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The work presents a modeling and analysis framework
for heterogeneous industrial networks architectures which
is based on a tight integration of a network simulator with
embedded software, middleware and a real-time operat-
ing system. This framework is suitable for modeling and
simulating the behavior of typical components involved in
factory automation applications (e.g., PLCs, remote con-
trollers, operational screens, etc.) when they are connected
through heterogeneous industrial networks. Experiments
show that the framework allows to take early architectural
decisions by evaluating the expected system performance
based on the available models.

1. Introduction

Control applicationsfor industrial automation typically fol-
low a hierarchical structure, where slave devices are orga-
nized around amaster controller. Actuators and sensors, for
instance, are usually driven by control software running on
the master device.

Thetypical organization of such heterogeneousnetworksis
depicted in Figure 1, which shows the most important enti-
tiesinvolved in a generic factory automation scenario.

In order to simplify the integration, designers lever-
age existing connectivity support to integrate modules
under different configurations. One example of such sup-
port is Ultimodule [2], which provides application-proven,
pre-assembled components for many factory automa
tion applications that use UItIWIRE, an ad hoc scalable
seria link for the interconnection of up to 127 mod-
ules. In these environments, a generic backbone inter-
connect (e.g., UItIWIRE, CAN) interfaces the several
subnetworks with different characteristics (speed, band-
width), communication styles (bus-based, as in Subnet 2
or Subnet 3, or serial, as in Subnet 1), possibly includ-
ing the connection to a standard LAN. All interconnec-
tions between the backbone and the various subnetworks
require proper bridges to trandate signals between differ-
ent domains. Bus-based subnets are typicaly networks of
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Factory Automation Environment.

CANOpen or Profibus ([6]) devices, such as COTS digi-
tal 1/0O modules, that controls time-constrained actuators
typical of aplant. Serial subnets may be UItiWIRE or simi-
lar networks.

The main master typically runs soft PLC (Programmable
Logic Controller) applications, with suitable driversfor ac-
cessing all the connected networks. A PLC generatescyclic
bursts of timed read/write operations on the nodes, that have
to be executed within a given deadline (maximum cycle tim-
ing). Nodes may randomly generate asynchronous events
that force the master to invoke services routines.

The above discussion motivatesthe efforts spent in the com-
munity to provide flexible, yet effective, solutions for the
simulation of heterogeneous networked environments. Two
are the main capabilities required for such solutions:

1. The simulation of the interaction of complex network
devices, some of which do execute specific applica-
tions which simulate actual devices (such as PLCs or
interrupt generators).

2. The timing-accurate simulation of the overall system,
S0 as to be able to meet the real-time constraints.



While the simulation of the sole network infrastructure with
the relative protocol stacks can be carried using standard
network simulators (e.g., NS-2[5]), the integration of typ-
ical applications from the factory automation domain into
such frameworks does not have awidely accepted solution.
Moreover, timing accuracy in network simulation has been
mostly approached from the stochastic point of view, and
for TCP-I1P based networks; real-time requirements cannot
be modeled by conventional network simulators.

In this work we propose a two-step solution to these two
challenges, by providing a complete softwar e-networ k co-
simulation solution. We first address the first issue, by de-
vising a general solution to the problem of integrating ap-
plications into a network simulation environment. We then
target the second issue by leveragingtheideas of [3], andin-
corporate timing accuracy in the co-simulation by exploit-
ing time information available by the actual hardware de-
vices (i.e., the boards).

The proposed environment features both multi-point and
field-buslinks, and has been applied to real-life Ultimodul e-
based architectures, including UltiWIRE-driven boards and
CANopen field-bus. The experiments show that it can be
successfully used for rapid prototyping and exploration of
different configurations.

2. PreviousWork

Several research efforts have dealt with the problem of mod-
eling and simulating fieldbuses and factory automation sys-
tems. The approaches proposed in the literature usualy rely
on well-established formalisms for representing concurrent
systems, possibly including the time dimension. Petri nets
(PN) and their variants (timed, stochastic, fuzzy PN) arethe
most popular solution [7, 8, 9, 10], and are sometimes com-
bined or complemented by the use of concurrent languages
such as Estelle or LOTOS[11, 12]. The use of timed PN, in
particular, allows to take timing constraints into account.
Other solutions rely on a control-system oriented modeling
style, where the system is modeled at a higher level [13],
while some others use analytical models for some of the
target quantities of the analysis (e.g., available bandwidth
or performance) [14, 15].

