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Abstract 

 
Modern superscalar microprocessors need sizable 

register files to support large number of in-flight 
instructions for exploiting ILP. An alternative to building 
large register files is to use smaller number of registers, 
but manage them more effectively. More efficient 
management of registers can also result in higher 
performance if the reduction of the register file size is not 
the goal. 

Traditional register file management mechanisms 
deallocate a physical register only when the next 
instruction with the same destination architectural 
register commits. We propose two complementary 
techniques for deallocating the register immediately after 
the instruction producing the register’s value commits 
itself, without waiting for the commitment of the next 
instruction with the same destination. Our design relies 
on the use of a checkpointed register file (CRF), where a 
local shadow copy of each bitcell is used to temporarily 
save the early deallocated register values should they be 
needed to recover from branch mispredictions or to 
reconstruct the precise state after exceptions or 
interrupts. The proposed techniques outperform the 
previously proposed schemes for early deallocation of 
registers. For the register-constrained datapath 
configurations, our techniques result in up to 35% 
performance increase with 23.3% increase on the 
average across SPEC2000 benchmarks. 
 
1. Introduction 
 

Dynamic superscalar processors extract instruction-
level parallelism from sequential code by maintaining a 
large window of instructions and issuing ready 
instructions for execution, possibly out of program order.  
Sizable physical register files are mandated in such 
designs to support large instruction windows, as every in-
flight instruction with a destination register is allocated a 
new physical register.  Most recent implementations of 
superscalar CPUs use unified register files for holding 
both committed and speculative (non-committed) register 

values within a single RAM structure. A back-end 
register mapping table, updated at the time of instruction 
commitment, is typically used to point to the most 
recently committed instance of each architectural register. 
The information stored in this table allows the 
reconstruction of the precise state on interrupts or 
exceptions and also assists in the rapid recovery from 
branch mispredictions. 

Traditional allocation and deallocation mechanisms, 
associated with the unified register files are too 
conservative – they are designed to support the worst-
case scenarios, which rarely occur in practice. A new 
physical register is allocated for the destination of a new 
instruction at the time of dispatch and this register 
remains allocated till the next instruction writing to the 
same architectural register commits.  This guarantees that 
if an instruction producing a later instance of the 
architectural register is squashed out of the pipeline, the 
earlier instance is available and can be resurrected to 
reconstruct the precise register state. While simple to 
implement, such a register deallocation mechanism results 
in a situation, where a lifetime of a physical register 
significantly exceeds the lifetime of the associated 
instruction – the register remains allocated well beyond 
the point of instruction commitment. Consequently, large 
register files are needed to avoid stalls in instruction 
dispatching due to the lack of free physical registers. 
Such large register files result in high access delay and 
power consumption. In addition, the register files in 
future wide issue machines also need to be highly-ported, 
which further exacerbates the situation and also increases 
the overall design complexity. 

An alternative to building large register files is to use 
smaller number of registers, but manage them more 
effectively. More efficient management of registers can 
also result in higher performance if the reduction of the 
register file size is not the goal. Researchers have 
addressed the inefficiencies in register usage to reduce the 
number of registers by using late register allocation [7, 
15], early deallocation [10, 11, 12] and register sharing 
[8, 4, 14]. We defer the detailed discussion of these 
related efforts to Section 4. The register lifetime analyses 
in Figure 1 show that the number of cycles between the 



result writeback and the register deallocation is 36 cycles 
on average, which is significantly higher than the number 
of cycles between the register allocation and the result 
writeback into this register (16 cycles). Consequently, it is 
relatively more important to pursue techniques for early 
register deallocation.  
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Figure 1 - Register Lifetime 

