
Increasing Processor Performance Through Early Register Release

Oguz Ergin, Deniz Balkan, Dmitry Ponomarev, Kanad Ghose
Department of Computer Science

State University of New York, Binghamton, NY 13902-6000
e-mail:{oguz,dbalkan,ghose,dima}@cs.binghamton.edu

Abstract

Modern superscalar microprocessors need sizable

register files to support large number of in-flight
instructions for exploiting ILP. An alternative to building
large register files is to use smaller number of registers,
but manage them more effectively. More efficient
management of registers can also result in higher
performance if the reduction of the register file size is not
the goal.

Traditional register file management mechanisms
deallocate a physical register only when the next
instruction with the same destination architectural
register commits. We propose two complementary
techniques for deallocating the register immediately after
the instruction producing the register’s value commits
itself, without waiting for the commitment of the next
instruction with the same destination. Our design relies
on the use of a checkpointed register file (CRF), where a
local shadow copy of each bitcell is used to temporarily
save the early deallocated register values should they be
needed to recover from branch mispredictions or to
reconstruct the precise state after exceptions or
interrupts. The proposed techniques outperform the
previously proposed schemes for early deallocation of
registers. For the register-constrained datapath
configurations, our techniques result in up to 35%
performance increase with 23.3% increase on the
average across SPEC2000 benchmarks.

1. Introduction

Dynamic superscalar processors extract instruction-
level parallelism from sequential code by maintaining a
large window of instructions and issuing ready
instructions for execution, possibly out of program order.
Sizable physical register files are mandated in such
designs to support large instruction windows, as every in-
flight instruction with a destination register is allocated a
new physical register. Most recent implementations of
superscalar CPUs use unified register files for holding
both committed and speculative (non-committed) register

values within a single RAM structure. A back-end
register mapping table, updated at the time of instruction
commitment, is typically used to point to the most
recently committed instance of each architectural register.
The information stored in this table allows the
reconstruction of the precise state on interrupts or
exceptions and also assists in the rapid recovery from
branch mispredictions.

Traditional allocation and deallocation mechanisms,
associated with the unified register files are too
conservative – they are designed to support the worst-
case scenarios, which rarely occur in practice. A new
physical register is allocated for the destination of a new
instruction at the time of dispatch and this register
remains allocated till the next instruction writing to the
same architectural register commits. This guarantees that
if an instruction producing a later instance of the
architectural register is squashed out of the pipeline, the
earlier instance is available and can be resurrected to
reconstruct the precise register state. While simple to
implement, such a register deallocation mechanism results
in a situation, where a lifetime of a physical register
significantly exceeds the lifetime of the associated
instruction – the register remains allocated well beyond
the point of instruction commitment. Consequently, large
register files are needed to avoid stalls in instruction
dispatching due to the lack of free physical registers.
Such large register files result in high access delay and
power consumption. In addition, the register files in
future wide issue machines also need to be highly-ported,
which further exacerbates the situation and also increases
the overall design complexity.

An alternative to building large register files is to use
smaller number of registers, but manage them more
effectively. More efficient management of registers can
also result in higher performance if the reduction of the
register file size is not the goal. Researchers have
addressed the inefficiencies in register usage to reduce the
number of registers by using late register allocation [7,
15], early deallocation [10, 11, 12] and register sharing
[8, 4, 14]. We defer the detailed discussion of these
related efforts to Section 4. The register lifetime analyses
in Figure 1 show that the number of cycles between the

result writeback and the register deallocation is 36 cycles
on average, which is significantly higher than the number
of cycles between the register allocation and the result
writeback into this register (16 cycles). Consequently, it is
relatively more important to pursue techniques for early
register deallocation.

