
Compiler-Based Frame Formation for Static Optimization

Feng Shi, Sobeeh Almukhaizim∗, Pey-Chang Lin and Yiorgos Makris
Electrical Engineering Dept.

Yale University
New Haven, CT 06511, USA

Abstract

We selectively generate and optimize the frames constructed by
the rePLay architecture statically. Since static analysis provides a
global view of the interaction between the basic blocks and a bigger
aggressive optimization space, we propose a method to construct
the frames using profiling and static analysis. Frame selection and
optimization are analyzed in the criteria to produce well-optimized,
frequently executed frames with minimum recovery penalty. In addi-
tion, hardware support is reduced to only perform mis-speculation
recovery. Empirical results show frame-optimized code outperform-
ing baseline code on the SPEC integer benchmarks.

1 Introduction
Current microarchitectures are moving to deeper pipelines,

wider issue widths and larger number of functional units. For
high performance processors, extracting sufficient Instruction-Level
Parallelism (ILP) is an increasing challenge. Unfortunately, con-
trol dependencies prevent exploiting these hardware resources effi-
ciently [8, 20]. In an effort to boost ILP, hardware-based (dynamic)
[5, 9, 14, 18] and compiler-based (static) [7, 11, 12, 13, 17] tech-
niques have been proposed to reduce control dependencies. The
goal is clear: identify and optimize large sequences of frequently
executed code by folding the branches between the basic blocks. As
the speculation when folding branches is not always correct, some
form of recovery is provided to tolerate mis-speculated execution.

Dynamic techniques adaptively generate and optimize the fre-
quently executed code at run time, while static techniques analyze
the program code at compile time. Unfortunately, dynamic meth-
ods may incur a prohibitive implementation cost [4] and the lack of
dynamic information, manifested in a low branch prediction accu-
racy, reduces the benefits of static methods. We present an aggres-
sive compiler-based technique that takes advantage of both dynamic
and static techniques to enhance the performance of superscalar ar-
chitectures. The proposed method utilizes profiling information to
construct frames [18] at compile time. Profiling information aids
the static analysis of the program flow to select among the frames.
The extended code length and atomic nature of frames enables more
aggressive optimization algorithms at compile time. Consequently,
the proposed technique requires minimal hardware support; only to
recover from mis-speculated frames.

The remainder of this paper is organized as follows. In section 2,
we discuss previous hardware and compiler-based techniques. Sec-
tion 3 presents the proposed frame construction and optimization
method. We present experimental results evaluating the proposed
method in section 4 and conclude in section 5.

∗The author is supported through a scholarship from Kuwait University.

2 Related Work

ILP is limited by the number of instructions in a basic block. In
order to achieve higher levels of ILP, processors fetch and execute
instructions from multiple basic blocks in each cycle. Several com-
piler and hardware techniques have been proposed. Most of these
schemes group sequential basic blocks into larger entities, thereby
reducing control dependencies, increasing the fetch rate and allow-
ing more opportunities for optimization. Previous approaches in-
clude superblock formation [13], predicated execution using hyper-
blocks [17], VLIW treegion scheduling [12], block-structured ISA
[11] and frame scheduling [6].

Superblocks comprise a block of instructions with single entry
and multiple exits [10, 13]. A superblock is formed based on static
branch analysis and/or profiling information. Profiling identifies
blocks that frequently execute in sequence and places them in con-
secutive locations. All side entrances to a superblock are removed
by tail duplication. Therefore, when a superblock is entered, it is
likely that it will execute completely.

Control dependencies in hyperblocks [17] are converted into
data dependencies through the process ofif-conversion. Similar to
superblocks, successive sets of instructions are combined and op-
timized to form a single hyperblock, however, hyperblocks may
include multiple paths if the bias cannot be determined. A disad-
vantage with predication is the increase in the critical path length.
The processor must wait for the data dependency to resolve rather
than speculate the control dependency at the fetch stage.