Our first scheme releases a physical register allocated 
for the destination of an instruction immediately after the 
instruction commitment, under certain conditions.  
Specifically, if a destination register allocated for an 
instruction is renamed before the instruction commits and 
all potential consumers of the value have started the 
execution (i.e. obtained the value), then the register can 
be released and reallocated for future instructions. Since 
branch mispredictions can result in the need to restore the 
values of some deallocated registers, the values of the 
registers that are deallocated immediately after its 
commitment have to be saved. We will refer to these 
registers as “early deallocated” registers. To support this 
capability, we use a locally checkpointed register file 
(CRF) where each bitcell has a locally connected shadow 
copy. The value of a register can be saved in the shadow 
bits of the register in a single parallel step. On branch 
mispredictons, the saved values can be restored from the 
checkpoint of the shadow bits, as needed. Our design 
does not introduce the extra ports to the register file, the 
communication for saving and restoration of values 
occurs directly between a bitcell and its shadow. We also 
introduce a complementary technique that increases the 
performance by early releasing registers that were not 
deallocated by the first scheme. 

 The rest of the paper is organized as follows. We 
present the motivation for this work, define some terms 
and also describe the CRF technique in Section 2. Our 
designs for the early register release are presented in 
Section 3. Section 4 presents the related work. Section 5 
describes our simulation methodology followed by the 
simulation results in Section 6. Finally, we offer our 
concluding remarks in Section 7.   

 
2. Motivation, Definitions and Checkpointed 
Register Files 

 
This work was primarily motivated by the fact that a 

large percentage of generated register values in a datapath 

are short-lived. Researchers have used the term “short-
lived” in many different contexts [6, 9, 13]. For example, 
[9] identified a value as short-lived if it is exclusively 
consumed during its residency in the reorder buffer. (The 
study of [9] used a P6-style datapath, where the generated 
results values are first written into the reorder buffer and 
then later moved to the architectural register file during 
instruction retirement).  In [13], the authors defined the 
value to be short-lived if the destination architectural 
register used to hold the value is renamed (redefined) by 
the time the value-producing instruction reaches the 
write-back stage.  In this paper, we call the value short-
lived, if the corresponding destination register is renamed 
by the time the value producing instruction reaches the 
commit stage. At first glance, the difference between the 
two definitions may seem to be minor, but in reality an 
instruction can spend many cycles between its write-back 
and commitment, as write-backs occur out-of-order, but 
commits are performed strictly in program order. 
Consequently, a larger percentage of values can be 
identified as short-lived using the new definition.  

Figure 2 shows the percentage of values that are short-
lived according to our definition. The results are shown 
for different physical register file sizes, as detailed in the 
legend of the figure. As depicted, the percentage of short-
lived values increases for larger register files. When the 
register file size is small, it is often the case that an 
instruction redefining an architectural register had not yet 
been dispatched by the time the instruction producing the 
previous instance of the same register committed. This 
primarily happens because of the frequent pipeline stalls 
due to the lack of physical registers. 
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Figure 2 - Percentage of Short-lived Values 

The basic idea behind our designs is to deallocate a 
physical register allocated to hold a short-lived value 
immediately after the instruction producing the value 
commits. The only additional condition that we impose is 
that all consumers of the value must commence execution 
before deallocation can occur. Notice that the presence of 
the unresolved branch instructions between the 
instruction producing the short-lived value and the 
instruction that redefines the same architectural register 
(called redefiner in the rest of the paper) is not a condition 
for early register deallocation. Consequently, the values 
kept in the deallocated registers may need to be restored 
as a result of branch mispredictions when some redefiners 



are squashed. Therefore, a mechanism is required to make 
the early deallocated register available for new 
allocations, but at the same time somehow preserve the 
value that was kept in this register till the time when this 
value can be discarded completely (which would happen 
at the time of the redefiner’s commitment, just like in 
traditional designs) 

To accomplish this goal, we use a register file design 
with an embedded checkpoint. The schematic of such 
Checkpointed Register File (CRF) bitcell is shown in 
Figure 3.  Here, each traditional register file bitcell is 
backed-up by a pair of cross-coupled inverters (I4 and I5) 
which are connected to the main bitcell using pass 
transistors (T5 and T6).  When the Checkpoint signal 
rises, the contents of every bitcell are simply copied to the 
shadow cells.  To recover, the contents of the shadow 
cells are copied back to the main storage when the 
Recover signal rises. As seen from Figure 3, the 
additional area required by the shadow cell (the area in 
the grey box) is virtually independent of the number of 
register file ports. In fact, the area overhead of the 
shadow bits becomes relatively smaller as the number of 
register file ports increase. 

