
IPC Driven Dynamic Associative Cache Architecture for Low energy

SRIRAM NADATHUR, AKHILESH TYAGI

Department of Electrical & Computer Engineering
Iowa State University, Ames, Iowa 50011

{sriramgn,tyagi}@iastate.edu

Abstract

Existing schemes for cache energy optimization incor-
porate a limited degree of dynamic associativity: either
direct mapped or full available associativity (say 4-way).
In this paper, we explore a more general design space for
dynamic associativity (for a 4-way associative cache, con-
sider 1-way, 2-way, and 4-way associative accesses). The
other major departure is in the associativity control mecha-
nism. We use the actual instruction level parallelism exhib-
ited by the instructions surrounding a given load to classify
it as an IPC k load (for 1 ≤ k ≤ IW with an issue width of
IW ) in a superscalar architecture. The lookup schedule is
fixed in advance for each IPC classifier 1 ≤ k ≤ IW . The
schedules are as way-disjoint as possible for load/stores
with different IPC classifications. The energy savings over
SPEC2000 CPU benchmarks average 28.6% for a 32KB,
4-way, L-1 data cache. The resulting performance (IPC)
degradation from the dynamic way schedule is restricted
to less than 2.25%, mainly because IPC based placement
ends up being an excellent classifier.

1. Introduction

Energy efficiency within a computing system is a de-
sirable characteristic both from a fundamental computing
optimality as well as from system engineering perspec-
tive. Set associative caches (currently 2-way to 4-way)
are widely deployed in processors due to their ability to
lower miss rates with acceptable cycle times. The program
characteristics have been evolving to include a larger num-
ber of working sets of larger sizes over time. This trend
favors higher associativities in the future. A full associa-
tivity access (k-way associative access for ak-way cache)
switches the capacitance in all the ways simultaneously re-
sulting in a maximum energy access per load. Several ear-
lier research efforts [4], [1], [12], [10] used different pre-
diction and control mechanisms to complete some of the

load/store instructions within 1-way lookup (direct mapped
access). If that misses, a full associativity access is gener-
ated. Hence, some of the loads switch the capacitance of
only one-way (approximately1/kth the capacitance of all
thek ways to a first order approximation) instead of all the
designed ways. This saving is significant given the cache
energy’s contribution towards the total processor energy.
Almost all current generation processors, including Alpha
[8], PentiumPro [9], StrongARM [6] and XScale [5], dis-
sipate from 15% to 45% of their total energy in caches. In
this paper, we focus on an energy-efficient scheme for L1
data cache based on dynamic associativity control driven
by an IPC (instructions per cycle) classification1.

The primary motivation behind the proposed cache ar-
chitecture is to design microarchitecture components that
consume energy in proportion to the delivered work. The
incumbent microarchitecture design paradigm targets a
peak instruction-level parallelism (ILP) such as 4 or 6 or
8. Each component of the microarchitecture is designed to
sustain this targeted peak ILP. However, typical programs
exhibit a high variance in IPC over time. Moreover, this
variance has short temporal and spatial periods. In other
words, the IPC variance is visible within extremely small
time windows (of less than 10 cycles) at each stage in mi-
croarchitecture. This leads to a designed capacitance pro-
portional to the peak IPC, which switches every cycle. Ide-
ally, the switched capacitance would be proportional to the
actual IPC (ILP) delivered in a given cycle. Hence, a com-
mitment of silicon resources proportional to the peak IPC
hurts both the delay and energy performance for every cy-
cle with IPC less than the peak. One possible solution for
this dilemma is to design microarchitecture components
that switch capacitance proportional to the delivered IPC
leading to a delay and energy performance in line with the
actual program progress (IPC for that cycle) [11]. This con-
stitutes the motivation for our work.