Even the most accurate of these approaches suffer from one
main limitation: the applications that can be modeled us-
ing the chosen formalism belong to a limited set of prede-
fined programs, such as sampled systems (i.e., control loops
—[14]), or in the best case, PLC applications[8, 10].

None of these schemes is able to model and simu-
late complex applications which may be implemented
by a processor-based board, possibly executing on top
of a real-time operating system (RTOS). This limita
tion is precisely the target of this work, in which we
propose an extension of an existing co-simulation method-
ology [3] that allows to integrate a model of software with
amodel of a network.

3. Modeling

The network scenario shown in Figure 1, when applied to
the the factory automation target of this work, resultsin the
protocol architecture of Figure 2.
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Figure 2. Protocol Architecture of the Target
Network.

We define three rough layers: application, connectivity (i.e.,
data-link/network), and physical. The picture clearly shows
the non-layered nature of the involved protocols. As a mat-
ter of fact, the two bottom levels may partialy overlap, de-
pending on what parts of a protocol are included.

The physical level protocol can either be UItIWIRE or
the physical layer of CAN, athough CAN (its upper lev-
els) may use UItIWIRE as a backbone interconnection. For
the connectivity layer, the only strict requirement is that
CANOpen must rely on CAN for its services. The appli-
cation layer may rely either on afull CANOpen/CAN stack
or directly on the physical layer protocol, and may or may
not include a real-time middieware (the dashed box) layer.
Modeling this heterogeneous scenario requires a full-
fledged network simulation environment, which, however,
is by definition suitable to model only the two bottom lay-
ers. Incorporating the application layer in the simulation
needs a more general solution.

The contribution of this work is two-fold. First, we pro-
vide a general co-simulation solution based on (i) extend-
ing an existing network simulator (in this work, NS-2 [5])
so as to model al the various protocols (UItiWIRE, CAN,
and CANOpen) involved in our target environment, and (ii)
finding a suitable way to connect the applicationsto the net-
work simulation environment. This solution has the advan-
tage of offering an homogeneous way to simulate the en-
tire system, but cannot be used to model time-related prop-
erties of the application (essentia in factory automation),
such as the real-time middleware of Figure 2.

The second contribution is the solution of this limitation. In
particular, we discuss the role and the use of an instruction-
set simulator (ISS) and a board to improve the overall mod-
eling methodol ogy thus allowing to interface an application
(executed by an ISS) and a generic simulated network (i.e.,
the NS network), where the application layer is replaced by
the actua application.



4. All NSModeling

The first solution for the simulation of the architecture of
Figure 1 consists of using NS-2 [5] to build the network
topology and to model and simulate the various devices.
NS-2 is adiscrete event simulator that provides support for
the simulation of an IP-based protocol stack, in which a
number of network and data-link protocolsare available (1P,
TCP, UDP, Ethernet, etc.).

NS-2 provides easy extension to the users, by separating
the network configuration phase (described through a Tcl
script) and the actual simulation engine, implemented in
C++.

The main entities involved in a simulation are nodes, links,
agents and applications; each one is a model of areal ob-
ject. For instance, anode in NS-2 can be used to represent a
nodein area network. Every object has a set of attributes,
(e.g., alink connects two nodes and it has a bandwidth and
a delay). To add a new protocol in NS-2, the programmer
must write a new class derived from the four above objects.
For instance, to add a new transport protocol it is neces-
sary to write a new Agent object. Once the new class has
beenwritten, it becomes part of the compiled hierarchy. Fig-
ure 3 shows the class hierarchy that needs to built to model
the overall network architecture of Figure 1.

Figure 3. Extended NS-2 Class Scheme.

4.1. UlItIWIRE

An UItIWIRE network is a daisy chain network with one
master and one or more slaves. The master is responsible
for initiating all communications over the network; saves
can only communicatewith the master, but not among them.
The network requires one single-ended signal for the inter-
connection between network nodes (master or slaves) over
short distances, while in the case of long distances a differ-
ent signal is required.