 

 
Figure 3 - A Dual-ported CRF bitcell 

 
Figure 4 - Layouts of a Register File Bitcell 

In our design, the short-lived values whose consumer 
count is zero are checkpointed at the time of commitment, 
using the logic shown in Figure 3. At the same time, the 
main registers holding these values are immediately 
released for future allocations. Notice that a separate 
checkpoint and recover signals are needed here for each 
register, as the saving and the restoration of the register 
values are performed on an individual basis, as we 
explain in detail in Section 3. 

In our implementation of the circuit from Figure 3, we 
removed the inverters I3 and I6 to save the layout area. 
This can be done through appropriate transistor sizing. 
Figure 4 shows the CMOS layouts of a traditional 6-
transistor SRAM bitcell (left portion of Figure 4), and a 

traditional SRAM bitcell with the embedded shadow 
bitcell that implements checkpoint, as depicted at Figure 
4.  For both layouts, we used 12-ported bitcells. As can be 
measured from the figure, the resulting bitcell area 
increase is about 26.5%. This area increase is not 
proportional to the number of register ports, as can be 
easily seen from Figure 4. Since the area of the other 
peripheral components of the register file such as 
sensamps, decoders, word select drivers and prechargers 
is not impacted by the proposed bitcell modification, the 
overall increase in the area of the register file is less than 
20%. There is a very slight increase in the register file 
delay due to the longer word select and bit lines. Since no 
gate capacitance is added to these lines, the increase in 
the delay is miniscule; it is less than 0.5% for the layouts 
that were designed and simulated. There is also a similar 
minimal impact on the delay of the word select line 
during the normal course of read and write accesses. 

 
3. Schemes for Early Register Release 

 
In this section, we describe two complementary 

schemes for early register deallocation that rely on the 
hardware support described above. 

  
3.1. Scheme 1 

 
Our first scheme releases a physical register allocated 

for an instruction if the following two conditions are true: 
(1) the value produced by the instruction is short-lived, 
and (2) all potential consumers of this value have started 
execution. The percentage of registers that can be early 
released in this manner strongly depends on the register 
file size, as well as on a few other parameters, as we 
detail in the results section. Note that although the register 
is released at the time of commitment, the retirement 
rename table is still updated, just as in traditional designs. 

To check for condition (1) above, we maintain a bit 
vector called Redefined, with one bit for each physical 
register. In the register renaming stage, each value 
producing instruction sets the Redefined bit of the 
physical register, which was previously mapped to its 
destination architectural register. Each instruction checks 
the Redefined bit of the physical register assigned to its 
destination at the time of commitment. This bit is reset 
when the corresponding physical register is deallocated.  

To detect the second condition for early register 
deallocation, we maintain consumer counters for each 
physical register to keep track of how many consumers 
have not yet read the value of the register. The counters 
are incremented at the time of renaming, and they are 
decremented when instructions begin execution. The 
consumer counters are also accordingly adjusted in the 
course of branch misprediction handling. A register R, 
allocated to hold a result of instruction I, is deallocated at 
the time of I’s commitment if and only if Redefined[R] = 
1 and  Consumer_Counter[R] = 0.  



Note that the absence of the unresolved branches 
between the instruction producing a short-lived value and 
its redefiner is not a condition for early release (adding 
this condition would be too restrictive and would involve 
significant implementation complexity.) We discuss the 
handling of branch mispredictions later in this section. 
For now, it is sufficient to understand that reconstruction 
of the precise register state is possible, since the values of 
early-deallocated registers are not completely discarded, 
but instead saved in the shadow bitcells of the CRF. 