0

10

20

30

40

50

60

70

80

90

100

bz
ip

2

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

In
t A

ve
ra

ge

FP
 A

ve
ra

ge

A
ve

ra
ge

cy
cl

es

alloc-wb-time wb-commit-time commit-delloc-time
Figure 1 - Register Lifetime

Our first scheme releases a physical register allocated
for the destination of an instruction immediately after the
instruction commitment, under certain conditions.
Specifically, if a destination register allocated for an
instruction is renamed before the instruction commits and
all potential consumers of the value have started the
execution (i.e. obtained the value), then the register can
be released and reallocated for future instructions. Since
branch mispredictions can result in the need to restore the
values of some deallocated registers, the values of the
registers that are deallocated immediately after its
commitment have to be saved. We will refer to these
registers as “early deallocated” registers. To support this
capability, we use a locally checkpointed register file
(CRF) where each bitcell has a locally connected shadow
copy. The value of a register can be saved in the shadow
bits of the register in a single parallel step. On branch
mispredictons, the saved values can be restored from the
checkpoint of the shadow bits, as needed. Our design
does not introduce the extra ports to the register file, the
communication for saving and restoration of values
occurs directly between a bitcell and its shadow. We also
introduce a complementary technique that increases the
performance by early releasing registers that were not
deallocated by the first scheme.

 The rest of the paper is organized as follows. We
present the motivation for this work, define some terms
and also describe the CRF technique in Section 2. Our
designs for the early register release are presented in
Section 3. Section 4 presents the related work. Section 5
describes our simulation methodology followed by the
simulation results in Section 6. Finally, we offer our
concluding remarks in Section 7.

2. Motivation, Definitions and Checkpointed
Register Files

This work was primarily motivated by the fact that a

large percentage of generated register values in a datapath

are short-lived. Researchers have used the term “short-
lived” in many different contexts [6, 9, 13]. For example,
[9] identified a value as short-lived if it is exclusively
consumed during its residency in the reorder buffer. (The
study of [9] used a P6-style datapath, where the generated
results values are first written into the reorder buffer and
then later moved to the architectural register file during
instruction retirement). In [13], the authors defined the
value to be short-lived if the destination architectural
register used to hold the value is renamed (redefined) by
the time the value-producing instruction reaches the
write-back stage. In this paper, we call the value short-
lived, if the corresponding destination register is renamed
by the time the value producing instruction reaches the
commit stage. At first glance, the difference between the
two definitions may seem to be minor, but in reality an
instruction can spend many cycles between its write-back
and commitment, as write-backs occur out-of-order, but
commits are performed strictly in program order.
Consequently, a larger percentage of values can be
identified as short-lived using the new definition.

Figure 2 shows the percentage of values that are short-
lived according to our definition. The results are shown
for different physical register file sizes, as detailed in the
legend of the figure. As depicted, the percentage of short-
lived values increases for larger register files. When the
register file size is small, it is often the case that an
instruction redefining an architectural register had not yet
been dispatched by the time the instruction producing the
previous instance of the same register committed. This
primarily happens because of the frequent pipeline stalls
due to the lack of physical registers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

2

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

In
t A

ve
ra

ge

FP
 A

ve
ra

ge

A
ve

ra
ge

40int+40fp 48int+48fp 64int+64fp
Figure 2 - Percentage of Short-lived Values

The basic idea behind our designs is to deallocate a
physical register allocated to hold a short-lived value
immediately after the instruction producing the value
commits. The only additional condition that we impose is
that all consumers of the value must commence execution
before deallocation can occur. Notice that the presence of
the unresolved branch instructions between the
instruction producing the short-lived value and the
instruction that redefines the same architectural register
(called redefiner in the rest of the paper) is not a condition
for early register deallocation. Consequently, the values
kept in the deallocated registers may need to be restored
as a result of branch mispredictions when some redefiners

are squashed. Therefore, a mechanism is required to make
the early deallocated register available for new
allocations, but at the same time somehow preserve the
value that was kept in this register till the time when this
value can be discarded completely (which would happen
at the time of the redefiner’s commitment, just like in
traditional designs)

To accomplish this goal, we use a register file design
with an embedded checkpoint. The schematic of such
Checkpointed Register File (CRF) bitcell is shown in
Figure 3. Here, each traditional register file bitcell is
backed-up by a pair of cross-coupled inverters (I4 and I5)
which are connected to the main bitcell using pass
transistors (T5 and T6). When the Checkpoint signal
rises, the contents of every bitcell are simply copied to the
shadow cells. To recover, the contents of the shadow
cells are copied back to the main storage when the
Recover signal rises. As seen from Figure 3, the
additional area required by the shadow cell (the area in
the grey box) is virtually independent of the number of
register file ports. In fact, the area overhead of the
shadow bits becomes relatively smaller as the number of
register file ports increase.