VLIW treegions [12] use multiple execution paths to improve
the compiler chances to speculate operations. Treegion formation
combines trees of basic blocks with a rooted Control Flow Graph
(CFG) into a single VLIW instruction. The scheduling of instruc-
tions can use or ignore the profiling information. A disadvantage
is the increased pressure on the compiler to find enough indepen-
dent instructions to fill each VLIW instruction and to schedule the
conditional operations early enough for multi-way jumps.

Block-Structured ISA [11] enlarges basic blocks and considers
the newly generated blocks as the architectural atomic unit. Since
the blocks in the enlarged blocks are chosen using static informa-
tion, a limit may be reached in the quality of the enlarged blocks
generated. Hardware support is required through the branch predic-
tor for multiple branch predictions.

Mesocode [22] is a code format designed to improve the fetch
bandwidth efficiency of ItaniumR© processors. A trace-driven post-
pass compiler identifies frequently executedstreams, or contiguous
instructions executed in between two taken branches, and encodes
them into mesocode regions which are attached as an appendix to
the original code. On average, the size of a stream is about twice
the size of a basic block. The machine supporting mesocode can
predict, fetch, and execute these streams efficiently.

1



The rePLay microarchitecture [18] is a hardware mechanism for
frame creation and optimization. A frame is an atomic region com-
bining multiple basic blocks by converting branches into assertions.
The average frame length is usually much longer than the length of
a block or a trace. The hardware support requires a frame construc-
tor, a programmable engine for frame optimization, a frame cache,
a region sequencer and a recovery mechanism for incompletely ex-
ecuted frames. As the program executes, the frame constructor col-
lects instructions and converts highly biased branches into asser-
tions. The candidate frame is sent to the optimization engine to per-
form classical compiler optimizations. After the optimized frames
are stored in the frame cache, the sequencer is updated with the new
set of available frames. The sequencer is responsible for dispatching
either basic blocks or frames based on the confidence that a frame
will execute completely. If an assertion fires, the architectural state
is recovered by the recovery mechanism.

The design of the rePLay microarchitecture is a significant chal-
lenge as frames are constructed dynamically in hardware at an ex-
tremely fast rate. Moreover, the set of optimizations that may be
performed on a frame is limited by the affordable hardware cost
and the time the optimizer can work on the frame. Nonetheless, the
frames that can be constructed if the hardware constructor is capable
of generating and optimizing these frames result in a large speedup.
As will be discussed in the next section, we propose moving the
frame constructor and optimizing engine to the compiler, hence, the
hardware cost can be kept low without sacrificing the speedup.

3 Proposed Method

The proposed method aims at reducing the gap between static
and dynamic techniques. We propose modifying the compiling pro-
cess to utilize profiling information while constructing frames. The
frame constructor in the rePLay architecture provides the largest
stream of instructions when compared to other dynamic and static
techniques. We propose performing static analysis toselectivelyin-
clude frames in the executable binary. The frames are either con-
structed by the rePLay architecture or statically by imitating the
behavior of the rePLay frame constructor. The binary can run on
any architecture that has speculation supported. The branch predic-
tor of the targeted architecture must update the branch history only
when a frame is successfully executed. When an assertion fires,
the machine state is recovered and the execution is redirected to the
corresponding original basic block. In order to reduce the penalty
associated with firing assertions, we follow the same observation as
in [6] and push the assertions as high as possible within the frame.

Similar to block-structured ISAs and treegions, the proposed
method significantly reduces the hardware cost. However, the pro-
posed method can effectively control the number and size of in-
cluded frames; a goal that the other static schemes may not control.
Moreover, the scalability in performance of block-structured ISAs
and treegions is highly questionable as they must generate treegions
and enlarged atomic blocks that match the processor width. The
advantages of the proposed method as compared to dynamic tech-
niques are more evident. First, optimizations using time-consuming
data flow analysis can be easily performed at compile time. Sec-
ond, most of the dynamic techniques use a separate cache to hold
the dynamically generated frames or traces. In contrast, the pro-
posed method is able to utilize the complete instruction cache to
store the frames. Third, hazardous conditions to dynamically con-

structed frames, such as subroutine calls, are easily identified and
tolerated using static analysis. Finally, the dynamic construction of
frames must be done on-the-fly to sustain the optimizer throughput
[6]. The arrival of frames in the rePLay architecture is one frame
every 110 clock cycles; the design of an optimizing engine that op-
erates at that rate remains a significant design challenge.