One potential problem with the proposed scheme is 
that the deallocation of the same register can occur twice, 
thus creating inconsistencies in the register free list and 
leading to erroneous results. Consider a scenario, where 
three instructions – A, B and C - follow each other in 
program order, such that A and B write to the same 
architectural register, (B is a redefiner for A).  Assume 
that a physical register, assigned for the instruction A is 
early deallocated at the time of A’s commitment and then 
reallocated to the instruction C before B commits. In this 
case, instruction B, when it eventually commits, will try 
to deallocate the register initially assigned to A, as it has 
no knowledge that the register had already been 
deallocated. The net effect of such actions will be the 
deallocation of a register, which was assigned to a 
younger instruction (C in this case) leading to the 
incorrect program behavior.  The root of the problem is 
that a physical register is deallocated twice – once in the 
course of early release and once in the course of the 
regular commitment activity of the redefining instruction. 

We avoid this scenario by associating a single bit 
called don’t_deallocate, with each physical register.  
When a register holding a short-lived value is released at 
the time of commitment, its don’t_deallocate bit is set. 
When the redefiner commits and the don’t_dealloate bit 
of the register that it normally deallocates (obtained from 
the commitment rename table) is set, then no deallocation 
occurs, as that register has already been released early.   

We now discuss how the branch mispredictions are 
handled in this scheme.  A branch misprediction can 
cause the redefining instruction to get squashed. 
Consequently, the value of the early deallocated register 
needs to be restored in this case. This mechanism is 
implemented as follows.  At the time of renaming, each 
instruction saves the old mapping of its destination 
register within the ROB entry. This information can be 
easily obtained from the rename table and some 
implementations of superscalars already perform similar 
action for branch misprediction recovery. In our scheme, 
when an instruction is flushed from the pipeline as a 
result of a misprediction, it checks the don’t_deallocate 
bit associated with the previous mapping of its destination 
register (which, as explained above, is saved within the 
ROB entry of the instruction in question).  The setting of 
that bit indicates if the previous instance of the 
destination architectural register was early deallocated. If 
so, the previous value is restored from the shadow cells 

and the don’t_deallocate bit is reset. Also, the physical 
register whose value was restored is removed from the 
free list.  

The above solution still, however, has a subtle 
problem. We illustrate this problem below using a short 
code fragment. Consider the following sequence of 
instructions, where only the destination register of each 
instruction is shown for simplicity. Both the original and 
the renamed codes are included. Note that the particular 
instruction mnemonics are not important for the purposes 
of our discussion: they are shown merely for the sake of 
readability. 

 
   Original code     Renamed code 

 I1: ADD r1         ADD p2   
  ……….          ……….. 
 I2: SUB r1         SUB  p17  
    ……….          ……….. 
 I3: XOR r5         XOR p2  
 I4: BRANCH 
 I5: NOR r5         NOR p19 
 

Figure 5 - The Example Code Sequence 

Assume that the value produced by the instruction 
ADD is identified as short-lived and physical register p2 
is released to the free list at the time of ADD’s 
commitment. Simultaneously, the value produced by the 
ADD is saved in the shadow bitcells of register 2 and 
don’t_deallocate[2] bit is set to 1 to prevent the 
instruction SUB (which is a redefiner for ADD) from 
duplicate deallocation of register 2.  

