique, which we call
Runtime Execution Monitoring (REM), to detect program
flow anomalies associated with unauthorized code
execution on a computer system. The key idea in REM is
the verification of program code at the hash block (basic
block) level. This is achieved by pre-computing keyed
hashes (HMACs) for each hash block during program
installation, and then verifying these values during
program execution. Significant implementation variables
in REM are: (1) size of the HMACs, (2) algorithms used
to compute the HMACs, (3) hash read buffer size, (4) L1
I-cache size. HMAC size depends on the desired security
level of the system. While 128-bit HMACs may be
needed for security-critical systems, even a smaller (32-
bit) HMAC will provide protection against automated
attack tools. While we have used the AES symmetric-key
cipher to generate the HMACs, other symmetric-key or
hash algorithms may also be used (e.g. SHA, MD5) [11].

The function of the hash read buffer is to temporarily
store the looked-up HMACs until they are compared with
the computed HMACs. We showed that a 16-entry read
buffer is sufficient to eliminate all HMAC-related
pipeline stalls when the HMAC computation latency is 20
cycles (single-cycle pipelined latency). A longer absolute

HMAC latency does not degrade performance as long as
the read buffer is large enough. This is because the
HMAC compute unit is not on the critical memory path.
In this regard, REM differs from XOM, where the
encryption unit degrades performance by increasing the
memory access latency. Once a large-enough hash read
buffer is used, performance degradation in REM is
primarily due to the cache contention resulting from the
shared use of the L1 I-cache to store both instructions and
HMACs. The impact of this effect is 6.4% on average.

By verifying program code integrity at the hash block
level, REM can monitor instructions whose behavior is
typically exploited by malicious code, such as branch,
call, return instructions. In this regard, REM differs from
the previous works, XOM and memory hashing, which
perform encryption/decryption and integrity verification
on fixed-size memory blocks. Furthermore, because REM
requires an explicit installation phase requiring an
authorization password (the REM key) for each program,
it also provides protection against other computer security
threats linked to unauthorized code, such as viruses
(excluding macro viruses), Trojan horses, and backdoor
programs. While we do not advocate REM as a one-size-
fits-all solution against all such malicious code, it can
contribute significantly to computer security if it is
employed as a new layer of defense concurrently with
existing security tools.

References

[1] The SANS Institute, “The 20 Most Critical Internet
Security Vulnerabilities”,
<http://www.sans.org/top20>.

[2] D.M. Kienzle and M.C. Elder, “Recent Worms: A Survey
and Trends”, Proc. ACM Workshop on Rapid Malcode, pp.
1-10, Oct. 2003.

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver, “Inside the Slammer Worm”, IEEE
Security and Privacy Magazine, vol. 1, no. 4, pp. 33-39,
Jul.-Aug. 2003.

[4] R.M. Best, “Preventing Software Piracy with Crypto-
Microprocessors”, Proc. IEEE COMPCON, pp. 466-469,
Feb. 1980.

[5] T. Maude and D. Maude, “Hardware Protection Against
Software Piracy”, Communications of the ACM, vol. 27,
no. 9, pp. 950-959, Sep. 1984.

[6] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.
Mitchell, M. Horowitz, “Architectural Support for Copy
and Tamper Resistant Software”, Proc. Int. Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 168-177, Nov. 2000.

[7] B. Gassend, G.E. Suh, D. Clarke, M.v. Dijk, and S.
Devadas, “Caches and Hash Trees for Efficient Memory
Integrity Verification”, Proc. Int. Symposium on High-
Performance Computer Architecture (HPCA), pp. 295-306,
Feb. 2003.

[8] D. Lie, J. Mitchell, C.A. Thekkath, and M. Horowitz,
“Specifying and Verifying Hardware for Tamper-Resistant

Software”, Proc. IEEE Symposium on Security and Privacy
(SP), pp. 166-177, May 2003.

[9] J. Yang, Y. Zhang, and L. Gao, “Fast Secure Processor for
Inhibiting Software Piracy and Tampering”, Proc. Annual
IEEE/ACM Int. Symposium on Microarchitecture
(MICRO), pp. 351-360, Dec. 2003.

[10] G.E. Suh, D. Clarke, B. Gassend, M.v. Dijk, S. Devadas,
“Efficient Memory Integrity Verification and Encryption
for Secure Processors”, Proc. Annual IEEE/ACM Int.
Symposium on Microarchitecture (MICRO), pp. 339-350,
Dec. 2003.

[11] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, Oct. 1996.

[12] M. Frantzen and M. Shuey, “StackGhost: Hardware
Facilitated Stack Protection”, Proc. USENIX Security
Symposium, Aug. 2001.

[13] L. Hornof and T. Jim, “Certifying Compilation and Run-
Time Code Generation”, Proc. ACM Conf. Partial
Evaluation and Semantics-Based Program Manipulation,
Jan. 1999.

[14] J.P. McGregor, D.K. Karig, Z.Shi, and Ruby B. Lee, “A
Processor Architecture Defense against Buffer Overflow
Attacks”, Proc. IEEE Int. Conf. Information Technology:
Research and Education (ITRE), pp. 243-250, Aug. 2003.

[15] AMD, AMD64 Architecture Programmer’s Manual
Volume 2: System Programming, available at
<http://www.amd.com>, 2003.

[16] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer Overflows: Attacks and Defenses for the
Vulnerability of the Decade”, Proc. DARPA Information
Survivability Conference and Exposition (DISCEX), vol. 2,
pp. 119-129, Jan. 2000.

[17] W.W. Stames, “Integrity Assessment Tools: Fundamental
Protection for Business Critical Systems, Data, and
Applications”, Proc. Int. Conf. Information Technology
Interfaces (ITI), pp. 465-470, Jun. 2000.

[18] C.C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring
and Early Warning for Internet Worms”, Proc. ACM Conf.
Computer and Communication Security (CCS), pp. 190-
199, Oct. 2003.

[19] R.A. Kemmerer and G. Vigna, “Intrusion Detection: A
Brief History and Overview”, Computer, vol. 35, no.4, pp.
27-30, Apr. 2002.

[20] National Institute of Standards and Technology (NIST),
“Advanced Encryption Standard (AES)”, FIPS Pub. 197,
<http://csrc.nist.gov/publications/fips>, Nov.
2001.

[21] H. Kuo and I. Verbauwhede, “Architectural Optimization
for a 1.82 Gb/s VLSI Implementation of the AES Rijndael
Algoritm”, Proc. Int. Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Lecture Notes
in Computer Science, vol. 2162, pp. 51-64, May. 2001.

[22] Intel, IA-32 Intel Architecture Software Developer’s
Manual Volume 2A: Instruction Set Reference, A-M,
available at <http://www.intel.com>, 2004.

[23] Standard Performance Evaluation Corporation (SPEC),
SPEC CPU2000, <http://www.spec.org/cpu2000>.

[24] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0”, Computer Architecture News, pp. 13-25, Jun.
1997.