Figure 3 - A Dual-ported CRF bitcell

Figure 4 - Layouts of a Register File Bitcell

In our design, the short-lived values whose consumer
count is zero are checkpointed at the time of commitment,
using the logic shown in Figure 3. At the same time, the
main registers holding these values are immediately
released for future allocations. Notice that a separate
checkpoint and recover signals are needed here for each
register, as the saving and the restoration of the register
values are performed on an individual basis, as we
explain in detail in Section 3.

In our implementation of the circuit from Figure 3, we
removed the inverters I3 and I6 to save the layout area.
This can be done through appropriate transistor sizing.
Figure 4 shows the CMOS layouts of a traditional 6-
transistor SRAM bitcell (left portion of Figure 4), and a

traditional SRAM bitcell with the embedded shadow
bitcell that implements checkpoint, as depicted at Figure
4. For both layouts, we used 12-ported bitcells. As can be
measured from the figure, the resulting bitcell area
increase is about 26.5%. This area increase is not
proportional to the number of register ports, as can be
easily seen from Figure 4. Since the area of the other
peripheral components of the register file such as
sensamps, decoders, word select drivers and prechargers
is not impacted by the proposed bitcell modification, the
overall increase in the area of the register file is less than
20%. There is a very slight increase in the register file
delay due to the longer word select and bit lines. Since no
gate capacitance is added to these lines, the increase in
the delay is miniscule; it is less than 0.5% for the layouts
that were designed and simulated. There is also a similar
minimal impact on the delay of the word select line
during the normal course of read and write accesses.

3. Schemes for Early Register Release

In this section, we describe two complementary

schemes for early register deallocation that rely on the
hardware support described above.

3.1. Scheme 1

Our first scheme releases a physical register allocated

for an instruction if the following two conditions are true:
(1) the value produced by the instruction is short-lived,
and (2) all potential consumers of this value have started
execution. The percentage of registers that can be early
released in this manner strongly depends on the register
file size, as well as on a few other parameters, as we
detail in the results section. Note that although the register
is released at the time of commitment, the retirement
rename table is still updated, just as in traditional designs.

To check for condition (1) above, we maintain a bit
vector called Redefined, with one bit for each physical
register. In the register renaming stage, each value
producing instruction sets the Redefined bit of the
physical register, which was previously mapped to its
destination architectural register. Each instruction checks
the Redefined bit of the physical register assigned to its
destination at the time of commitment. This bit is reset
when the corresponding physical register is deallocated.

To detect the second condition for early register
deallocation, we maintain consumer counters for each
physical register to keep track of how many consumers
have not yet read the value of the register. The counters
are incremented at the time of renaming, and they are
decremented when instructions begin execution. The
consumer counters are also accordingly adjusted in the
course of branch misprediction handling. A register R,
allocated to hold a result of instruction I, is deallocated at
the time of I’s commitment if and only if Redefined[R] =
1 and Consumer_Counter[R] = 0.

Note that the absence of the unresolved branches
between the instruction producing a short-lived value and
its redefiner is not a condition for early release (adding
this condition would be too restrictive and would involve
significant implementation complexity.) We discuss the
handling of branch mispredictions later in this section.
For now, it is sufficient to understand that reconstruction
of the precise register state is possible, since the values of
early-deallocated registers are not completely discarded,
but instead saved in the shadow bitcells of the CRF.

One potential problem with the proposed scheme is
that the deallocation of the same register can occur twice,
thus creating inconsistencies in the register free list and
leading to erroneous results. Consider a scenario, where
three instructions – A, B and C - follow each other in
program order, such that A and B write to the same
architectural register, (B is a redefiner for A). Assume
that a physical register, assigned for the instruction A is
early deallocated at the time of A’s commitment and then
reallocated to the instruction C before B commits. In this
case, instruction B, when it eventually commits, will try
to deallocate the register initially assigned to A, as it has
no knowledge that the register had already been
deallocated. The net effect of such actions will be the
deallocation of a register, which was assigned to a
younger instruction (C in this case) leading to the
incorrect program behavior. The root of the problem is
that a physical register is deallocated twice – once in the
course of early release and once in the course of the
regular commitment activity of the redefining instruction.

We avoid this scenario by associating a single bit
called don’t_deallocate, with each physical register.
When a register holding a short-lived value is released at
the time of commitment, its don’t_deallocate bit is set.
When the redefiner commits and the don’t_dealloate bit
of the register that it normally deallocates (obtained from
the commitment rename table) is set, then no deallocation
occurs, as that register has already been released early.