Communication evolves around the exchange of two basic
frame types: Tx and Rx. Frames are 16-bit words and basi-
cally contain a command, data (for writes) and CRC, plus
some other lower-level info. A typical communication cy-
cle starts with the master sending a Tx frame to all slaves.

The selected slave executes the TX frame command, and it
replies by sending an RX frame to the master. Special ar-
rangements for error handling as well as broadcasting are
supported. Further details can be foundin [4].

The steps required to model UItiIWIRE under NS-2 are (i)
defining two typesof frametypes (Tx and Rx), and (ii) mod-
eling the protocol by creating two new Agent s, onefor the
master (Ul ti W REmast er ) and one for the dave (Ul -
ti W REs| ave). Each UItiWIRE node is modeled with an
Agent attached on an NS-2 node: the agent can bethe Ul -
ti WREnast er ortheU ti W REs| ave.

4.2. CAN and CANopen

CAN isaseria bus system suitable for the interconnection
of smart devices. CAN consists of threelayers:. object layer,
transfer layer and the physical layer. The object and the
transfer layer include al services and functions provided
by ISO/OSI data-link layer, while the physica layer is in
charge of transferring the bits between the different nodes
with respect to the all electrical properties.

Therefore, the NS-2 model of CAN protocol is a C++ class
extending the Media Access Control C++ class of the NS
2 hierarchy. The NS-2 CAN object implements CSMA/CD
to handle access to the shared bus. CANopen is a CAN-
based higher layer (1ISO/OSI layer 7) protocol originally de-
veloped for industrial control systems. CANopen is built
around the central concept of an Object Dictionary (OD),
the interface between the application and communication,
defined within each device, to define every function, vari-
able and data type seen via the network.

The NS-2 model of the CANOpen protocol is a C++
class derived from the NS-2 Agent class. To simulate a
CANopen Network a new NS-2 Agent called CANope-

nAgent have been defined. This new agent models the
nodes on a CANopen network. The CANopenAgent pro-
vides the features to support a desired traffic profile. This
agent has aloca memory to store data. The CANopenA-

gent implements two operations to read/write from/to
the memory of another CANopen node. These opera-
tions are exported to the applications running on it.

4.3. PLC and Interrupt Generator

A typical industrial application is a PLC (Programmable
Logic Controller); the typical pattern of a PLC is to gen-
erate cyclic burst of timed read/write operations to the net-
worked nodes, that have to be executed within a given time
threshold.

TheNS-2 model of the PLC isa C++ class derived from the
NS-2 Appl i cati on class. An application is attached on
an agent. It can generate and send/receive data through the
underlying agent, or it can invoke the agent’s methodsto ac-
cess and execute the services of the agent’s protocol.

Any PLC application has alocal memory to store data. The
NS-2 model reads a program from a file, which typically



consists of asequence of r ead, wai t (a specified amount
of time) and wr i t e operations that are iterated in a cyclic
fashion. Finally, the NS-2 PLC application calls the corre-
sponding operations on the underlying agent, e.g., the Ul -
t i W REnast er agent. The PLC Application object is pa-
rameterized with respect to (i) the PLC memory size, and
(ii) the operation burst.

Another application used to increase the traffic on the net-
work is an Interrupt Generator (1G). This application mod-
elstheinterrupt behavior of an UItiWIRE device. Theinter-
rupts are used by a UltiWIRE slave to inform the master of
an event. The |G embeds a parametric random number gen-
erator to generateinterrupts at random times during the sim-
ulation. The user can configure the properties of the appli-
cation, such as the type of the random distribution. The IG
interruptsthe master by setting aproper bit in the Rx frame;
when the Rx frame reaches the master, the interrupt polling
routine is invoked to determine which slave has generated
the interrupt. The master calls then the ISR (Interrupt Ser-
vice Routine) associated to the dave that has generated the
interrupt. This ISR is modeled by a Interrupt Handler ap-
plication attached to the UltiWIRE master agent.

