Compiler-Based Frame Formation for Static Optimization

Feng Shi, Sobeeh AlmukhaizijrRey-Chang Lin and Yiorgos Makris
Electrical Engineering Dept.
Yale University
New Haven, CT 06511, USA

Abstract 2 Related Work

We selectively generate and optimize the frames constructed by |Lp s limited by the number of instructions in a basic block. In
the rePLay architecture statically. Since static analysis provides a grder to achieve higher levels of ILP, processors fetch and execute
global view of the interaction between the basic blocks and a biggerinstructions from multiple basic blocks in each cycle. Several com-
aggressive optimization space, we propose a method to construchjler and hardware techniques have been proposed. Most of these
the frames using profiling and static analysis. Frame selection and schemes group sequential basic blocks into larger entities, thereby
optimization are analyzed in the criteria to produce well-optimized, reducing control dependencies, increasing the fetch rate and allow-
frequently executed frames with minimum recovery penalty. In addi-ing more opportunities for optimization. Previous approaches in-
tion, hardware support is reduced to only perform mis-speculation c|yde superblock formation [13], predicated execution using hyper-
recovery. Empirical results show frame-optimized code outperform- p|ocks [17], VLIW treegion scheduling [12], block-structured ISA
ing baseline code on the SPEC integer benchmarks. [11] and frame scheduling [6].

Superblocks comprise a block of instructions with single entry
. and multiple exits [10, 13]. A superblock is formed based on static
1 Introduction branch analysis and/or profiling information. Profiling identifies

Current microarchitectures are moving to deeper pipelines, blocks that frequently execute in sequence and places them in con-
wider issue widths and larger number of functional units. For Secutive locations. All side entrances to a superblock are removed
high performance processors, extracting sufficient Instruction-Level Py tail duplication. Therefore, when a superblock is entered, it is
Parallelism (ILP) is an increasing challenge. Unfortunately, con- likely that it will execute completely.
trol dependencies prevent exploiting these hardware resources effi- Control dependencies in hyperblocks [17] are converted into
ciently [8, 20]. In an effort to boost ILP, hardware-based (dynamic) data dependencies through the procesié-cbnversion Similar to
[5, 9, 14, 18] and compiler-based (static) [7, 11, 12, 13, 17] tech- superblocks, successive sets of instructions are combined and op-
niques have been proposed to reduce control dependencies. Thiémized to form a single hyperblock, however, hyperblocks may
goal is clear: identify and optimize large sequences of frequently include multiple paths if the bias cannot be determined. A disad-
executed code by folding the branches between the basic blocks. A¥yantage with predication is the increase in the critical path length.
the speculation when folding branches is not always correct, somel he processor must wait for the data dependency to resolve rather
form of recovery is provided to tolerate mis-speculated execution. than speculate the control dependency at the fetch stage.

Dynamic techniques adaptively generate and optimize the fre- ~ VLIW treegions [12] use multiple execution paths to improve
quently executed code at run time, while static techniques analyzethe compiler chances to speculate operations. Treegion formation
the program code at compile time. Unfortunately, dynamic meth- combines trees of basic blocks with a rooted Control Flow Graph
ods may incur a prohibitive implementation cost [4] and the lack of (CFG) into a single VLIW instruction. The scheduling of instruc-
dynamic information, manifested in a low branch prediction accu- tions can use or ignore the profiling information. A disadvantage
racy, reduces the benefits of static methods. We present an aggreés the increased pressure on the compiler to find enough indepen-
sive compiler-based technique that takes advantage of both dynamiélent instructions to fill each VLIW instruction and to schedule the
and static techniques to enhance the performance of superscalar agonditional operations early enough for multi-way jumps.
chitectures. The proposed method utilizes profiling information to ~ Block-Structured I1SA [11] enlarges basic blocks and considers
construct frames [18] at compile time. Profiling information aids the newly generated blocks as the architectural atomic unit. Since
the static analysis of the program flow to select among the framesthe blocks in the enlarged blocks are chosen using static informa-
The extended code length and atomic nature of frames enables mor8on, a limit may be reached in the quality of the enlarged blocks
aggressive optimization algorithms at compile time. Consequently,9enerated. Hardware support is required through the branch predic-
the proposed technique requires minimal hardware support; only totor for multiple branch predictions.
recover from mis-speculated frames. Mesocode [22] is a code format designed to improve the fetch