We now discuss how the branch mispredictions are
handled in this scheme. A branch misprediction can
cause the redefining instruction to get squashed.
Consequently, the value of the early deallocated register
needs to be restored in this case. This mechanism is
implemented as follows. At the time of renaming, each
instruction saves the old mapping of its destination
register within the ROB entry. This information can be
easily obtained from the rename table and some
implementations of superscalars already perform similar
action for branch misprediction recovery. In our scheme,
when an instruction is flushed from the pipeline as a
result of a misprediction, it checks the don’t_deallocate
bit associated with the previous mapping of its destination
register (which, as explained above, is saved within the
ROB entry of the instruction in question). The setting of
that bit indicates if the previous instance of the
destination architectural register was early deallocated. If
so, the previous value is restored from the shadow cells

and the don’t_deallocate bit is reset. Also, the physical
register whose value was restored is removed from the
free list.

The above solution still, however, has a subtle
problem. We illustrate this problem below using a short
code fragment. Consider the following sequence of
instructions, where only the destination register of each
instruction is shown for simplicity. Both the original and
the renamed codes are included. Note that the particular
instruction mnemonics are not important for the purposes
of our discussion: they are shown merely for the sake of
readability.

 Original code Renamed code

 I1: ADD r1 ADD p2
 ………. ………..
 I2: SUB r1 SUB p17
 ………. ………..
 I3: XOR r5 XOR p2
 I4: BRANCH
 I5: NOR r5 NOR p19

Figure 5 - The Example Code Sequence

Assume that the value produced by the instruction
ADD is identified as short-lived and physical register p2
is released to the free list at the time of ADD’s
commitment. Simultaneously, the value produced by the
ADD is saved in the shadow bitcells of register 2 and
don’t_deallocate[2] bit is set to 1 to prevent the
instruction SUB (which is a redefiner for ADD) from
duplicate deallocation of register 2.

Further assume that after physical register 2 has been
released, it was reallocated to another instruction (XOR in
this case). After that, the branch instruction (I4) and
XOR’s redefiner (NOR) were dispatched. Next, the
branch I4 was mispredicted. In the course of branch
misprediction handling, as explained above, the
instruction NOR checks the value of don’t_deallocate[2]
bit, because physical register 2 is a previous mapping of
NOR’s destination architectural register (r5). The
problem is that this bit was set not by the XOR instruction
(as the NOR instruction thinks), but by the ADD
instruction. Now, if the NOR instruction blindly uses the
value of don’t_deallocate[2] and restores the previous
value of physical register p2 from the shadow bitcells of
the CRF, then the value of register p2 produced by the
XOR instruction will be overwritten, resulting in the
incorrect behavior of the program. The bottom line is that
in the situation illustrated in this example the NOR
instruction should not restore the previous destination
architectural register value, as the previous producer of
that register (the XOR) has not yet committed. This
problem arises due to the simultaneous presence of two
instructions (I2 and I5 in this example), which are
unmapping the same physical register (p2 in this
example). Notice that traditional register management
mechanisms do not suffer from such problem.

One can think of several ways to overcome the
aforementioned deficiency. One solution would be to
associate the don’t_deallocate bits with the ROB entries,

rather than with physical registers. While conceivable,
this solution can result in a prolongation of the cycle time,
as the ROB entries of the two instructions producing
consecutive values of the same architectural register
would essentially have to cross-reference each other.

Instead, we propose a more elegant mechanism to
handle the above phenomenon. A simple 2-bit counter
can be associated with each physical register to count the
number of its in-flight redefiners. When a newly
dispatched instruction redefines an architectural register,
the counter associated with the previous mapping is
incremented. When an instruction commits, the counter
associated with the previous mapping of the destination
register (as obtained from the retirement rename table) is
decremented. For example, in the scenario considered in
Figure 5, the counter associated with register p2 has the
value of 2, it was incremented once during dispatch of I2
and once during dispatch of I5. A two-bit counter is
sufficient, because the number of in-flight redefiners of
the same physical register never exceeds 2 (for example,
XOR cannot early release p2 before SUB commits).