The user has to define a PLC-like program (a sequence of
read, write and wait operations) to be loaded by the Inter-
rupt Handler Application, and associate this program to a
dave. This program will be executed whenever that slave
generates an interrupt.

5. Board-Based Modeling

Once the network has been modeled using the described
framework, the designer might be interested in applying re-
aistic workloads by plugging real industrial applications
into the network. For instance, one may replace the NS
2 implementation of a PLC with a rea soft PLC applica-
tion, i.e., a program that runs on an ordinary computer and
mimics the operation of a standard PLC. In this case, we
have to establish a communication between the actual hard-
ware controller running the PLC application and the NS-2
simulator, modeling the rest of the network topology. Mor-
ever, most real-life applications execute using the function-
alities offered by an operating system, which provides a set
of APIsthrough which the devices can be accessed.

If, in our simulated network scenario, we want to replace
a simulated application with a softPLC, we have to mod-
ify the simulator’s kernel as well as the driver of the actual
device used by the application. The new driver would not
use the real hardware device, but rather it has to commu-
nicate with the simulated device (i.e., the smulator). This
is the solution proposed in [3], which we leverage to es-
tablish the communication between NS-2 and a generic ap-
plication. In this work, we use the methodology of [3], so
that the network is modeled as a device, accessible through
a suitable device driver of the host operating system. An-

other advantage of this scheme is the seamless replacement
of the ISS with a board running the real-time application.

5.1. Programming M odel

In order to establish a communication between the applica-
tion and NS-2, the programmer must implement adriver for
the host operating system, which controls the NS-2 simu-
lation. The driver consists of (i) the code that handles the
interaction with the external device through proper chan-
nels, (ii) the ISR to handle interrupts, and (iii) a suitable
API that allowsto interact with the driver from the applica
tion source code.
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Figure 4. Programming Model Architecture.
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In our case, the driver operates as follows (Figure 4):

1. It communicates with the NS-2 kernel through port
4444 (called the socket data port) by sending a proper
message based on Application protocol;

2. It creates a thread that listens to the interrupts gener-
ated from the NS-2 simulation; interrupts are received
through port 4445 (called the socket interrupt port).
When an interrupt occurs, the ISR written by the pro-
grammer, has to be started to manage the interrupt.

The programmer uses the methods of thedriver API to build
a communication between the application and the NS-2.
This communication is made possible by properly modify-
ing the NS-2 scheduling algorithm. Thedriver and the NS-2
kernel communicate by exchanging messages on acommu-
nication channel and on an interrupt channel for the inter-
rupt handling.

Figure 5 shows the extra checks done by the NS-2 schedul er
for implementing the driver-kernel co-simulation mecha
nism. At the beginning of a new simulation cycle, the NS-
2 kernel checks the channel; if there is no incoming mes-
sage, the kernel does the normal handling of the eventsin
the scheduler queue. At the end of the event scheduling, be-
fore moving to the next simulation cycle, it verifiesif anin-
terrupt has been generated. In this case, theinterrupt is noti-
fied to the driver by sending a message on the reservedinter-
rupt channel. Whenever a message arrives, the kernel reads
this message and processes it in according to the applica-
tion protocol.
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Figure 5. Modified NS-2 Scheduling Algo-
rithm.

6. Performance Analysis

The two proposed co-simulation strategies (the all-NS and
the board-based ones) provide different tradeoffs between
simulation speed and simulation accuracy, which will be
discussed in this section.

Table 1 shows the performance of the two proposed simula-
tion schemes. The three columns refer to different amounts
of simulated times (1000, 10000, and 100000 seconds).
Thetable clearly shows how the All-NS scheme outperform
(roughly 50% faster) the board-based one.

Smulated Times [mg]

_ 1000 | 10000 | 100000
[ AT NS Wodeling [ 2090 | 21420 [ 227120 |
[ Board-Based Modeling | 4877 | 40175 [ 359428 |

Table 1. Simulation Performance Results.

The latter scheme, however, allows to replace the applica-
tion layer with a more complex application, with real-time
constraints and even including an operating systems.

We tested the overall methodology on a typical con-
figuration of an industrial network, consisting of a
CAN/CANOpen bus performing hardware PLC (Figure 6).
In order to implement this environment using a proprietary
protocol, namely, UItiIWIRE, we have to replace the HW
PLC with a software solution, if no hardware PLC exists
for the proprietary protocol.