Further assume that after physical register 2 has been 
released, it was reallocated to another instruction (XOR in 
this case). After that, the branch instruction (I4) and 
XOR’s redefiner (NOR) were dispatched. Next, the 
branch I4 was mispredicted. In the course of branch 
misprediction handling, as explained above, the 
instruction NOR checks the value of don’t_deallocate[2] 
bit, because physical register 2 is a previous mapping of 
NOR’s destination architectural register (r5). The 
problem is that this bit was set not by the XOR instruction 
(as the NOR instruction thinks), but by the ADD 
instruction. Now, if the NOR instruction blindly uses the 
value of don’t_deallocate[2] and restores the previous 
value of physical register p2 from the shadow bitcells of 
the CRF, then the value of register p2 produced by the 
XOR instruction will be overwritten, resulting in the 
incorrect behavior of the program. The bottom line is that 
in the situation illustrated in this example the NOR 
instruction should not restore the previous destination 
architectural register value, as the previous producer of 
that register (the XOR) has not yet committed. This 
problem arises due to the simultaneous presence of two 
instructions (I2 and I5 in this example), which are 
unmapping the same physical register (p2 in this 
example). Notice that traditional register management 
mechanisms do not suffer from such problem.  

One can think of several ways to overcome the 
aforementioned deficiency. One solution would be to 
associate the don’t_deallocate bits with the ROB entries, 



rather than with physical registers. While conceivable, 
this solution can result in a prolongation of the cycle time, 
as the ROB entries of the two instructions producing 
consecutive values of the same architectural register 
would essentially have to cross-reference each other. 

Instead, we propose a more elegant mechanism to 
handle the above phenomenon. A simple 2-bit counter 
can be associated with each physical register to count the 
number of its in-flight redefiners. When a newly 
dispatched instruction redefines an architectural register, 
the counter associated with the previous mapping is 
incremented. When an instruction commits, the counter 
associated with the previous mapping of the destination 
register (as obtained from the retirement rename table) is 
decremented. For example, in the scenario considered in 
Figure 5, the counter associated with register p2 has the 
value of 2, it was incremented once during dispatch of I2 
and once during dispatch of I5. A two-bit counter is 
sufficient, because the number of in-flight redefiners of 
the same physical register never exceeds 2 (for example, 
XOR cannot early release p2 before SUB commits).  

When an instruction is flushed from the pipeline, it 
checks the value of this counter associated with the 
previous mapping of its destination register, along with 
the don’t_deallocate bit.  The restoration of the previous 
register value from the CRF checkpoint occurs only when 
the don’t_deallocate bit is set and the value of the counter 
is 1. For example, in the scenario of Figure 5, the 
instruction NOR will not restore the value of p2, because 
the value of the counter associated with p2 is 2.   

To summarize, the following actions are performed in 
various pipeline stages to support our design. Assume that 
P is the destination physical register of the instruction, R 
is the destination architectural register and K is the 
previous mapping of R. 

 
Register Renaming: 
(1) The consumer counters corresponding to each of the 
source operands is incremented. 
(2)  The Redefined bit of physical register K is set. 
(3) The don’t_deallocate bit of K is set to 0.  
Commitment: 
(1) If Redefined[P] = 1 and Consumer_Counter[P] = 0, 
the generated value is saved in the backup cells of the 
CFR and P is deallocated and the don’t_deallocate bit of 
P is set to 1.  
(2) If the don’t_deallocate bit of K is set, physical register 
K is not deallocated. Otherwise, it is added to the free list. 
Issue: 
(1) The consumer counters corresponding to the 
instruction’s source operands are decremented. 
 
3.2. Scheme 2 

 
The first condition for early register release in Scheme 

1 mandates that the register can only be deallocated at the 
time of commit when the redefining instruction has been 

already dispatched into the pipeline. We notice, however, 
that it is frequently not the case for small register files. In 
other words, the percentage of short-lived values drops 
significantly when the size of the register file decreases. 
We also noticed that in many situations, even though the 
redefining instruction is not yet renamed, the consumer 
counter of the register is zero at the time of commitment. 
This observation motivated our second scheme. 