When an instruction is flushed from the pipeline, it
checks the value of this counter associated with the
previous mapping of its destination register, along with
the don’t_deallocate bit. The restoration of the previous
register value from the CRF checkpoint occurs only when
the don’t_deallocate bit is set and the value of the counter
is 1. For example, in the scenario of Figure 5, the
instruction NOR will not restore the value of p2, because
the value of the counter associated with p2 is 2.

To summarize, the following actions are performed in
various pipeline stages to support our design. Assume that
P is the destination physical register of the instruction, R
is the destination architectural register and K is the
previous mapping of R.

Register Renaming:
(1) The consumer counters corresponding to each of the
source operands is incremented.
(2) The Redefined bit of physical register K is set.
(3) The don’t_deallocate bit of K is set to 0.
Commitment:
(1) If Redefined[P] = 1 and Consumer_Counter[P] = 0,
the generated value is saved in the backup cells of the
CFR and P is deallocated and the don’t_deallocate bit of
P is set to 1.
(2) If the don’t_deallocate bit of K is set, physical register
K is not deallocated. Otherwise, it is added to the free list.
Issue:
(1) The consumer counters corresponding to the
instruction’s source operands are decremented.

3.2. Scheme 2

The first condition for early register release in Scheme

1 mandates that the register can only be deallocated at the
time of commit when the redefining instruction has been

already dispatched into the pipeline. We notice, however,
that it is frequently not the case for small register files. In
other words, the percentage of short-lived values drops
significantly when the size of the register file decreases.
We also noticed that in many situations, even though the
redefining instruction is not yet renamed, the consumer
counter of the register is zero at the time of commitment.
This observation motivated our second scheme.

Specifically, we propose to deallocate the registers
holding committed values when the redefining
instructions enter the pipeline, instead of waiting for the
redefining instruction to commit, as is the case with
traditional register management mechanisms. The only
additional condition that needs to be imposed is that the
consumer counter is zero. The same hardware support in
the form of the CRF and a few bit-vectors, as described in
Sections 2 and 3, can be used. The only additional logic
that is needed here is in the form of the Committed bit
vector, with one bit for each physical register. An
instruction sets the Committed bit of its destination
physical register when it commits and the register is not
early deallocated. The bit is reset when the physical
register is released (either early or in a regular manner).
Each new instruction undergoing renaming checks the
Committed bit associated with old mapping of its
destination architectural register. If the bit is set, and the
consumer counter of that register is zero, the register can
be freed up immediately. While this second technique is
of little use for reasonably large register files (where the
percentage of short-lived values is large), it provides
significant performance improvement for small-sized
register files.

4. Related Work

Researchers have exploited the inefficiencies in

register usage to reduce the number of registers in three
major ways. One set of solutions delays the actual
allocation of physical registers until the time that the
result is written back [7, 15]. As a result, the register
pressure is reduced and the effective size of the register
file increases. These schemes can be used in conjunction
with the techniques proposed in this paper. The drawback
of delayed register allocation is in some design
complexity, which stems from the need to maintain
several levels of register maps.

The second set of solutions reduces the number of
registers through the use of register sharing. The
technique of [8] relies on the fact that duplicate values are
produced with a high frequency within a small segment of
the dynamic instruction stream. The additional
complexity required to keep track of the duplicate values
is quite significant. In [4] and [14], simpler techniques
are proposed which only eliminate the duplication of two
values in the register file - "0" and "1", yet allow to reap
most of the benefits of the scheme proposed in [8].

The third set of techniques aim at reducing the register
file pressure by using the early deallocation of physical
registers [10, 11, 12]. These techniques are close in spirit
to our proposal, and in the subsequent paragraphs we
describe them in detail.

In Cherry scheme [10], physical register is recycled if
both the instruction that produces the physical register
and all those that consume it have executed and are free
of replay traps and are not subject to branch
mispredictions. To reconstruct the precise state in cases of
exceptions or interrupts, the scheme relies on periodic
register file checkpointing. In section 6, we provide a
quantitative comparison of our techniques with the
Cherry scheme.