3.1 Hardware Support for Frames

We have modified the HPL-PD [15] ISA to incorporate the spec-
ulative nature of the proposed method. Three additional instructions
were added: FSTART, AST and LAST. A frame start instruction
(FSTART) is inserted in the beginning of each frame to notify the
processor of a speculative state of execution. Like a NOOP instruc-
tion, FSTART uses only one issue slot. All conditional branches in
a frame are transformed into assertions (AST) and all unconditional
branches are nullified. The last AST in a frame is converted to a
last assertion (LAST); if all ASTs and the LAST do not fire then
we have a frame hit. All operations between FSTART and LAST
are simply viewed as speculative operations and their results should
not be committed until the LAST is correctly executed. Similar to
a reorder buffer in superscalar architectures, a frame buffer stores
the temporary results for registers and memory. If an AST fires, the
results in the frame buffer are simply discarded and the program is
redirected to the corresponding original code.

Instructions may generate exceptions during the execution of
frames. All the operations between FSTART and LAST in a frame
are considered speculative; any raised exception is not handled im-
mediately and the exception bit of the destination register is set [2].
If the exception bit of a source register is set, then the exception is
propagated and the exception bit of the destination register is also
set. ASTs and LAST are implicit check points where if any prior
exception occurred then the state is recovered and the execution is
redirected to the original code. Genuine exceptions will be raised
again and handled during the execution of the original code.

3.2 Frame Analysis

The program trace is analyzed to findgoodsequences of basic
blocks to form frames. Several factors determine the quality of a
frame. First, the size of the frame should not be very large. In-
deed, generating a large frame may lead to undesirable side-effects
such as code expansion or increase in the instruction cache miss
rate. Second, the execution frequency of the frames should be high.
The speedup from a certain frame is limited by the number of times
the frame is executed. The third consideration is the optimization
potential of a frame. Sequences of basic blocks with strong data
dependencies limit code optimization and, therefore, are poor can-
didates for constructing frames and should be excluded. The fourth
consideration is the penalty of a fired assertion in a frame. As in
the case when a branch is mispredicted, an assertion that fires be-
cause the frame will not execute completely causes the processor
to nullify these executions. The fifth consideration comes from the
hardware/software recovery mechanism for supporting frames. As
previously stated, the speculative state for frames is limited by the
microarchitectural support on the number of speculative instructions
that it can keep track of. Naturally, the frame constructor must not
generate frames that require more bookkeeping than the microar-
chitecture can offer.

2



Frame

Analyser

Frame

Constructor

IMPACT

Front End

IMPACT

Back End

(Including

Optimization

Engine)

Sampled Profiling Trace

lcode

Elcor

(Including

Additional

Optimization

Engine)

Simulator

lcode

with

Frames IR Assembler

Input

Program Frames

Figure 1. Frame Formation and Optimization Tool Based on Trimaran Tool Set

In order to find candidate basic blocks for frame formation,
frame analysis takes place in two steps. In the first step, a frame
parsing program detects hot spots in the trace by counting the rep-
etition for each pattern of certain lengths. The patterns with an ex-
ecution frequency beyond a predefined threshold are selected. The
threshold can be an absolute value defined for each trace or a per-
centage of the trace length. In the second step, the starting block
and the ending block are determined for each selected pattern. Al-
though trace patterns with high frequencies are selected in the pre-
vious step, the range for each pattern is not clear yet. For example,
the trace parsing program detects a frequently executed pattern of
length 7 that is a subset of a frequently executed pattern of length
10; one frame suffices in most of these cases.