Specifically, we propose to deallocate the registers 
holding committed values when the redefining 
instructions enter the pipeline, instead of waiting for the 
redefining instruction to commit, as is the case with 
traditional register management mechanisms. The only 
additional condition that needs to be imposed is that the 
consumer counter is zero. The same hardware support in 
the form of the CRF and a few bit-vectors, as described in 
Sections 2 and 3, can be used. The only additional logic 
that is needed here is in the form of the Committed bit 
vector, with one bit for each physical register. An 
instruction sets the Committed bit of its destination 
physical register when it commits and the register is not 
early deallocated. The bit is reset when the physical 
register is released (either early or in a regular manner). 
Each new instruction undergoing renaming checks the 
Committed bit associated with old mapping of its 
destination architectural register. If the bit is set, and the 
consumer counter of that register is zero, the register can 
be freed up immediately. While this second technique is 
of little use for reasonably large register files (where the 
percentage of short-lived values is large), it provides 
significant performance improvement for small-sized 
register files. 

 
4. Related Work 

 
Researchers have exploited the inefficiencies in 

register usage to reduce the number of registers in three 
major ways.  One set of solutions delays the actual 
allocation of physical registers until the time that the 
result is written back [7, 15].  As a result, the register 
pressure is reduced and the effective size of the register 
file increases.   These schemes can be used in conjunction 
with the techniques proposed in this paper. The drawback 
of delayed register allocation is in some design 
complexity, which stems from the need to maintain 
several levels of register maps.  

The second set of solutions reduces the number of 
registers through the use of register sharing.  The 
technique of [8] relies on the fact that duplicate values are 
produced with a high frequency within a small segment of 
the dynamic instruction stream.  The additional 
complexity required to keep track of the duplicate values 
is quite significant.  In [4] and [14], simpler techniques 
are proposed which only eliminate the duplication of two 
values in the register file - "0" and "1", yet allow to reap 
most of the benefits of the scheme proposed in [8].     



The third set of techniques aim at reducing the register 
file pressure by using the early deallocation of physical 
registers [10, 11, 12].  These techniques are close in spirit 
to our proposal, and in the subsequent paragraphs we 
describe them in detail.  

In Cherry scheme [10], physical register is recycled if 
both the instruction that produces the physical register 
and all those that consume it have executed and are free 
of replay traps and are not subject to branch 
mispredictions. To reconstruct the precise state in cases of 
exceptions or interrupts, the scheme relies on periodic 
register file checkpointing. In section 6, we provide a 
quantitative comparison of our techniques with the 
Cherry scheme. 

The scheme of [12] describes two techniques to release 
registers as soon as the processor knows that there will be 
no use of them. Their first scheme identifies the last user 
and the next version of a particular physical register. 
Provided that there are no pending branches waiting for 
verification between the last user and the next version, as 
soon as the next version is decoded the corresponding 
physical register is released if the last user has already 
committed or an early release is scheduled for the time 
when the last user commits. As our scheme does not have 
to wait for the commitment of the last user to release the 
register but instead releases the register at the time when 
the value-producing instruction itself commits, the 
register deallocation in our scheme occurs earlier than in 
the scheme of [12].  Consequently our performance gains 
are higher. According to the results presented in [12] their 
scheme achieves the performance gain of 5% for the 
integer programs and 9% for floating point programs for 
the configuration with 40 registers. Our performance 
gains for the same configuration are 20% and 26% for 
integer and floating point programs respectively (as 
presented in Section 6). The second scheme of [12] is an 
extension of the first scheme, where the condition of not 
having an unresolved branch between the last user and 
next version is removed by using a series of queues and 
additional logic. This scheme does not perform any better 
than ours as the absence of branches is not a condition in 
our schemes in the first place, but the register deallocation 
still occurs earlier in our designs. The performance 
improvements of our scheme compared to the two 
schemes of [12] are higher, especially when a smaller 
register file is used. 

The scheme of [11] proposes to release a register early 
if the register value has been produced, all consumers of 
the value have issued, the register has been redefined, and 
all branch instructions between the value producing 
instruction and the refiner have been resolved. Just like in 
the first scheme of [12] the additional condition on the 
absence of unresolved branches limits the effectiveness of 
this approach. Unfortunately, this technique does not 
support precise exceptions, so we did not directly 
compare our results against the results of [12]. In the 
same paper, the authors describe a simplified scheme 

which supports precise exceptions, which serves as a 
baseline case for our analysis. 