The remainder of this paper is organized as follows. In section 2, bandwidth efficiency of Itaniufft processors. A trace-driven post-
we discuss previous hardware and compiler-based techniques. Se®2ss compiler identifies frequently execustamsor contiguous
tion 3 presents the proposed frame construction and optimizationinstructions executed in between two taken branches, and encodes
method. We present experimental results evaluating the proposedhem into mesocode regions which are attached as an appendix to
method in section 4 and conclude in section 5. the original code. On average, the size of a stream is about twice
the size of a basic block. The machine supporting mesocode can
*The author is supported through a scholarship from Kuwait University. predict, fetch, and execute these streams efficiently.

The rePLay microarchitecture [18] is a hardware mechanism for structed frames, such as subroutine calls, are easily identified and
frame creation and optimization. A frame is an atomic region com- tolerated using static analysis. Finally, the dynamic construction of
bining multiple basic blocks by converting branches into assertions.frames must be done on-the-fly to sustain the optimizer throughput
The average frame length is usually much longer than the length of[6]. The arrival of frames in the rePLay architecture is one frame
a block or a trace. The hardware support requires a frame construcevery 110 clock cycles; the design of an optimizing engine that op-
tor, a programmable engine for frame optimization, a frame cache,erates at that rate remains a significant design challenge.

a region sequencer and a recovery mechanism for incompletely ex-

ecuted frames. As the program executes, the frame constructor col3.1 Hardware Support for Frames

lects instructions and converts highly biased branches into asser-

tions. The candidate frame is sent to the optimization engine to per- We have modified the HPL-PD [15] ISA to incorporate the spec-
form classical compiler optimizations. After the optimized frames ulative nature of the proposed method. Three additional instructions
are stored in the frame cache, the sequencer is updated with the newere added: FSTART, AST and LAST. A frame start instruction
set of available frames. The sequencer is responsible for dispatchingFSTART) is inserted in the beginning of each frame to notify the
either basic blocks or frames based on the confidence that a fram@rocessor of a speculative state of execution. Like a NOOP instruc-
will execute completely. If an assertion fires, the architectural statetion, FSTART uses only one issue slot. All conditional branches in
is recovered by the recovery mechanism. a frame are transformed into assertions (AST) and all unconditional

The design of the rePLay microarchitecture is a significant chal- branches are nullified. The last AST in a frame is converted to a
lenge as frames are constructed dynamically in hardware at an extast assertion (LAST); if all ASTs and the LAST do not fire then
tremely fast rate. Moreover, the set of optimizations that may be we have a frame hit. All operations between FSTART and LAST
performed on a frame is limited by the affordable hardware cost are simply viewed as speculative operations and their results should
and the time the optimizer can work on the frame. Nonetheless, thenot be committed until the LAST is correctly executed. Similar to
frames that can be constructed if the hardware constructor is capable reorder buffer in superscalar architectures, a frame buffer stores
of generating and optimizing these frames result in a large speedupthe temporary results for registers and memory. If an AST fires, the
As will be discussed in the next section, we propose moving the results in the frame buffer are simply discarded and the program is
frame constructor and optimizing engine to the compiler, hence, theredirected to the corresponding original code.

hardware cost can be kept low without sacrificing the speedup. Instructions may generate exceptions during the execution of
frames. All the operations between FSTART and LAST in a frame
3 proposed Method are considered speculative; any raised exception is not handled im-

mediately and the exception bit of the destination register is set [2].