Let L be the number of execution cycles it takes to completely
execute a frame. We introduce a quantitative criterion called the ef-
fective frame length (Leff ) to assess the quality of a pattern. The
effective length of a frame is theaveragenumber of execution cy-
cles each time a frame is completely executed:

Leff =
Cf

NHit
= L +

RMiss

RHit
× P (1)

where Cf is the total number of execution cycles the program
spends in this frame,NHit is the total number of times that the
frame is completely executed,P is the average penalty if an asser-
tion fires andRHit andRMiss are the percentages of times that the
frame is completely and incompletely executed, respectively.RHit

andRMiss are related to the conditions under which the frame is ex-
ecuted. In this work, frames are statically linked into the program;
a frame is executed every time the first basic block of the frame is
referenced. The average speedup (Sf ) of a frame is:

Sf =
Loriginal

Leff
(2)

whereLoriginal is the number of execution cycles of the original
set of basic blocks. SubstitutingLeff using (1), we obtain:

Sf =
Loriginal ×RHit

L×RHit + P ×RMiss
(3)

Sf depends onL andP for every candidate frame. SinceL and
P are attributes of a frame, they can only be accurately computed af-
ter the frame is formed and optimized. The quality of frames can be
enhanced by integrating the pattern selection along with the frame
formation and optimization procedure. Heuristic methods for esti-
matingL andP may be utilized in order to reduce the computation
complexity, however, the quality of frames will be reduced.

3.3 Implementation

We utilize a basic heuristic to select frames based on the frame
size, the execution frequency, theentrance rate, and theexit rate.
The entrance rateis the percentage of times a candidate frame is
completely executed and theexit rate is the ratio between the en-
trance rate of a candidate frame, extended by one more block, to
the entrance rate of the original candidate frame. A high entrance
rate indicates the likelihood that a frame will completely execute
if the first basic block is executed. A low exit rate indicates that
adding the block in consideration will greatly reduce the probabil-
ity of completely executing the frame.

We consider frame candidates with an entrance rate higher than
80% for the first three basic blocks. The size of frames is set be-
tween 3 to 30 basic blocks; a frame smaller than 3 blocks is assumed
too small to optimize and a frame bigger than 30 blocks is too large
for the hardware recovery mechanism to maintain. The frame selec-
tion procedure selects between frame candidates and decides which
basic block begins or ends a frame. A frame is terminated if the
exit rate is smaller than 0.95 or if the frame size is bigger than the
upper bound on the number of blocks. Only those frames whose
executions are not covered by other longer frames are selected.

The frame formation and optimization stage is performed after
the frames are selected. A frame formation and optimization tool
was developed based on the Trimaran tool set [21]. As illustrated in
figure 1, the tool generates frames based on thelcoderepresentation
of the program and the frame information gathered in the frame se-
lection phase. All the operations in the basic blocks of a frame are
duplicated; branches are replaced by assertions and operations are
packed into a single block. The frame is inserted into the original
program and all original branch operations that branch to the first
basic block of the frame are retargeted to the head of the frame.
The new program performs the same operations of the original pro-
gram but can be further optimized with Trimaran. The set of opti-
mizations applied by IMPACT [3] is: dead code removal, reverse
copy propagation, constant propagation, copy propagation, mem-
ory copy propagation, common subexpression elimination, redun-
dant load/store elimination, constant combination, constant folding,
strength reduction, code motion, operation folding, operation can-
cellation, sign extension removal and register renaming. During the
generation of machine-dependent intermediate representations, ad-
ditional optimizations such as forward copy propagation, dead code
elimination and common subexpression elimination are applied by
Elcor [16]. At this point, the assembly code is generated along with
the schedule length of all the basic blocks and frames.