Alternative register file organizations (mainly using 
various forms of caching) have also been explored for 
reducing the access time (which goes up with the number 
of ports and registers), particularly in wire-delay 
dominated circuits [2, 3, 5]. A large number of solutions 
have also been proposed for reducing the register file 
energy consumption.  Since energy optimization is not the 
goal of this paper, we do not discuss those schemes. 

 
5. Simulation Methodology 

 
For estimating the performance of our techniques, we 

used a significantly modified version of the Simplescalar 
simulator [1]. We implemented separate structures for the 
reorder buffer, issue queues and physical register file. All 
aspects of the state restoration on mispredictions were 
simulated accurately. The studied processor configuration 
is shown in Table 1. We simulated a subset of SPEC 2000 
benchmarks, including both integer and floating point 
codes. Benchmarks were compiled using the gcc compiler 
that generates code in the portable ISA (PISA) format. 
Benchmarks were compiled with –O2 optimizations. 
Reference inputs were used for all the simulated 
benchmarks. The results from the simulation of the first 1 
billion instructions were discarded and the results from 
the execution of the following 200 million instructions 
were used.  

Table 1 - Configuration of the Simulated Processor 

Parameter Configuration 

Machine width 4-wide fetch, 4-wide issue, 4 wide commit 
Window size 64 entry issue queue, 32 entry load/store queue, 96–entry ROB 

Function Units and 
Latency (total/issue) 

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2 Load/Store 
(2/1), 4 FP Add (2), 1FP Mult (4/1) / Div (12/12) / Sqrt (24/24) 

L1 I–cache 32 KB, 2–way set–associative, 32 byte line, 2 cycles hit time 
L1 D–cache 32 KB, 4–way set–associative, 32 byte line, 2 cycles hit time 

L2 Cache unified 512 KB, 4–way set–associative, 128 byte line, 8 cycles hit time 
BTB 1024 entry, 4–way set–associative 

Branch Predictor Combined with 1K entry Gshare, 10 bit global history, 4K entry 
bimodal, 1K entry selector 

Memory 128 bit wide, 60 cycles first chunk, 2 cycles interchunk 

TLB 64 entry (I), 128 entry (D), fully associative, 30 cycles miss 
latency 

6. Experimental Results 
 
6.1 Evaluation of Scheme 1 

 
We first evaluate the percentage of register values that 

can be early released using Scheme 1 and also estimate 
the number of bits needed to represent consumer 
counters.  

Figure 6 shows the percentage of early deallocated 
registers for a configuration with 64 integer and 64 
floating point registers. The first bar shows the percentage 
of short-lived values and the subsequent bars depict the 
percentage of early released registers for the various sizes 
of consumer counters. We assume that if the counter 



overflows, the corresponding register is not early 
released. As seen from the figure, more than 70% of the 
registers can be early released on the average, and 2-bit 
wide consumer counters are sufficient in most cases. For 
a configuration with 48 registers, about 57% of the 
register values are early deallocated, and for a 
configuration with 40 registers the percentage goes down 
to 36% (results of Figure 1 can be used to understand this 
phenomenon.) 
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Figure 6 - Percentage of Early Released Registers 
Figure 7 depicts the IPC gains achieved by Scheme 1 

as compared to the baseline processor. Results are 
presented for three different configurations of the register 
files. The leftmost bar shows the speedup for the 
configuration with 40 integer and 40 floating point 
physical registers.  The next bar shows the configurations 
with 48 integer and 48 floating point registers and the 
rightmost bar show the configuration with 64 integer and 
64 floating point registers. We understand that having just 
40 registers may be too low in the configuration 
considered, but the results are presented with the purpose 
of estimating the performance impact of our schemes on a 
register-constrained datapath.  
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Figure 7 – Speedup of Scheme 1 Compared to the 