The scheme of [12] describes two techniques to release
registers as soon as the processor knows that there will be
no use of them. Their first scheme identifies the last user
and the next version of a particular physical register.
Provided that there are no pending branches waiting for
verification between the last user and the next version, as
soon as the next version is decoded the corresponding
physical register is released if the last user has already
committed or an early release is scheduled for the time
when the last user commits. As our scheme does not have
to wait for the commitment of the last user to release the
register but instead releases the register at the time when
the value-producing instruction itself commits, the
register deallocation in our scheme occurs earlier than in
the scheme of [12]. Consequently our performance gains
are higher. According to the results presented in [12] their
scheme achieves the performance gain of 5% for the
integer programs and 9% for floating point programs for
the configuration with 40 registers. Our performance
gains for the same configuration are 20% and 26% for
integer and floating point programs respectively (as
presented in Section 6). The second scheme of [12] is an
extension of the first scheme, where the condition of not
having an unresolved branch between the last user and
next version is removed by using a series of queues and
additional logic. This scheme does not perform any better
than ours as the absence of branches is not a condition in
our schemes in the first place, but the register deallocation
still occurs earlier in our designs. The performance
improvements of our scheme compared to the two
schemes of [12] are higher, especially when a smaller
register file is used.

The scheme of [11] proposes to release a register early
if the register value has been produced, all consumers of
the value have issued, the register has been redefined, and
all branch instructions between the value producing
instruction and the refiner have been resolved. Just like in
the first scheme of [12] the additional condition on the
absence of unresolved branches limits the effectiveness of
this approach. Unfortunately, this technique does not
support precise exceptions, so we did not directly
compare our results against the results of [12]. In the
same paper, the authors describe a simplified scheme

which supports precise exceptions, which serves as a
baseline case for our analysis.

Alternative register file organizations (mainly using
various forms of caching) have also been explored for
reducing the access time (which goes up with the number
of ports and registers), particularly in wire-delay
dominated circuits [2, 3, 5]. A large number of solutions
have also been proposed for reducing the register file
energy consumption. Since energy optimization is not the
goal of this paper, we do not discuss those schemes.

5. Simulation Methodology

For estimating the performance of our techniques, we

used a significantly modified version of the Simplescalar
simulator [1]. We implemented separate structures for the
reorder buffer, issue queues and physical register file. All
aspects of the state restoration on mispredictions were
simulated accurately. The studied processor configuration
is shown in Table 1. We simulated a subset of SPEC 2000
benchmarks, including both integer and floating point
codes. Benchmarks were compiled using the gcc compiler
that generates code in the portable ISA (PISA) format.
Benchmarks were compiled with –O2 optimizations.
Reference inputs were used for all the simulated
benchmarks. The results from the simulation of the first 1
billion instructions were discarded and the results from
the execution of the following 200 million instructions
were used.

Table 1 - Configuration of the Simulated Processor

Parameter Configuration

Machine width 4-wide fetch, 4-wide issue, 4 wide commit
Window size 64 entry issue queue, 32 entry load/store queue, 96–entry ROB

Function Units and
Latency (total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2 Load/Store
(2/1), 4 FP Add (2), 1FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

L1 I–cache 32 KB, 2–way set–associative, 32 byte line, 2 cycles hit time
L1 D–cache 32 KB, 4–way set–associative, 32 byte line, 2 cycles hit time

L2 Cache unified 512 KB, 4–way set–associative, 128 byte line, 8 cycles hit time
BTB 1024 entry, 4–way set–associative

Branch Predictor Combined with 1K entry Gshare, 10 bit global history, 4K entry
bimodal, 1K entry selector

Memory 128 bit wide, 60 cycles first chunk, 2 cycles interchunk

TLB 64 entry (I), 128 entry (D), fully associative, 30 cycles miss
latency

6. Experimental Results

6.1 Evaluation of Scheme 1

We first evaluate the percentage of register values that

can be early released using Scheme 1 and also estimate
the number of bits needed to represent consumer
counters.