3



Benchmarks HPL-PD Architecture
Name Input Set 1 Input Set 2 Register File Type Size Operation Type Latency
bzip2 input.compressed NA General purpose: static 64 Integer 1
gcc amptjp.i c-dec1-s.i General purpose: rotating 64 Integer Mul/Div 3/8
go 2stone9.in 5stone21.in Floating-point: static 64 Floating-Point 3

gzip input.combined input.program Floating-point: rotating 64 FP Mul/Div 3/8
ijpeg vigo.ppm penguin.ppm Predicate: static 256 Load Lev1/Lev2/Lev3 2/7/35

li training testing Predicate: rotating 64 Store 1
mcf training inp.in Branch-target 16 Branch 1
twolf training NA Control 64 AST/LAST 1
vortex persons.250 persons.1k

vpr training 1 testing 1

Table 1. Architecture and Benchmark Characteristics

Benchmark bzip2 gcc go gzip ijpeg li mcf twolf vortex vpr Average
Number of Frames 9 639 147 27 41 30 30 51 57 50 108.1

Code Expansion (%) 10.7 0.7 4.8 9.4 5.3 6.7 2.0 3.5 1.5 4.6 4.9
Avg. # of Basic Blocks 11.5 4.89 3.7 4.6 5.7 4.9 5.0 4.1 9.8 5.0 5.9
Avg. # of Operations 75.9 30.0 21.9 29.0 29.3 27.3 26.4 27.1 44.4 50.4 36.2

Avg. Length (L) 20.5 11.0 10.3 11.3 10.0 10.8 9.8 12.4 16.5 19.7 13.2
Avg. Frame Hit Rate 0.99 0.91 0.94 0.99 0.90 0.91 0.93 0.89 0.98 0.85 0.93

Avg.Leff 20.6 11.7 10.8 11.4 10.6 11.5 10.4 13.1 16.9 21.1 13.8
Avg. Reduction (%) 10.1 7.5 -0.4 -0.6 3.4 27 -0.1 -0.7 22.7 6.5 7.5
Avg. Speedup/Frame 2.79 2.09 1.63 1.67 2.19 2.28 2.01 1.75 3.09 1.98 2.15

Table 2. Frame Characteristics

4 Experimental Results

In order to analyze the performance of the proposed method, six
SPEC00 and four SPEC95 integer benchmarks were simulated to
completion. The SPEC95 benchmarks were chosen due to compi-
lation errors by Trimaran on the SPEC00 version of these bench-
marks. All the benchmarks were compiled using the default op-
timization flags of Trimaran 3.0.b [21] distribution with region for-
mation set to basic blocks and the executable generated for the HPL-
PD [15] architecture. The architecture was configured based on
the default settings of an 8-wide HPL-PD architecture: four inte-
ger units, two floating units, two memory units, one branch unit and
an ideal instruction cache. The ISA was modified to include the
FSTART, AST and LAST instructions [1]. The benchmarks used
and the architecture characteristics are listed in table 1. We com-
pared the frame-optimized code with the baseline code generated
by Trimaran using path profiling with the same optimization flags.

4.1 Frame Selection

The first input set of table 1 is used as a profiling input to con-
struct frames. Frames are identified using a trace sampling method.
First, frequently executed basic blocks in each benchmark are iden-
tified. The execution time of the frequent blocks is usually above
90% of the total program execution time. The trace is randomly
sampled for 100M clock cycles to find frames containing these fre-
quent blocks according to the criteria described in section 3.3.

The characteristics of the frames generated for the simulated
benchmarks are illustrated in table 2. The number of frames is re-
ported in the second row of the table. It can be seen that an average
of 108 frames were generated across all the benchmarks. Includ-
ing all the generated frames resulted in an average code expansion
of only 5%. The average number of basic blocks and operations in
frames for all the benchmarks is illustrated in the forth and fifth row,
respectively. The execution time of the frames (L) is 14 cycles on

0 10 20 30 40 50 60 70 80 90
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Used entries in the recovery buffer

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

of
 fr

am
es

Register(Word)
Memory(Byte)

Figure 2. % of Frames vs. Buffer Size

average. With a frame hit rate of 93%,Leff is almost the same as
L, since the penalty effect of a mis-speculated frame is marginal.
When the frames are optimized, we obtain an average reduction of
7.5% in the number of operations, as compared to the original basic
blocks. In some instances, additional operations, such as register
spill/read operations, added by the compiler during the optimiza-
tion process, increase the number of operations. Finally, the average
speedup of frames is in excess of 100% as the compiler is able to
find more operations to execute in parallel.