The software solutions are the following:

1. Useastandard soft PLC, such as|SaGRAF [16];

2. Usean ad-hoc C/C++ application that emulates the be-
havior of the hardware PLC.

These two solutions must guarantee the same behavior as
the hardware PLC, in terms of time constraints, measured
using the maximum cycle time associated to a PLC model.

ﬁ CANopen g ﬁ CANopen APPLIANCE

CAN/CANOpen
CANopen CANopen Network

HW PLC

Figure 6. Example Industrial Network.

6.1. All-NSModeling

The scenario shown in Figure 6 is first modeled using NS-2
components, as described in Section 4. Figure 7 shows that
the evolution over time of the execution of the PLC appli-
cation. We notice that all PLC cycles are within the max-
imum cycle time, and we can thus say that the network is
able to support the workload generated by the PL C and the
same behavior must be implemented by the SW solutions.

PLC Application

0,0057 msec

Figure 7. Cycle Time Profile for the All-NS
Model.

6.2. Board-Based modeling

To improve the accuracy of the simulation we model the
scenario of Figure 6 using the methodology presented in
section 5 in which areal application is used instead of the
simulated one. We will examine two possible solution: the
use of a soft PL C software and the use of a standard C/C++
application.

6.2.1. Using a Soft PLC In the first case study the hard-
ware PLC isreplaced by 1SaGRAF, as shown in Figure 8.
ISaGRAF isawidely used, IEC 61131-3 compliant control
software environment for creating distributed control sys-
tems. It is essentially an interpreter of a user program (the
|SaGRAF program) written by using a |SaSGRAF develop-
ment environment and debugger tool.

A typical workflow of 1SaGRAF (and usualy of any other
soft PLC) isacyclic execution of these operations: (i) scan-
ning the physical inputs of the processto drive; (ii) process-
ing application data according to the | SaSGRAF application
programs, (iii) performing physical outputs update.
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Figure 8. ISaGRAF as a Substitute of a Hard-
ware PLC.

The PLC application running on the TpiCU ™ SCM20
board[17] isattached to the UItiWIRE NS-2 model viaade-
vice driver, using the co-simulation methodology presented
in Section 5. This PL C application reads/writes datafrom/to
the Appliance on the CANopen node. The CANopen net-
work and the UltiWIRE bus are connected together through
aUItiWIRE-CAN bridge, which receives UItiWIRE frames
from the UItIWIRE master and executes the requests on a
CANopen node.

This approach allows to solve the problem described at the
beginning of this section with a minimal effort, due to use
of a user-friendly solution provided by the ISSGRAF de-
velopment environment. On the other hand, this approach
is expensive from a CPU load point of view, since the IS
aGRAF solution consists of an interpreted code. Because of
this overhead, time constraints cannot be satisfied, as shown
in Figure 9.

PLC Application

0,0057 msec

Figure 9. Cycle-Time Profile for the ISaGRAF
PLC Solution.

6.2.2. Using a Generic Application There are two main
solutionsto the previous problem: (i) enlarge the bandwidth
of the UltiWIRE channel or (ii) reduce the load due to the
software. We focus on the second solution (Figure 10).
Simplfying the software overhead allowsto satisfy the PLC
cycles constraints, and the cycle-time profile becomesagain
close to that of Figure 7. Notice, however, that writing an
ad-hoc C/C++ code modeling a PL C application could be a
non-trivial task. Therefore this solution trades efficiency for
programming effort.

CANopen CANopen APPLIANCE
| CAN/CANOpen
CANopen CANopen
|| BRioGE | ' et

ULTIWire
Network

Figure 10. C Application as a Substitute of a
Hardware PLC.

7. Conclusions

Analyzing heterogeneous networks such as those com-
monly found in industrial automation is a challenging task.
The use of network simulator is not a solution, however, be-
cause it does not alow to model timing constraints and to
integrate real-life applications. In this work, we have pre-
sented a heterogeneous modeling solution that alows
to integrate models of a network with models of soft-
ware and hardware, and to effectively co-simulate them.
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