The load/store instructions occur in epochs with vari-
able IPC. Some loads belong to high ILP regions of a pro-

1This work is supported by NSF grants CCR 024222 & CCR 0209078



gram, and some to the low ILP regions. A high IPC ex-
poses the cache to a larger number of working sets, many
of which are conflicting. Let each load/store be classified
with the ILP of the constituent program region. The con-
flicting (not direct-mapped) working sets are the ones to
generate pressure on a data cache for higher associativity
needs. They constitute a certain percentage of all the loads
for a given program (on average) and this percentage ap-
pears to be quite predictable according to [2]. Again, as-
suming for intuitive simplicity, that the conflicting loads
are uniformly distributed across the program, a higher ILP
epoch would tend to have a higher number of conflicting
loads. Hence, higher associativity would support a higher
ILP program region more naturally. Similarly, a lower ILP
region could still be supported with a lower associativity
with an acceptable miss rate. This says that the number
of instantiated ways can be proportional to the ILP of the
program region around a given load. A simplistic scheme
would be to map all the load/stores within ILP 1 region to
Way-0, within ILP 2 region to Way 0 and Way 1, within
ILP 3 region to Way 0, Way 1 and Way 2; and within ILP
4 region to all the four ways. This simplistic notion forms
the basis for this paper, and is refined later to make it fea-
sible. Note that such a mapping from IPC classification to
the instantiated ways has the targeted property of energy
dissipation being proportional the ILP.

Related Work: Many researchers have studied tech-
niques to alleviate both cache energy and access time bot-
tlenecks. Techniques encompass partitioning, decomposi-
tion and sequentializing way access patterns. Albonesi [1]
proposed a technique to partition ways selectively. Sequen-
tializing way-access patterns was proposed by Grunwald
et al. [4]. Circuit design techniques [7] were also pro-
posed to conserve cache energy. Vijaykumaret al. [10]
combined predictive schemes with selective access tech-
niques to achieve low energy without compromising on ac-
cess times.

Overview: The fundamental difference between the pro-
posed scheme and the earlier schemes lies in their intrinsic
goals. Even though all the existing schemes try to reduce
energy based on the data set requirements, none of them
aim at dissipating only as much energy as the work done
(IPC delivered). We propose a selective, sequential cache
architecture with the explicit objective of adapting its en-
ergy needs to the ILP. The ILP could be measured at one
of many microarchitecture stages. The issue stage select
logic is utilized as the dynamic classifier of the load/store
ILP region. The sequential-way-access schedule is fixeda
priori for each ILP classification based on two factors. The
first factor is the distribution of load/stores among the dif-

ferent IPC epochs. This determines the tolerance of a given
IPC class loads to a mismatched schedule. The second fac-
tor is the distribution of different associativity needs among
the loads classified as IPCk for all k. A sequential access
schedule (ordering of cache ways) is chosen for each IPC
classification on the basis of this distribution. For instance,
the schedule[(0, 1); (2, 3)] calls for probing Ways 0 & 2 in
the first cycle; if that results in a miss then Ways2 & 3 are
probed in the next cycle.

The issue stage classifies each load/store as belonging
to one of the IPC epochs. Ifk instructions are selected by
the issue wakeup/select logic in a given cycle, then all the
load/store instructions among thesek instructions are clas-
sified as IPC-k load/stores (Figure 2). When a load/store
is issued from the load/store queue (LSQ) to the cache,
its IPC classification (performed earlier at the issue stage)
determines its sequential schedule, say[(0, 1); (2, 3)]. It
accesses only one (or two) ways out of the four available
ways. Only the tags from the accessed ways are compared.
If a miss is indicated, a tag comparison is initiated in the
other ways sequentially, before a final miss is signaled.
Data access is initiated in each way in parallel with the tag
comparison as usual. Correct data placement is fundamen-
tal to the efficiency of any sequential access scheme. The
same schedule is also used for data placement. We observe
in Section 2, that the dynamic IPC at issue stage ends up
being a good classifier for load/store instructions, result-
ing in a good placement with in the cache ways (with little
cross-talk between different ways).