The proposed method aims at reducing the gap between statidf the exception bit of a source register is set, then the exception is
and dynamic techniques. We propose modifying the compiling pro- propagated and the exception bit of the destination register is also
cess to utilize profiling information while constructing frames. The set. ASTs and LAST are implicit check points where if any prior
frame constructor in the rePLay architecture provides the largestexception occurred then the state is recovered and the execution is
stream of instructions when compared to other dynamic and staticredirected to the original code. Genuine exceptions will be raised
techniques. We propose performing static analysgetectivelyin- again and handled during the execution of the original code.
clude frames in the executable binary. The frames are either con-
structed by the rePLay architecture or statically by imitating the 3.2 Frame Analysis
behavior of the rePLay frame constructor. The binary can run on
any architecture that has speculation supported. The branch predic- The program trace is analyzed to figdod sequences of basic
tor of the targeted architecture must update the branch history onlyblocks to form frames. Several factors determine the quality of a
when a frame is successfully executed. When an assertion firesframe. First, the size of the frame should not be very large. In-
the machine state is recovered and the execution is redirected to thdeed, generating a large frame may lead to undesirable side-effects
corresponding original basic block. In order to reduce the penalty such as code expansion or increase in the instruction cache miss
associated with firing assertions, we follow the same observation agate. Second, the execution frequency of the frames should be high.
in [6] and push the assertions as high as possible within the frame. The speedup from a certain frame is limited by the number of times

Similar to block-structured ISAs and treegions, the proposed the frame is executed. The third consideration is the optimization
method significantly reduces the hardware cost. However, the propotential of a frame. Sequences of basic blocks with strong data
posed method can effectively control the number and size of in- dependencies limit code optimization and, therefore, are poor can-
cluded frames; a goal that the other static schemes may not controldidates for constructing frames and should be excluded. The fourth
Moreover, the scalability in performance of block-structured ISAs consideration is the penalty of a fired assertion in a frame. As in
and treegions is highly questionable as they must generate treegionthe case when a branch is mispredicted, an assertion that fires be-
and enlarged atomic blocks that match the processor width. Thecause the frame will not execute completely causes the processor
advantages of the proposed method as compared to dynamic teche nullify these executions. The fifth consideration comes from the
nigues are more evident. First, optimizations using time-consuminghardware/software recovery mechanism for supporting frames. As
data flow analysis can be easily performed at compile time. Sec-previously stated, the speculative state for frames is limited by the
ond, most of the dynamic techniques use a separate cache to holthicroarchitectural support on the number of speculative instructions
the dynamically generated frames or traces. In contrast, the prothat it can keep track of. Naturally, the frame constructor must not
posed method is able to utilize the complete instruction cache togenerate frames that require more bookkeeping than the microar-
store the frames. Third, hazardous conditions to dynamically con-chitecture can offer.

Sampled Profiling Trace

Frame

Icode

Analyser
Input with IMPACT Elcor
Program IMPACT Icode Frames Frames Back End IR (Including Assembler
F End (Including Additional P»| Simulator
ront En A 4 Optimization Optimization
F Engine) Engine)
rame

Constructor

Figure 1. Frame Formation and Optimization Tool Based on Trimaran Tool Set

In order to find candidate basic blocks for frame formation, 3.3
frame analysis takes place in two steps. In the first step, a frame
parsing program detects hot Spots in the trace by Counting the rep_ We utilize a basic heuristic to select frames based on the frame
etition for each pattern of certain lengths. The patterns with an ex-Size, the execution frequency, teatrance rateand theexit rate
ecution frequency beyond a predefined threshold are selected. Théhe entrance rateis the percentage of times a candidate frame is
threshold can be an absolute value defined for each trace or a pecompletely executed and thexit rateis the ratio between the en-
centage of the trace length. In the second step, the starting blockrance rate of a candidate frame, extended by one more block, to
and the ending block are determined for each selected pattern. Althe entrance rate of the original candidate frame. A high entrance
though trace patterns Wlth h|gh frequencies are se|ected in the pre[ate indicates the likelihood that a frame will Completely execute
vious Step’ the range for each pat’[ern is not clear yet For examp|eilf the first basic block is executed. A low exit rate indicates that
the trace parsing program detects a frequently executed pattern odding the block in consideration will greatly reduce the probabil-
length 7 that is a subset of a frequently executed pattern of lengthity of completely executing the frame.