The size of the recovery frame buffer was not restricted during
the analysis. Figure 2 illustrates the cumulative frame distribution
according to the size of the register/memory buffer. The required
size of the frame buffer ranges between 0 – 86 registers and 0 – 48
memory bytes. A buffer of 64 registers and 32 memory bytes would
handle more than 98% of the frames across all the benchmarks.

4



bzip2 gcc go gzip ijpeg li mcf twolfvortex vpr Avg.
0

10%

20%

30%

40%

50%

60%

70%

Benchmark

P
er

ce
nt

ag
e 

of
 fr

am
e 

ex
ec

ut
io

n 
tim

e

Figure 3. % of the Execution Time of Frames

gcc go gzip ijpeg li mcf vortex vpr Avg.
1

1.1

1.2

1.3

1.4

1.5

1.6

Benchmark

S
pe

ed
up

Input1
Input2

Figure 4. Performance Across Input Sets

4.2 Performance (Perfect Profiling)

The speedup of frames depends on two factors: the average
speedup and the execution frequency for each frame. These two
factors were measured on the frames generated for the first input
set. The average of 108 frames per benchmark, constituting less
than 5% of the code size, contributes a considerable portion of the
program total execution time, as illustrated in figure 3. Combining
these frequent frames with the average speedup per frame yields a
speedup of 31% on the benchmarks, as illustrated in figure 5.

4.3 Performance Across Input Sets

We simulated eight of the optimized benchmarks for a second
input set, as indicated in table 1. Figure 4 compares the speedup of
each benchmark on the second input to the perfect profiling case.
Despite the enhanced performance ofmcf and the sustainable per-
formance ofgcc, go, and ijpeg, we do observe tremendous per-
formance degradation in benchmarks likegzip. On average, the
speedup dropped to 21%. The performance degradation is attributed
to insufficient profiling and/or frame corruption. Insufficient profil-
ing fails to provide a full-scale picture about the potential hot spots
in the program, hence the execution time of the generated frames
does not dominate the execution time of the program at runtime.
For example, the hot spots ofgzipunder the first input set and under
the second input set do not fully overlap. In addition, some func-

bzip2 gcc go gzip ijpeg li mcf twolfvortex vpr Avg.
1

1.1

1.2

1.3

1.4

1.5

1.6

Benchmark

S
pe

ed
up

Figure 5. Speedup (Perfect Profiling)

gcc go gzip ijpeg li mcf vortex vpr Avg.
0

10%

20%

30%

40%

50%

60%

70%

Benchmark

P
er

ce
nt

ag
e 

of
 fr

am
e 

ex
ec

ut
io

n 
tim

e

Input1
Input2

Figure 6. % of the Execution Time of Frames

tions are only executed under one of the two input sets. The lack
of accurate profiling information is further worsened by the trace
sampling method, as the complete trace is not analyzed in order
to reduce the analysis complexity. Frame corruption degrades the
performance if the hit rate of a frame decreases when the program
switches to another input set. Since the frame corruption is caused
by the dynamic behavior of the program, a purely static scheme can
do very little about it.

We analyzed the frame execution time and hit rate across input
sets. Figure 6 illustrates the percentage of frame execution time
for each benchmark on both input sets if the frames are generated
based on perfect profiling for the first input set. The benchmarks
with degraded performance in figure 4 have almost the same drop in
frame execution time in figure 6. We also observed corrupted frames
in the benchmarks with the second input set, as illustrated in table 3.
The table lists the frame distribution in percentage according to the
change in the frame hit rate across different input sets. The frame
hit rate of the majority of the frames is reduced by less than 10%,
while the frame hit rate of a few frames increases slightly. Despite
the overall unaffected frame hit rate, the real problem remains the
frequency with which these frames are executed.