Organization: Section 2 details the proposed cache ar-
chitecture and its access algorithm. Section 3 qualitatively
compares the energy dissipation of the proposed scheme
against a base cache model and quantifies the impact on
performance, through Simplescalar [3] simulations. Sec-
tion 4 describes the experimental setup and results. Sec-
tion 5 concludes the paper.

2 IPC Driven Dynamic Associativity Man-
agement

This section describes the adaptive associativity cache
management algorithms and schemes. Figure 2 presents a
schema for the proposed scheme.

IPC based Load/Store Classification: Load/store in-
structions involve two operations: effective address com-
putation followed by the load/store dispatch from the LSQ.
The issue stage wakeup & select logic wakes up all the
instructions whose source operands just became available.
These instructions are placed in the ready queue. We use



the number of selected instructions at the issue stage to an-
notate each load/store instruction among these selected in-
structions as shown in Figure 2. The number of selected
instructions at this stage can vary from 0 tok (for a k-
wide microarchitecture). If there is a load/store among
the selected instructions, then this number of selected in-
structions ranges from 1 tok. Hence each load/store gets
placed into one of thek IPC buckets. Figure 1 shows an
example of this classification. Theload sitting in the is-
sue ready queue is selected along with the two preceding
instructionsInsn 1 andInsn 2 and is annotated as IPC-3
class load/store. This annotation is carried along with the
load all the way until the cache access.

Binding of Sequential Access Schedule: The sequen-
tial access schedule specifying the temporal ordering of the
ways for a given IPC classification can be either hardwired
into the cache control or could be dynamically bound. A
late binding results in greater generality allowing for per
process (through compiler analysis) or even per procedure
specification of the access schedule. The block containing
the access schedules in Figure 2 is meant to represent the
dynamic binding. The compiler could store such a sequen-
tial access schedule table into a memory mapped region.
At the process initiation, the table could be read into a mi-
croarchitectural table, which is read by the cache controller
to initialize the sequential access schedule.

Dynamic Associativity Cache Access: When a load, is
issued to the data cache subsystem from the LSQ, its IPC
bits are used to decode the sequential access schedule ta-
ble in parallel to retrieve the temporal way access masks
into the selected way mask register (as shown in Figure 2).
In the first access cycle, Cycle I way mask is used to en-
able/disable the chosen ways. The Selected Way Mask
register shifts down the temporal access schedules down
by one position so that the Cycle II way mask is at the head
of the register. If this is a hit, the access is done. Oth-
erwise, Cycle II way mask drives the second cycle access
way enable/disable signals. Similarly, on a miss, the Cycle
III way mask is utilized for a third cycle access. A miss at
this point signals a cache miss.

Sequential Access Schedule Determination:How do
we determine a good schedule for each IPC classification?
Note that as we observed earlier, the intuitive explanation
for the IPC based classification is that the fraction of con-
flicting loads scales linearly within a group ofk instruc-
tions. Hence, a higher associativity access benefits a higher
ILP load. A good access schedule needs to determine the
distribution of conflicting loads with respect the IPC clas-

Issue Ready Queue

Load Insn 2 insn 1

IPC 3

Load/Store Queue (LSQ)

Load (0)

IPC−1

Load (1)

IPC−2 IPC−2

Load (3) Load (4)

IPC−3IPC−4

Store (2)

Figure 1. Issue Select Stage Classifies the
IPC of Load/Store Instructions

sification. We also need to understand the distribution of
loads into different IPC classifications.

Consider a 4-way associative data cache within a 4 is-
sue superscalar microarchitecture. In order to determine
the distribution of load/store instructions into IPC-1, IPC-2,
IPC-3, and IPC-4 buckets, we classified load/store instruc-
tions in five SPEC 2000 benchmarks: gcc, mesa, equake,
gzip and bzip according to issue IPC (Figure 3). Approx-
imately 60-65% of load/store instructions are issued in an
IPC-4 group, whereas 20% are issued in an IPC-3 group.
The frequency of IPC-2 and IPC-1 load/store instructions
was approximately 15% and 5% respectively.