10; one frame suffices in most of these cases. We consider frame candidates with an entrance rate higher than

Let L be the number of execution cycles it takes to completely 80% for the first three basic blocks. The size of frames is set be-
execute a frame. We introduce a quantitative criterion called the ef-tween 3 to 30 basic blocks; a frame smaller than 3 blocks is assumed
fective frame length X ; ;) to assess the quality of a pattern. The 00 small to optimize and a frame bigger than 30 blocks is too large
effective length of a frame is th@veragenumber of execution cy- for the hardware recovery mechanism to maintain. The frame selec-
cles each time a frame is completely executed: tion procedure selects between frame candidates and decides which
basic block begins or ends a frame. A frame is terminated if the
exit rate is smaller than 0.95 or if the frame size is bigger than the
upper bound on the number of blocks. Only those frames whose
executions are not covered by other longer frames are selected.

The frame formation and optimization stage is performed after
the frames are selected. A frame formation and optimization tool
tion fires andR x;: and Ry are the percentages of times that the was developed based on the Trimaran tool set [21]. As illustrated in
frame is completely and incompletely executed, respectively;: figure 1, the tool generates frames based otcthderepresentation
andR s are related to the conditions under which the frame is ex- of the program and the frame information gathered in the frame se-
ecuted. In this work, frames are statically linked into the program; lection phase. All the operations in the basic blocks of a frame are
a frame is executed every time the first basic block of the frame isduplicated; branches are replaced by assertions and operations are
referenced. The average speedsip)(of a frame is: packed into a single block. The frame is inserted into the original
program and all original branch operations that branch to the first
basic block of the frame are retargeted to the head of the frame.
The new program performs the same operations of the original pro-
gram but can be further optimized with Trimaran. The set of opti-
mizations applied by IMPACT [3] is: dead code removal, reverse
copy propagation, constant propagation, copy propagation, mem-
_ ©) ory copy propagation, common subexpression elimination, redun-
L x Ruit + P X Ruiss dant load/store elimination, constant combination, constant folding,

Sy depends ol and P for every candidate frame. Sindeand strength reduction, code motion, operation folding, operation can-
P are attributes of a frame, they can only be accurately computed af-cellation, sign extension removal and register renaming. During the
ter the frame is formed and optimized. The quality of frames can be generation of machine-dependent intermediate representations, ad-
enhanced by integrating the pattern selection along with the frameditional optimizations such as forward copy propagation, dead code
formation and optimization procedure. Heuristic methods for esti- elimination and common subexpression elimination are applied by
mating L and P may be utilized in order to reduce the computation Elcor [16]. At this point, the assembly code is generated along with
complexity, however, the quality of frames will be reduced. the schedule length of all the basic blocks and frames.

Implementation

= Cy — L4 Rariss
N Rpit
where Cy is the total number of execution cycles the program
spends in this frameNy;; is the total number of times that the
frame is completely executed, is the average penalty if an asser-

L

x P (1)

Lo'ri inal
Sp === @)
Less

where L,,i4ina iS the number of execution cycles of the original
set of basic blocks. Substituting. ; ; using (1), we obtain:

Loriginal X RHit

Sy

Benchmarks HPL-PD Architecture

Name Input Set 1 Input Set 2 Register File Type Size Operation Type Latency
bzip2 | input.compressed NA General purpose: static| 64 Integer 1
gce amptjp.i c-decl-s.i General purpose: rotating 64 Integer Mul/Div 3/8

go 2stone9.in 5stone2l.in Floating-point: static 64 Floating-Point 3
gzip input.combined | input.program Floating-point: rotating | 64 FP Mul/Div 3/8
ijpeg vigo.ppm penguin.ppm Predicate: static 256 || Load Levl/Lev2/Lev3| 2/7/35

li training testing Predicate: rotating 64 Store 1
mcf training inp.in Branch-target 16 Branch 1
twolf training NA Control 64 AST/LAST 1
vortex persons.250 persons.1k

vpr training 1 testing 1

Table 1. Architecture and Benchmark Characteristics

Benchmark bzip2 | gcc go | gzip | ijpeg li mcf | twolf | vortex | vpr | Average

Number of Frames 9 639 | 147 27 41 30 30 51 57 50 108.1

Code Expansion (%)| 10.7 0.7 4.8 9.4 5.3 6.7 2.0 35 15 4.6 4.9

Avg. # of Basic Blockg 11.5 | 489 | 3.7 4.6 5.7 4.9 5.0 4.1 9.8 5.0 5.9
Avg. # of Operations | 75.9 | 30.0 | 21.9 | 29.0 | 29.3 | 27.3 | 264 | 27.1 444 | 50.4 36.2
Avg. Length (L) 205 | 11.0| 103 | 11.3 | 10.0 | 10.8 | 9.8 12.4 16.5 19.7 13.2
Avg. Frame HitRate | 0.99 | 0.91 | 0.94 | 099 | 0.90 | 091 | 0.93 | 0.89 | 0.98 | 0.85 0.93
Avg. Lesy 206 | 11.7| 108 | 114 | 106 | 11.5| 104 | 13.1 169 | 211 13.8

Avg. Reduction (%) | 10.1 7.5 -0.4 | -0.6 3.4 27 -0.1 | -0.7 22.7 6.5 7.5
Avg. Speedup/Frame| 2.79 | 209 | 1.63 | 1.67 | 219 | 228 | 2.01 | 1.75 | 3.09 | 1.98 2.15

Table 2. Frame Characteristics

4 Experimental Results 100%

In order to analyze the performance of the proposed method, six g% — Memory(Byte) |1
SPECO00 and four SPEC95 integer benchmarks were simulated to
completion. The SPEC95 benchmarks were chosen due to compi-
lation errors by Trimaran on the SPECOO version of these bench-
marks. All the benchmarks were compiled using the default op-
timization flags of Trimaran 3.0.b [21] distribution with region for-
mation set to basic blocks and the executable generated for the HPL-
PD [15] architecture. The architecture was configured based on
the default settings of an 8-wide HPL-PD architecture: four inte-
ger units, two floating units, two memory units, one branch unit and
an ideal instruction cache. The ISA was modified to include the
FSTART, AST and LAST instructions [1]. The benchmarks used

and the architecture characteristics are listed in table 1. We com- % 10 20 30 20 0 e 70 a0 o0
pared the frame-optimized code with the baseline code generated Used entries in the recovery buffer

by Trimaran using path profiling with the same optimization flags.

80%

70% |

60% [

50% [

40%

30% |

20% [

Cumulative distribution of frames

10% [

Figure 2. % of Frames vs. Buffer Size

4.1 Frame Selection

The first input set of table 1 is used as a profiling input to con- average. With a frame hit rate of 93%. is almost the same as
struct frames. Frames are identified using a trace sampling methodL. since the penalty effect of a mis-speculated frame is marginal.
First, frequently executed basic blocks in each benchmark are iden¥hen the frames are optimized, we obtain an average reduction of
tified. The execution time of the frequent blocks is usually above 7-5% in the number of operations, as compared to the original basic
90% of the total program execution time. The trace is randomly blocks. In some instances, additional operations, such as register
sampled for 100M clock cycles to find frames containing these fre- spill/read operations, added by the compiler during the optimiza-
quent blocks according to the criteria described in section 3.3. tion process, increase the number of operations. Finally, the average