Base Case 
The speedups shown in Figure 7 vary considerably 

among the benchmarks as the register file changes. Some 
benchmarks (mcf, mesa, swim, wupwise, equake, parser 
and vpr) show higher performance increase with smaller 
register files as one would expect since the register file is 
a more significant bottleneck when smaller register files 
are used. However, other benchmarks (applu, mgrid, 
bzip2, gcc, gzip, twolf, mgrid, art, vortex) show the 
opposite behavior, at least for some configurations. In the 
case of applu the speedup consistently increases with 
larger register files.  This can be explained by examining 
the statistics of Figure 1. Although with larger number of 

registers, the performance is less sensitive to the size of 
the register file, significantly higher percentage of values 
can be considered for early deallocation, as the 
percentage of the short-lived values increases. On the 
average, the speedups are 5%, 4.8% and 3.2 % for 40, 48 
and 64 registers respectively. 

 
6.2 Evaluation of Scheme 2 

 
Figure 8 shows the performance increase achieved by 

Scheme 2. Results show a consistent picture across all of the 
benchmarks with mcf being the only exception. As seen from 
the figure, larger performance gains are achieved for the smaller 
register files. On the average, the performance increase is 
12.9%, 6.6% and 1.7% for 40, 48 and 64 registers respectively. 
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Figure 8 - Speedup of Scheme 2 Compared to the Base 

Case 
To summarize, Scheme 2 is particularly effective for small 

register files and provides little benefit when a larger number of 
registers is in use. 

  
6.3 Combined Evaluation of Schemes 1 and 2 
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Figure 9 – Speedup of Combined Scheme Compared 

to the Base Case 
Figure 9 shows the speedups obtained with the 

combined scheme. As shown, when both schemes are 
combined we can achieve speed-ups of up to 36.4% (for 
swim, using 40 registers.) The average speedups are 
23.3%, 12.6% and 5.3% for 40, 48 and 64 registers 
respectively. Note that the speedups we observe when 
both schemes are used together are higher than the sum of 
the individual speedups of Scheme 1 and Scheme 2 for 
most of the benchmarks. This is because both schemes 
have a positive influence on each other. In particular, the 
early release of physical registers as a result of applying 
Scheme 2 decreases the number of pipeline stalls. 
Consequently, more instruction can be renamed, thus 
redefining some of the registers which wouldn’t be 



redefined otherwise, effectively increasing the number of 
short-lived values which can be directly exploited by 
Scheme 1. 

 
6.4 Comparison with Previous Work 
 

Finally, we compare the results of our schemes against 
the work of [10], where the Cherry Scheme is described. 
A qualitative comparison with Cherry as well as with 
other schemes for early register release is given in section 
4. The performance benefits of the Cherry Scheme come 
from early deallocation of registers as well as from the 
optimizations performed on the load/store queue. For 
objective comparison, we only implemented the register 
optimizations of the Cherry Scheme. The performance 
results are shown in Figure 10 for various register file 
sizes. 

As shown, our techniques consistently outperform the 
early register deallocation component of the Cherry 
Scheme for all simulated register file sizes. For 40 
registers, our combined scheme achieves 23.3% speedup 
on the average whereas the Cherry Scheme only improves 
the performance by 12.2%, and for 64 registers Cherry 
achieves a performance gain of 2%, whereas our scheme 
improves the performance by 5.3%. 
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Figure 10 - Comparison of Cherry and Combined 

Scheme 

7. Concluding Remarks 
 

We presented two complementary techniques for early 
deallocation of physical registers in a superscalar 
processor. Our first technique releases a physical register 
immediately after the instruction commitment, without 
waiting till the next instruction writing to the same 
destination register commits. Our second technique 
further improves the performance by deallocating the 
committed instance of a register when the instruction 
producing the next instance is renamed. The combination 
of the two schemes results in the performance gains of 
23.3%, 12.6% and 5.3% for 40, 48 and 64 registers 
respectively on the average across simulated SPEC2000 
benchmarks. 
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