We also need to know the associativity needs of the
loads classified as IPC-k in the following sense. Consider
all the IPC-4 classified loads. Some of these loads are
direct-mappable — they are non-conflicting with respect to
a 1-way associative access. We denote this class of loads
by IPC4,1. Some of these loads are non-conflicting with
a 2-way associative access. These loads are denoted by
IPC4,2. In this way we can classify all the loads into 16
classes. This helps us determine a suitable sequential way
access schedule as follows. IfIPC4,4 dominates the other
load sets (highest frequency) then the access schedule for
IPC-4 classified loads ought to be a single 4-way access
[(0, 1, 2, 3)].

In order to assessIPCi,j for 1 ≤ i, j ≤ 4, we counted
the number of accesses that map to the same set over a
reasonable temporal window. We followed an experimen-
tal scheme similar to the one in [2] to derive this data.
We implemented the most restrictive version of the cache
– direct mapped. We maintain a buffer where all the re-
placed loads are placed. At certain time intervals, (these
are the temporal windows within which the working sets
are being captured), we analyze this buffer to see how many
loads map into the same set to determine the minimum as-



0 1

01 1 0

0 1

0 0 1 1

1 1 00

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 1

Way: 0 1 2 3

Annotated LSQ

Load IPC

Way 0 Way 1 Way 2 Way 3

IPC=4

IPC=3

IPC=2

IPC=1

     Way Mask
�����
�����
�����

�����
�����
�����

�
�
�

�
�
����
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Enable Enable Enable Enable

L−
1 

D
at

a 
C

ac
he

Dynamic Binding of Sequential 

Way Access Schedule

Annotated LSQ

Ι

Ι

Ι

ΙΙ

Ι

ΙΙ

ΙΙ

ΙΙ

ΙΙΙ

ΙΙ

Selected Way ΙΙΙ

Ι

Mask
on Miss

Shift down

Shift

Step 4.

Step 3

Step 2

Step 1

Figure 2. Implementing Sequential Way Ac-
cess

sociativity that will make these loads non-conflicting and
we update the respective counter. The resulting observa-
tions are shown in Figure 4. The four sub-groups along
x-axis are for IPC-1 through IPC-4 classified load/store in-
structions. Within each sub-group IPC-i, the bars denote
IPCi,1, IPCi,2, IPCi,3, IPCi,4 from left to right respec-
tively. Note that direct-mapped accesses dominate in each
IPC class. However, more interestingly, among the con-
flicting load/store instructions, 2-way accesses dominate
by far for all the four IPC classifications. The 3-way and
4-way accesses in all cases are very rare. This leads us to
the conclusion that all the accesses in our sequential way
access schedules will be limited to be at most 2-way asso-
ciative. This, however, begs the following question: why
should we ever consider a cache that is more than 2-way
associative? In a traditional cache organization, the re-
placement policy does not make an effort to maintain the
multiple working sets orthogonal (not intertwined), if it is
possible to do so. Hence, a composite footprint of multiple
2-way associative working sets might appear as requiring
4-way or higher associativity. We believe, that it is this
ability of the IPC based classification, to maintain the lim-
ited associativity working sets in isolation, that results in
its effectiveness despite limiting its schedules to be at most
2-way associative.

The insights gained from the two sets of data (in Fig-
ures 3 and 4) are combined to derive the sequential access
schedule in Table 1. We tweaked the search space around
this point for different access schedules, but these parame-
ters gave us our best energy-delay trade-off so far.