The characteristics of the frames generated for the simulatedspeedup of frames is in excess of 100% as the compiler is able to
benchmarks are illustrated in table 2. The number of frames is re-find more operations to execute in parallel.
ported in the second row of the table. It can be seen that an average The size of the recovery frame buffer was not restricted during
of 108 frames were generated across all the benchmarks. Includthe analysis. Figure 2 illustrates the cumulative frame distribution
ing all the generated frames resulted in an average code expansioaccording to the size of the register/memory buffer. The required
of only 5%. The average number of basic blocks and operations insize of the frame buffer ranges between 0 — 86 registers and 0 — 48
frames for all the benchmarks is illustrated in the forth and fifth row, memory bytes. A buffer of 64 registers and 32 memory bytes would
respectively. The execution time of the framég {s 14 cycles on handle more than 98% of the frames across all the benchmarks.

70%

[}
E son | 16
c
8
3 50% 1 1.5
Q
3
o 40% S 14t
g g
£ 30% 2
e S 13t
(5]
g 20% | 1.2
c
[}
(&)
o 0% 1.1
o

; .) 1

bzip2 gcc go gzip ijpeg li mcf twolfvortex vpr Avg. bzip2 gcc go gzip ijpeg i mcf twolfvortex vpr Avg.
Benchmark Benchmark
Figure 3. % of the Execution Time of Frames Figure 5. Speedup (Perfect Profiling)

T T 70% T T
[} :npug Bl nputl
npu Input2
161 60% | =

15} 50% [

40%

Speedup

30%

20%

Percentage of frame execution time

10%

gcc go gzip ijpeg li mcf vortex vpr Avg. gcc go gzip ijpeg li mcf vortex vpr Avg.
Benchmark Benchmark
Figure 4. Performance Across Input Sets Figure 6. % of the Execution Time of Frames
4.2 Performance (Perfect Profiling) tions are only executed under one of the two input sets. The lack

of accurate profiling information is further worsened by the trace
sampling method, as the complete trace is not analyzed in order

The speedup of frames depends on two factors: the average; - . .
. 0 reduce the analysis complexity. Frame corruption degrades the
speedup and the execution frequency for each frame. These two

o erformance if the hit rate of a frame decreases when the program
factors were measured on the frames generated for the first input . . . L
- switches to another input set. Since the frame corruption is caused
set. The average of 108 frames per benchmark, constituting les

than 5% of the code size, contributes a considerable portion of the%y the dynamic behavior of the program, a purely static scheme can

program total execution time, as illustrated in figure 3. Combining do very little about t.

. . We analyzed the frame execution time and hit rate across input
these frequent frames with the average speedup per frame yields Sets. Figure 6 illustrates the percentage of frame execution time
speedup of 31% on the benchmarks, as illustrated in figure 5. - g P 9

for each benchmark on both input sets if the frames are generated
based on perfect profiling for the first input set. The benchmarks
4.3 Performance Across Input Sets with degraded performance in figure 4 have almost the same drop in
frame execution time in figure 6. We also observed corrupted frames
We simulated eight of the optimized benchmarks for a secondin the benchmarks with the second input set, as illustrated in table 3.
input set, as indicated in table 1. Figure 4 compares the speedup of he table lists the frame distribution in percentage according to the
each benchmark on the second input to the perfect profiling casechange in the frame hit rate across different input sets. The frame
Despite the enhanced performanceradf and the sustainable per- hit rate of the majority of the frames is reduced by less than 10%,
formance ofgcc go, andijpeg, we do observe tremendous per- while the frame hit rate of a few frames increases slightly. Despite
formance degradation in benchmarks ligeip. On average, the the overall unaffected frame hit rate, the real problem remains the
speedup dropped to 21%. The performance degradation is attributedfequency with which these frames are executed.
to insufficient profiling and/or frame corruption. Insufficient profil- We reevaluate the constructed framegpipto account for the
ing fails to provide a full-scale picture about the potential hot spots program behavior on different input sets. We constructed the new
in the program, hence the execution time of the generated framedrames based on profiling across input sets . In this case 55 frames
does not dominate the execution time of the program at runtime.were generated based on the second input set profiling, and 5 more
For example, the hot spots gfipunder the first input set and under frames were appended according to the first input set profiling. The
the second input set do not fully overlap. In addition, some func- generated frames resulted in a speedup of 38% for the first input set