We reevaluate the constructed frames ofgzip to account for the
program behavior on different input sets. We constructed the new
frames based on profiling across input sets . In this case 55 frames
were generated based on the second input set profiling, and 5 more
frames were appended according to the first input set profiling. The
generated frames resulted in a speedup of 38% for the first input set

5



Benchmark > 0% -(0-10%) -(10-20%) -(20-30%) -(30-40%) -(40-50%) -(≥ 50%)
gcc 0.16% 99.84% 0 0 0 0 0
gzip 36% 44% 4% 0 4% 0 12%
go 29.93% 67.35% 0.68% 2.04% 0 0 0

ijpeg 56.41% 43.59% 0 0 0 0 0
li 30% 33.33% 23.33% 10% 3.33% 0 0

mcf 58.06% 41.94% 0 0 0 0 0
vortex 7.02% 92.98% 0 0 0 0 0

vpr 12% 36% 20% 24% 6% 2% 0
average 28.70% 57.38% 6.00% 4.51% 1.67% 0.25% 1.5%

Table 3. Frame Hit Rate Degradation

Superblock Proposed Method
Benchmark Code Exp. Speedup1 Speedup2 Code Exp. Speedup1 Speedup2

gzip 342.3% -14.5% 20.0% 9.4% 31.1% 4.2%
gzip(across inputs) 342.3% -14.5% 20.0% 22.9% 37.9% 44.4%

li 62.8% 18.1% 6.2% 6.7% 34.2% 25.4%
mcf 675.8% 33.9% 29.9% 2.0% 39.4% 43.3%

Table 4. Speedup in Comparison to Superblocks

and 44% for the second input set. The program spent 58% and 63%
of the execution time in executing the frames, respectively.

The proposed method is compared to the superblock technique
in table 4. Superblocks are generated by Trimaran with the default
configuration using path profiling, while frames are constructed by
profiling input set 1 for each benchmark except in the second case
of gzip where both input sets are profiled. The proposed method
incurs far less code expansion than superblocks as illustrated in the
second and fifth columns. The speedup of superblocks for input set
1 and 2 is listed in the 3rd and 4th column respectively, and for pro-
posed method in the 6th and 7th column. In most cases the proposed
method performs better than the superblock technique, except in the
insufficient profiling case ofgzip.

5 Conclusions
We propose a technique to construct and optimize frames

in the compilation process by incorporating profiling and static
analysis. The proposed method remedies the shortcomings of
dynamic/hardware-based methods, such as extensive optimizations
and global view of the program. Moreover, minimal hardware sup-
port is required to only perform mis-speculation recovery. Our
experiments on the SPEC integer benchmarks indicate an average
speedup in execution time of 31% in case of perfect profiling and
21% across input sets.

Acknowledgements
The authors would like to thank Daniel Friendly (Yale Univer-

sity) for his contributions to this work. We also would like to ac-
knowledge the helpful discussions with Hao Wang, Haiyong Xie
(Yale University) and Rodric M. Rabbah (Georgia Institute of Tech-
nology) on this project.

References

[1] S. Aditya, V. Kathail, and B. Rau, “Elcor’s machine description system: Ver-
sion 3.0,”Technical Report HPL-1998-128, HP Laboratories, 1998.

[2] D.I. August, D.A. Connors, S.A. Mahlke, J.W. Sias, K.M. Crozier, B. Cheng,
P.R.Eaton, Q.B. Olaniran, and W. Hwu “Intergrated predicated and speculative
execution in the IMPACT EPIC architecture,” inProceedings of the 25th An-
nual International Symposium on Computer Architecture, pp. 227–237, 1998.

[3] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W. Hwu, “IMPACT:
An Architectural Framework for Multiple-Instruction-Issue Processors,” in
Proceedings of the 18th Annual Int’l Symposium on Computer Architecture,
pp. 266–275, May 1991.