Distribution of Loads in IPC Packets

0

10

20

30

40

50

60

70

80

90

1 2 3 4

IPC Packet Size

P
e
rc

e
n

ta
g

e
 o

f 
L

o
a
d

s

GCC

Gzip

Bzip

Equake

Mesa

Figure 3. Issue IPC Based Classification of
Loads in SPEC2000 Benchmarks

Average associativity needs for classified loads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

IPC classified into

F
ra

c
ti

o
n

Count =1

Count =2

Count =3

Count = 4 

Figure 4. Distribution of associativity require-
ments at each IPC epoch

IPC I way II way III way
Class enabled enabled enabled

1 Way 0 Way 1 (Way 2,3)
2 (Way 0,Way 1) (Way 2,Way 3)
3 (Way 2,Way 3) (Way 0,Way 1)
4 (Way 2,Way 3) (Way 0,Way 1)

Table 1. Sequential Way Access Schedule



Consistency of IPC Classification

0

10

20

30

40

50

60

70

80

90

100

art bzip equake gcc gzip mcf mesa vpr Average

Benchmark

P
er

ce
n

ta
g

e

Load Found & IPC Matches Load Found & IPC Mismatch Load Not found

Figure 5. Consistency of IPC Classification

Placement & Lookup Algorithm: Both the placement
& lookup proceed as follows. If the IPC classifier is 1,
only Way 0 is used for tag comparison and data access. If
there is a miss, then Way 1 is enabled in the next cycle.
If there is a miss there as well, then (Way 2, Way 3) are
enabled in the next cycle. A miss here results in L1 miss
leading to an L2 access. This creates a pseudo-associative
cache controlled by IPC classifiers. There are multiple hit
times (in this example three, only two for the most frequent
case of IPC 4). If desired, all the IPC classifiers can be re-
duced to only two cycle access only. Note that on a miss,
the data is also placed into a specific way according to the
way-ordering in Table 1. We currently place the data in
direct-mapped way by forcing it into the first way enabled
mapping. Based on the PSAC [4] observation, we expected
to see at least 70-75% of the cache traffic completely con-
tained within single ways with no cross traffic (only one
cycle hit). Figures 3 and 4 show this figure to be close to
66%. Note that we do not use any prediction that comes
in the critical path for cache access. The IPC classifiers
can also be compiler generated, and LSQ validated. In this
study, we have only considered dynamically generated (by
issue stage) IPC classifiers.

2.1 Consistency of IPC Classification

Since we rely on classifying loads at run time, it is im-
portant that a load classified as belonging to a particular
IPC epoch is classified as belonging to the same IPC epoch

for all its occurrences (if it appears again). If not, the re-
curring load can probe a different way, leading to misses
as well as energy degradation. The methodology to cap-
ture the consistency of IPC classification is as follows. We
employ a 1024 entry buffer to store the replaced loads. Ev-
ery time a load occurs, the buffer is checked to see if it
has occurred before. If so, the current IPC classification
is verified with the previous IPC classification. If they are
the same, a counter is incremented; if different, another
counter is incremented. If the load is not found in the
buffer, a new entry is created for the load. Note that such
a scheme captures IPC classification consistency within a
time window corresponding to 1024 misses. This is a sig-
nificantly large temporal window (with a 99% hit rate, and
20% load/store frequency, it captures a temporal window
with 512000 instructions).

The observations from this experiment are shown in Fig-
ure 5. It is seen that, on average, the fraction of loads
getting reclassified as belonging to the same IPC epoch is
about 65% to 70%. The mis-classified loads are a mere
16%. This vouches for the consistency of the IPC based
classification methodology.

3 Cache Energy-Delay Model

TheN -way set associative cache hasN Static-RAM ar-
rays each for data and tag. For a given CPU address, tag
decoding and the data accesses are both performed in par-
allel. Every cache access results in decoding the address



issued by the CPU, which asserts exactly one of the word-
lines. A word-line is common to all 4 ways since a sin-
gle set-address designator corresponds to all the ways in a
given set. The bit lines are changed to reflect the selected
bit cell state, followed by a sense amplifier that acceler-
ates this change. Since the wordlines stretch across all four
ways, their capacitance contributes significantly to the en-
ergy (Ewl per way) and delay. For every access, since tag
resolution would not be completed before data is available
in the data-output drivers, energy (Ebl per way) is spent in
the bit lines of all four ways (of a set). Added to that is
the energy spent in redundant tag comparisons (E cmp) and
sense amplifiers (Esa). Once tag resolution is done, the en-
ergy is spent in the multiplexor that drives one of the data
output drivers (Edrv). The energy spent per access is de-
veloped as follows. Let us define the array energy to be:
Earr = Ewl + Ebl (+ Ecmp). There are constant compo-
nents of energy (Econs) that involve the drivers, inverters
and multiplexors. Then, the energy per access is roughly
given by:

E = (Edec+4∗Earr)tag+(Edec+4∗Earr)data+Econs

Even if the access results in a hit in the cache, almost
three fourths of the total energy spent is redundant.

If the tag and data array accesses were to be sequen-
tialized as proposed in Section 2, the schedule selected
data array accesses are initiated in parallel with tag ac-
cess/comparison. Note that both tag and data access pro-
ceed only in the scheduled way and not in all the ways.
Now that the decoders drive smaller number of ways, cache
access delay is reduced (set associative mapping tends to-
wards direct mapped cache architecture). The data and tag
array energy, in the 1-way (2-way) access schedule would
be roughly 25% (-50%) of the original energy. In the best
case, a 1-way access may result in a hit. But the scheme
can result in two or three cycle accesses as well. In gen-
eral, for an cycle hit, wheren = 1, 2 or 3, the energy is
roughly given by:

E = n∗[(Edec+Earr)tag+(Edec+Earr)data]+Econs

For reasons discussed in Section 2 and validated in Sec-
tion 4, the proposed scheme results in good placement,
which leads to a single cycle access for most loads. Hence,
the energy saved in the arrays during every single cycle
access offsets the extra energy used in the decoders dur-
ing every multi-cycle hit. These energy computations, for
varying hit times are formulated in Table 2.

The influence of capacitance reduction is not just evi-
dent in energy savings but also manifests itself in cache
access latency reduction. For every cycle, the proposed
schedule accesses a maximum of two ways, instead of four.
Even in a cache design that involves partitioned word lines,
the drive necessary is roughly one half of what is needed in
a four-way access design. Hence the cache access latency

IPC Characteristics

0.000

0.500

1.000

1.500

2.000

2.500

3.000

mcf bzip gcc equake art gzip mesa vpr parser Mean

SPEC2000 CPU Benchmark

IP
C

Base IPC IPC due to selective sequential cache access

Figure 6. Performance Characteristics of IPC
driven cache architecture

comes down significantly. CACTI based simulations quan-
tize this reduction to be 13% (from1.695ns to 1.475ns).

4 Experimental Methodology

The experimental evaluation of the modified cache con-
trol is simulation based. The first exercise determined
the distribution of load/stores among different IPC clas-
sifications in a base model (Figure 3). These distribution
numbers were critical in developing a practical way-access
schedule detailed in Section 2. The performance and en-
ergy benefits of the selective way-access schedule were
then evaluated as follows.

4.1 Simulation Environment

The SimpleScalar simulator [3] version 3.0. targeting
Alpha ISA [8] is employed to evaluate the IPC driven se-
quential selective cache access scheme. The simulation
models a current generation 4-way dynamically scheduled
processor microarchitecture with two levels of instruction
and data cache memories. We employ nine SPEC2000
benchmarks to compare the performance of the proposed
microarchitecture against base models.

The baseline model can fetch and issue up to 4 instruc-
tions per cycle. The dynamic scheduler window is 64 en-
tries deep and the load/store queue can store up to 32 en-
tries. The memory system consists of split Level-1 caches,
the L-1 data cache being a 32KB, 4-way set-associative
cache and the L-1 instruction cache being a 64KB direct
mapped cache. Data cache access is assumed to have a 3
cycle latency. There is also a 256KB 4-way set associative
unified L-2 cache with a 6 cycle hit latency. Memory access
is assumed to take takes 60 cycles. The model uses a 2 level