Benchmark| > 0% | -(0-10%) | -(10-20%) | -(20-30%) | -(30-40%) | -(40-50%) | -(> 50%)
gcc 0.16% | 99.84% 0 0 0 0 0
gzip 36% 44% 4% 0 4% 0 12%
go 29.93% | 67.35% 0.68% 2.04% 0 0 0
ijpeg 56.41% | 43.59% 0 0 0 0 0

li 30% 33.33% 23.33% 10% 3.33% 0 0
mcf 58.06% | 41.94% 0 0 0 0 0
vortex 7.02% | 92.98% 0 0 0 0 0
vpr 12% 36% 20% 24% 6% 2% 0
average | 28.70% | 57.38% 6.00% 4.51% 1.67% 0.25% 1.5%
Table 3. Frame Hit Rate Degradation
Superblock Proposed Method

Benchmark Code Exp.| Speedupl| Speedup2| Code Exp.| Speedupl| Speedup2
gzip 342.3% -14.5% 20.0% 9.4% 31.1% 4.2%
gzip(across inputs) 342.3% -14.5% 20.0% 22.9% 37.9% 44.4%
li 62.8% 18.1% 6.2% 6.7% 34.2% 25.4%
mcf 675.8% 33.9% 29.9% 2.0% 39.4% 43.3%

Table 4. Speedup in Comparison to Superblocks

and 44% for the second input set. The program spent 58% and 63% [3]
of the execution time in executing the frames, respectively.

The proposed method is compared to the superblock technique
in table 4. Superblocks are generated by Trimaran with the default
configuration using path profiling, while frames are constructed by
profiling input set 1 for each benchmark except in the second case
of gzip where both input sets are profiled. The proposed method
incurs far less code expansion than superblocks as illustrated in the [6]
second and fifth columns. The speedup of superblocks for input set
1 and 2 is listed in the 3rd and 4th column respectively, and for pro-
posed method in the 6th and 7th column. In most cases the proposed [7]
method performs better than the superblock technique, exceptin the [g)
insufficient profiling case ofzip.

[4]

5]

[9]
5 Conclusions

We propose a technique to construct and optimize frames [1q
in the compilation process by incorporating profiling and static
analysis. The proposed method remedies the shortcomings of |15
dynamic/hardware-based methods, such as extensive optimizations
and global view of the program. Moreover, minimal hardware sup-
port is required to only perform mis-speculation recovery. Our
experiments on the SPEC integer benchmarks indicate an average
speedup in execution time of 31% in case of perfect profiling and
21% across input sets.

(12]

(23]

Acknowledgements 4]

The authors would like to thank Daniel Friendly (Yale Univer-
sity) for his contributions to this work. We also would like to ac-
knowledge the helpful discussions with Hao Wang, Haiyong Xie
(Yale University) and Rodric M. Rabbah (Georgia Institute of Tech-
nology) on this project.

(18]
[16]
(17]

(18]

References [19]

[20]

[1] S. Aditya, V. Kathail, and B. Rau, “Elcor’'s machine description system: Ver-
sion 3.0,” Technical Report HPL-1998-128, HP Laboratorid998.

[2] D.l. August, D.A. Connors, S.A. Mahlke, J.W. Sias, K.M. Crozier, B. Cheng,

P.R.Eaton, Q.B. Olaniran, and W. Hwu “Intergrated predicated and speculative
execution in the IMPACT EPIC architecture,” Proceedings of the 25th An-
nual International Symposium on Computer Architectpre 227-237, 1998.