[4] Y. Chou, P. Pillai, H. Schmit, and J. Shen, “PipeRench implementation of the
Instruction Path Coprocessor,” inProceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 147–158, 2000.

[5] Y. Chou, and J.P. Shen, “Instruction path coprocessors,” inProceedings of the
27th International Symposium on Computer Architecture, pp. 270–281, June
2000.

[6] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. Patel, and
S. Lumetta, “Performance characterization of a hardware mechanism for dy-
namic optimization,” inProceedings of the 34th annual ACM/IEEE interna-
tional symposium on Microarchitecture, pp. 16–27, 2001.

[7] J.A. Fisher, “Trace scheduling: A technique for global microcode compaction,”
IEEE Trans. Comput., vol. C-30, pp. 478–490, 1981.

[8] C.C. Foster, and E.M. Riseman, “Percolation of code to enhance parallel dis-
patching and execution,”IEEE Trans. Comput., vol. C-21, pp. 1411–1415,
1972.

[9] D.H. Friendly, S.J. Patel, and Y.N. Patt, “Putting the fill unit to work: dynamic
optimizations for trace cache microprocessors,” inProceedings of the 31st An-
nual IEEE/ACM International Symposium on Microarchitecture, pp. 173–181,
1998.

[10] R. Hank, S. Mahlke, R. Bringmann, J. Gyllenhaal, and W. Hwu, “Superblock
formation using static program analysis,” inProceedings of the 26th annual
international symposium on Microarchitecture, pp. 247–255, 1993.

[11] E. Hao, P. Chang, M. Evers, and Y. Patt, “Increasing the instruction fetch rate
via block-structured instruction set architectures,” inProceedings of the 29th
annual ACM/IEEE international symposium on Microarchitecture, pp. 191–
200, 1996.

[12] W. Havanki, S. Banerjia, and T. Conte, “Treegion scheduling for wide issue pro-
cessors,” inProceedings of 4th International Symposium On High-Performance
Computer Architecture, pp. 266–276, Feb. 1998.

[13] W.W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J. Warter, R.A. Bringmann,
R.G.Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G.Holm, and D.M.Lavery,
“The superblock: An effective structure for vliw and superscalar compilation,”
The Journal of Supercomputing, vol. 7, no. 1, pp. 229–248, January 1993.

[14] Q. Jacobson, J.E. Smith “Instruction pre-processing in trace processors,” in
Proceedings of 5th International Symposium On High-Performance Computer
Architecture, pp. 125–129, Jan. 1999.

[15] V. Kathail, M. Schlansker, and B. Rau, “HPL-PD architecture specification:
Version 1.1,”Technical Report HPL-93-80 (R.1). HP Laboratories, 1994.

[16] V. Kathail, M.S. Schlansker, and B.R. Rau, “Compiling for EPIC architectures,”
in Proceedings of the IEEE, vol. 89, pp. 1676–1693, Nov. 2001.

[17] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann, “Effective com-
piler support for predicated execution using the hyperblock,” in25th Annual
International Symposium on Microarchitecture, 1992.

[18] S. Patel and S. Lumetta, “rePLay: A hardware framework for dynamic opti-
mization,” IEEE Trans. Comput., vol. 50, no. 6, pp. 590–608, 2001.

[19] M.S. Schlansker, and B.R.Rau, “EPIC: Explicitly Parallel Instruction Comput-
ing,” Computer, vol. 33, no. 2, pp. 37–45, Feb. 2000

[20] G.S. Tjaden, and M.J. Flynn, “Detection and parallel excution of independent
instructions,” inIEEE Trans. Comput., vol. C-19, pp. 889–895, Oct. 1970.

[21] Trimaran toolset, available athttp://www.trimaran.org.
[22] M. Eng, H. Wang, P. Wang, A. Ramirez, J. Fung, and J. Shen, “Mesocode: Opti-

mizations for Improving Fetch Bandwidth of Itanium Processors,” inWorkshop
on Complexity-Effective Design, May 2002.

6