IPC classifier First Cycle Hit Second Cycle Hit Third Cycle Hit

1 Edec + Earr + Econs 2 ∗ Edec + 2 ∗ (Earr) + Econs 3 ∗ Edec + 4 ∗ (Earr) + Econs

2,3,4 Edec + 2 ∗ (Earr) + Econs 2 ∗ Edec + 4 ∗ (Earr) + Econs

Table 2. Energy Consumption Methodology

Energy Characteristics

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

mcf bzip gcc equake art gzip mesa vpr parser Mean

SPEC2000 CPU Benchmark

E
n

er
g

y 
(J

)

Original energy Reduced Energy

Figure 7. Energy Characteristics of IPC
driven cache architecture

branch prediction mechanism calledgshare branch predic-
tor which uses an 8-bit global history table and a 4K entry
BTB. The simulations were run for at least 500 million in-
structions and all simulations are appropriately forwarded
through the transient phases based on [12]. Energy num-
bers are related to the number of cache accesses and more
specifically to the number of ways accesses. The energy
per access is quantified through CACTI 2.0 [13] based sim-
ulations. CACTI also provides a breakup of L-1 data cache
access energy which is utilized to compute the energy gains
from the proposed design based on Table 2.

4.2 Performance Characteristics

The metric used to compare the performance of the
proposed scheme against the base scheme is Instructions
per Cycle (IPC), which is reflective of the ILP delivered.
The base microarchitecture is evaluated separately without
accounting for any penalty attributable to mis-placement,
which leads to multi-cycle accesses. The proposed clas-
sification scheme is integrated into the Simplescalar envi-
ronment by adding a detailed IPC-aware sequential cache
probing/placement scheme for every L-1 data cache access.
The IPC based classifier is implemented in the scheduler
stage to guide cache access. The only contribution to per-
formance degradation could be attributable to any load that
takes more cycles than usual, to return data.

The performance degradation numbers are reported in
Table 3. Figure 6 shows that degradation remains within
conservative limits of 2.25% and is even around 1% for
four benchmarks. These numbers indicate that the pro-
posed IPC based classification leads to a better overall
energy-performance design point.

4.3 Energy Characteristics

CACTI 2.0 [13] based simulations of a 32 KB, 4-way
set associative cache (with a line size of 16 bytes) are
used to obtain the energy-delay benefits of the proposed
scheme. We obtain a breakup of total energy/delay in terms
of the decoder, wordline, bitline and sense-amp compo-
nents for both tag and data arrays. The energy associated
with the comparators (tag), multiplexors and drivers are
also recorded. Note that these are the per-access energy
components for the L-1 cache. The respective energy com-
ponents are scaled according to the number of accesses to
the different ways obtained from Simplescalar simulations.

The implementation of the proposed scheme in Sim-
plescalar simulator also takes care of decomposing the
scaling factors for sequential access schedules. This be-
comes necessary because, every time a load results in a
first cycle miss, the decoder has to be exercised again to
access the next way in the schedule. This doubles the de-
coder energy for that load. At the same time, every access
might result in the switching of one or two ways, depend-
ing on the IPC-epoch it originates from. The net energy for
the whole simulation cycle time is obtained as the prod-
uct of the energy per access obtained from CACTI and the
number of accesses, obtained from the simulator model-
ing. These figures are tabulated in Table 3 and shown in
Figure 7.

Over nine benchmarks, the average savings for the L-
1 data cache energy is about 28.6%. In a majority of the
benchmarks, the savings are at least 20% or higher. Note
that the performance/IPC compromised to achieve these
significant energy-cuts are a mere 2% on an average. Cou-
pled with the fact, that the scheme has no negative implica-
tions on the cycle time makes it an impressive scheme for
effective energy reduction in caches.