Figure 6 shows the percentage of early deallocated
registers for a configuration with 64 integer and 64
floating point registers. The first bar shows the percentage
of short-lived values and the subsequent bars depict the
percentage of early released registers for the various sizes
of consumer counters. We assume that if the counter

overflows, the corresponding register is not early
released. As seen from the figure, more than 70% of the
registers can be early released on the average, and 2-bit
wide consumer counters are sufficient in most cases. For
a configuration with 48 registers, about 57% of the
register values are early deallocated, and for a
configuration with 40 registers the percentage goes down
to 36% (results of Figure 1 can be used to understand this
phenomenon.)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

2

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

In
t A

ve
ra

ge

FP
 A

ve
ra

ge

A
ve

ra
ge

Short-lived Infinite counter 5-bit counter 4-bit counter 3-bit counter 2-bit counter
Figure 6 - Percentage of Early Released Registers
Figure 7 depicts the IPC gains achieved by Scheme 1

as compared to the baseline processor. Results are
presented for three different configurations of the register
files. The leftmost bar shows the speedup for the
configuration with 40 integer and 40 floating point
physical registers. The next bar shows the configurations
with 48 integer and 48 floating point registers and the
rightmost bar show the configuration with 64 integer and
64 floating point registers. We understand that having just
40 registers may be too low in the configuration
considered, but the results are presented with the purpose
of estimating the performance impact of our schemes on a
register-constrained datapath.

0%

2%

4%

6%

8%

10%

12%

14%

bz
ip

2

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

40int+40fp 48int+48fp 64int+64fp
Figure 7 – Speedup of Scheme 1 Compared to the

Base Case
The speedups shown in Figure 7 vary considerably

among the benchmarks as the register file changes. Some
benchmarks (mcf, mesa, swim, wupwise, equake, parser
and vpr) show higher performance increase with smaller
register files as one would expect since the register file is
a more significant bottleneck when smaller register files
are used. However, other benchmarks (applu, mgrid,
bzip2, gcc, gzip, twolf, mgrid, art, vortex) show the
opposite behavior, at least for some configurations. In the
case of applu the speedup consistently increases with
larger register files. This can be explained by examining
the statistics of Figure 1. Although with larger number of

registers, the performance is less sensitive to the size of
the register file, significantly higher percentage of values
can be considered for early deallocation, as the
percentage of the short-lived values increases. On the
average, the speedups are 5%, 4.8% and 3.2 % for 40, 48
and 64 registers respectively.

6.2 Evaluation of Scheme 2

Figure 8 shows the performance increase achieved by

Scheme 2. Results show a consistent picture across all of the
benchmarks with mcf being the only exception. As seen from
the figure, larger performance gains are achieved for the smaller
register files. On the average, the performance increase is
12.9%, 6.6% and 1.7% for 40, 48 and 64 registers respectively.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

bz
ip

2

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

40int+40fp 48int+48fp 64int+64fp
Figure 8 - Speedup of Scheme 2 Compared to the Base

Case
To summarize, Scheme 2 is particularly effective for small

register files and provides little benefit when a larger number of
registers is in use.

6.3 Combined Evaluation of Schemes 1 and 2

0%

5%

10%

15%

20%

25%

30%

35%

40%

bz
ip

2

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

40int+40fp 48int+48fp 64int+64fp
Figure 9 – Speedup of Combined Scheme Compared

to the Base Case
Figure 9 shows the speedups obtained with the

combined scheme. As shown, when both schemes are
combined we can achieve speed-ups of up to 36.4% (for
swim, using 40 registers.) The average speedups are
23.3%, 12.6% and 5.3% for 40, 48 and 64 registers
respectively. Note that the speedups we observe when
both schemes are used together are higher than the sum of
the individual speedups of Scheme 1 and Scheme 2 for
most of the benchmarks. This is because both schemes
have a positive influence on each other. In particular, the
early release of physical registers as a result of applying
Scheme 2 decreases the number of pipeline stalls.
Consequently, more instruction can be renamed, thus
redefining some of the registers which wouldn’t be

redefined otherwise, effectively increasing the number of
short-lived values which can be directly exploited by
Scheme 1.

6.4 Comparison with Previous Work

Finally, we compare the results of our schemes against
the work of [10], where the Cherry Scheme is described.
A qualitative comparison with Cherry as well as with
other schemes for early register release is given in section
4. The performance benefits of the Cherry Scheme come
from early deallocation of registers as well as from the
optimizations performed on the load/store queue. For
objective comparison, we only implemented the register
optimizations of the Cherry Scheme. The performance
results are shown in Figure 10 for various register file
sizes.