(21]
(22]

P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W. Hwu, “IMPACT:
An Architectural Framework for Multiple-Instruction-lssue Processors,” in
Proceedings of the 18th Annual Int'l Symposium on Computer Architecture
pp. 266-275, May 1991.

Y. Chou, P. Pillai, H. Schmit, and J. Shen, “PipeRench implementation of the
Instruction Path Coprocessor,” Rroceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitectump. 147-158, 2000.

Y. Chou, and J.P. Shen, “Instruction path coprocessorsPraceedings of the
27th International Symposium on Computer Architectyme. 270-281, June
2000.

B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. Patel, and
S. Lumetta, “Performance characterization of a hardware mechanism for dy-
namic optimization,” inProceedings of the 34th annual ACM/IEEE interna-
tional symposium on Microarchitecturpp. 16-27, 2001.

J.A. Fisher, “Trace scheduling: A technique for global microcode compaction,”
|EEE Trans. Compugtvol. C-30, pp. 478-490, 1981.

C.C. Foster, and E.M. Riseman, “Percolation of code to enhance parallel dis-
patching and execution,”IEEE Trans. Comput.vol. C-21, pp. 1411-1415,
1972.

D.H. Friendly, S.J. Patel, and Y.N. Patt, “Putting the fill unit to work: dynamic
optimizations for trace cache microprocessors,Pinceedings of the 31st An-
nual IEEE/ACM International Symposium on Microarchitectyp. 173-181,
1998.

R. Hank, S. Mahlke, R. Bringmann, J. Gyllenhaal, and W. Hwu, “Superblock
formation using static program analysis,” Broceedings of the 26th annual
international symposium on Microarchitectup. 247-255, 1993.

E. Hao, P. Chang, M. Evers, and Y. Patt, “Increasing the instruction fetch rate
via block-structured instruction set architectures,’Pimceedings of the 29th
annual ACM/IEEE international symposium on Microarchitecfupp. 191—
200, 1996.

W. Havanki, S. Banerjia, and T. Conte, “Treegion scheduling for wide issue pro-
cessors,” irProceedings of 4th International Symposium On High-Performance
Computer Architecturepp. 266-276, Feb. 1998.

W.W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J. Warter, R.A. Bringmann,
R.G.Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G.Holm, and D.M.Lavery,
“The superblock: An effective structure for vliw and superscalar compilation,”
The Journal of Supercomputingol. 7, no. 1, pp. 229-248, January 1993.

Q. Jacobson, J.E. Smith “Instruction pre-processing in trace processors,” in
Proceedings of 5th International Symposium On High-Performance Computer
Architecture pp. 125-129, Jan. 1999.

V. Kathail, M. Schlansker, and B. Rau, “HPL-PD architecture specification:
Version 1.1, Technical Report HPL-93-80 (R.1). HP Laboratori@994.

V. Kathail, M.S. Schlansker, and B.R. Rau, “Compiling for EPIC architectures,”
in Proceedings of the IEE®ol. 89, pp. 1676—1693, Nov. 2001.

S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann, “Effective com-
piler support for predicated execution using the hyperblock,25th Annual
International Symposium on Microarchitectufe992.

S. Patel and S. Lumetta, “rePLay: A hardware framework for dynamic opti-
mization,” IEEE Trans. Computvol. 50, no. 6, pp. 590-608, 2001.

M.S. Schlansker, and B.R.Rau, “EPIC: Explicitly Parallel Instruction Comput-
ing,” Computervol. 33, no. 2, pp. 37-45, Feb. 2000

G.S. Tjaden, and M.J. Flynn, “Detection and parallel excution of independent
instructions,” inlEEE Trans. Computvol. C-19, pp. 889-895, Oct. 1970.
Trimaran toolset, available attp://www.trimaran.org

M. Eng, H. Wang, P. Wang, A. Ramirez, J. Fung, and J. Shen, “Mesocode: Opti-
mizations for Improving Fetch Bandwidth of Itanium ProcessorsWorkshop

on Complexity-Effective Desighlay 2002.