Spec2000 Base Reduced

Benchmark IPC IPC Original Reduced

mcf 0.829 0.801 3.401 4.373 3.075 29.677

bzip 1.755 1.736 1.128 3.253 1.921 40.933

gcc 1.194 1.165 2.454 6.441 3.740 41.939

equake 2.088 2.065 1.092 3.802 2.431 36.067

art 0.727 0.709 2.395 4.883 4.715 3.442

gzip 1.859 1.828 1.667 4.276 2.967 30.624

mesa 2.583 2.568 0.612 3.069 2.425 20.971

vpr 1.625 1.565 3.729 5.319 3.582 32.649

parser 2.267 2.197 3.079 5.766 4.548 21.133

Mean 1.659 1.626 2.173 4.576 3.267 28.604

% IPC Deg
% Energy 

Saved
Energy (nJ)

Table 3. Performance and Energy Characteristics

5 Conclusions & Future Work

In this paper, an IPC-aware sequential associative cache
architecture is proposed. This novel cache-access method-
ology creates a sequential schedule for cache accesses
based on the ILP delivered at every cycle. The resources
allocated for cache access tend to dissipate energy in pro-
portion to the actual ILP delivered (and not the peak ILP).
The overall IPC degradation remains within tolerable lim-
its of 2%, while the energy savings are at least 20% for
a 32KB, 4-way set associative L-1 data cache. There are
also cache access time advantages (13%) obtainable as a
result of reduced switched capacitance. (This reduction is
not leveraged in our study/results). This complements the
hypothesis that least energy is achieved at a design point
which balances resources and requirements.

Many interesting problems arise in the context of scal-
ability. Consider a 2-port data cache. Can two loads with
disjoint access schedules (say one accesses Ways 0 & 1 and
the other accesses Ways 2 & 3), be supported by a single
port (the extra decoders being the only additional cost)?
Also, can the access schedules be tweaked not to result in
any more IPC loss, but at the same time are more way-
disjoint? We are experimenting along these directions.

References

[1] D. H. Albonesi. Selective cache ways: On-demand cache
resource allocation.International Symposium on Microar-
chitecture, pages 248–, 1999.

[2] B. Batson and T. N. Vijaykumar. Reactive-associative
caches. InProceedings of the international symposium
on parallel architectures and compiler techniques (PACT),
2001.

[3] D. Burger, T. Austin, and S. Bennett. Evaluating the fu-
ture microprocessor: The SimpleScalar Toolset.Technical
Report CS-TR-96-1308, University of Wisconsin, Computer
Science Dept., 1997.

[4] B. Calder, D. Grunwald, and J. Emer. Predictive sequen-
tial associative cache.Proc. 2nd Symp. High-Performance
Comp. Arch., San Jose, CA, pages 244–253, January 1996.

[5] I. Corporation. Intel xscale microarchitecture.
http://developer.intel.com/design/intelxscale, 2001.

[6] J. M. et. al. A 160-MHz, 32-b, 0.5-W CMOS RISC
microprocessor. IEEE Journal of Solid-State Circuits,
11(31):1703–1714, 1996.

[7] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. ISCA, June 2002.

[8] Keller.J. The 21264: A Superscalar Alpha processor with
out-of-order execution.Presented at the 9th Annual Micro-
processor Forum, San Jose, CA., 1996.

[9] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction.ISCA, pages 132–
141, 1998.

[10] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi,
and K. Roy. Reducing set-associative cache energy via
way-prediction and selective direct-mapping.Proceedings
of the 34th annual ACM/IEEE international symposium on
Microarchitecture, Austin, Texas, pages 54–65, 2001.

[11] P. Ramarao and A. Tyagi. An adiabatic framework for a
low energy micro-architecture and compiler.Workshop on
interaction between Compilers and Computer Architecture
(INTERACT - 7), 2003.

[12] T. Sherwood, E. Perelman, and B. Calder. Reducing
set-associative cache energy via way-prediction and se-
lective direct-mapping. Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture,
Austin, Texas, pages 54–65, 2001.

[13] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated
cache timing, power and area model.Technical Report WRL
2001/2, DEC/Compaq Western Research Labs, Palo Alto,
CA., August 2001.