As shown, our techniques consistently outperform the
early register deallocation component of the Cherry
Scheme for all simulated register file sizes. For 40
registers, our combined scheme achieves 23.3% speedup
on the average whereas the Cherry Scheme only improves
the performance by 12.2%, and for 64 registers Cherry
achieves a performance gain of 2%, whereas our scheme
improves the performance by 5.3%.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

40
+4

0

48
+4

8

56
+5

6

64
+6

4

72
+7

2

80
+8

0

88
+8

8

96
+9

6

10
4+

10
4

11
2+

11
2

12
0+

12
0

12
8+

12
8

IP
C

base cherry combined scheme
Figure 10 - Comparison of Cherry and Combined

Scheme

7. Concluding Remarks

We presented two complementary techniques for early
deallocation of physical registers in a superscalar
processor. Our first technique releases a physical register
immediately after the instruction commitment, without
waiting till the next instruction writing to the same
destination register commits. Our second technique
further improves the performance by deallocating the
committed instance of a register when the instruction
producing the next instance is renamed. The combination
of the two schemes results in the performance gains of
23.3%, 12.6% and 5.3% for 40, 48 and 64 registers
respectively on the average across simulated SPEC2000
benchmarks.

8. Acknowledgements

We thank Matt Yourst for his help in developing the
simulation environment. This work is supported in part by
DARPA through contract number FC 306020020525
under the PAC--C program, the NSF through award
no.MIP 9504767 &EIA 9911099, and by IEEC at SUNY-
-Binghamton.

9. References

[1] Burger, D. and Austin, T. M., "The SimpleScalar tool set:
Version 2.0", Tech. Report, Dept. of CS, Univ. of Wisconsin-
Madison, June 1997 and documentation for all Simplescalar
releases (through version 3.0).
[2] Balasubramonian, R., Dwarkadas, S., Albonesi, D.,
"Reducing the Complexity of the Register File in Dynamic
Superscalar Processor", in Proc. of the Int. Symposium on
Microarchitecture (MICRO-34), 2001.
[3] Borch, E., Tune, E., Manne, S., Emer, J., "Loose Loops Sink
Chips",in Proc. of Int. Conf. on High Perf. Computer
Architecture (HPCA-8), 2002.
[4] Balakrishnan, S., Sohi, G., “Exploiting Value Locality in
Physical Register Files”, in Proc. of MICRO-36c, 2003.
[5] Cruz, J-L. et. al., "Multiple-Banked Register File
Architecture", in Proc. Intl. Symp/ on Comp. Architecture
(ISCA-27), 2000, pp. 316-325.
[6] Franklin, M., Sohi, G., "Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain
Parallel Processors", in Proc. of Int. Symp. on Microarchitecture
(MICRO-25), 1992.
[7] Gonzalez, A., Gonzalez, J., Valero, M., “Virtual-Physical
Registers”, in Proc. of HPCA-4, 1998.
[8] Jourdan, S., Ronen, R., Bekerman, M., Shomar, B. and
Yoaz, A., “A Novel Renaming Scheme to Exploit Value
Temporal Locality through Physical Register Reuse and
Unification”, in Proc. of MICRO-31, 1998.
[9] Lozano, G. and Gao, G., "Exploiting Short-Lived Variables
in Superscalar Processors", in Proc. of MICRO-28, 1995, pp.
292-302.
[10] Martinez, J., Renau, J., Huang, M., Prvulovich, M.,
Torrellas, J., "Cherry: Checkpointed Early Resource Recycling
in Out-of-order Microprocessors", in Proc. of MICRO-35, 2002.
[11] Moudgill, M., Pingali, K., Vassiliadis, S., "Register
Renaming and Dynamic Speculation: An Alternative
Approach", in Proc. of MICRO-26
[12] Monreal, T., Vinals, V., Gonzalez, A., Valero, M.
“Hardware Schemes for Early Register Release”, in Proc. of
ICPP-02, 2002.
[13] Ponomarev, D., Kucuk, G., Ergin, O., Ghose, K.,
"Reducing Datapath Energy Through the Isolation of Short-
Lived Operands", in Proc. of PACT-12, 2003.
[14] Tran, N., et.al., “Dynamically Reducing Pressure on the
Physical Register File through Simple Register Sharing”, in
Proc. of Int. Symp. on Performance Analysis of Systems and
Software (ISPASS-2004), 2004.
[15] Wallase, S., Bagherzadeh, N., "A Scalable Register File
Architecture for Dynamically Scheduled Processors", in Proc.
of PACT-5, 1996.

