
Software/Network Co-Simulation of Heterogeneous
Industrial Networks Architectures

F.Fummi� S. Martini� M. Monguzzi� G. Perbellini� M. Poncino�

� Università di Verona
Verona, Italy

� Sitek S.p.A.
S.G. Lupatoto, Italy

� Embedded Systems Design Center
Verona, Italy

Abstract

The work presents a modeling and analysis framework
for heterogeneous industrial networks architectures which
is based on a tight integration of a network simulator with
embedded software, middleware and a real-time operat-
ing system. This framework is suitable for modeling and
simulating the behavior of typical components involved in
factory automation applications (e.g., PLCs, remote con-
trollers, operational screens, etc.) when they are connected
through heterogeneous industrial networks. Experiments
show that the framework allows to take early architectural
decisions by evaluating the expected system performance
based on the available models.

1. Introduction
Control applications for industrial automation typically fol-
low a hierarchical structure, where slave devices are orga-
nized around a master controller. Actuators and sensors, for
instance, are usually driven by control software running on
the master device.
The typical organization of such heterogeneous networks is
depicted in Figure 1, which shows the most important enti-
ties involved in a generic factory automation scenario.
In order to simplify the integration, designers lever-
age existing connectivity support to integrate modules
under different configurations. One example of such sup-
port is Ultimodule [2], which provides application-proven,
pre-assembled components for many factory automa-
tion applications that use UltiWIRE, an ad hoc scalable
serial link for the interconnection of up to 127 mod-
ules. In these environments, a generic backbone inter-
connect (e.g., UltiWIRE, CAN) interfaces the several
subnetworks with different characteristics (speed, band-
width), communication styles (bus-based, as in Subnet 2
or Subnet 3, or serial, as in Subnet 1), possibly includ-
ing the connection to a standard LAN. All interconnec-
tions between the backbone and the various subnetworks
require proper bridges to translate signals between differ-
ent domains. Bus-based subnets are typically networks of

���

��������

	
�������������

������

��������

	
�������������

������

	
�������������

������

�����	
�

�����


��������

��	�������	

������

��	
���
��

���������

Figure 1. Typical Heterogeneous Network in a
Factory Automation Environment.

CANOpen or Profibus ([6]) devices, such as COTS digi-
tal I/O modules, that controls time-constrained actuators
typical of a plant. Serial subnets may be UltiWIRE or simi-
lar networks.
The main master typically runs soft PLC (Programmable
Logic Controller) applications, with suitable drivers for ac-
cessing all the connected networks. A PLC generates cyclic
bursts of timed read/write operations on the nodes, that have
to be executed within a given deadline (maximum cycle tim-
ing). Nodes may randomly generate asynchronous events
that force the master to invoke services routines.
The above discussion motivates the efforts spent in the com-
munity to provide flexible, yet effective, solutions for the
simulation of heterogeneous networked environments. Two
are the main capabilities required for such solutions:

1. The simulation of the interaction of complex network
devices, some of which do execute specific applica-
tions which simulate actual devices (such as PLCs or
interrupt generators).

2. The timing-accurate simulation of the overall system,
so as to be able to meet the real-time constraints.



While the simulation of the sole network infrastructure with
the relative protocol stacks can be carried using standard
network simulators (e.g., NS-2[5]), the integration of typ-
ical applications from the factory automation domain into
such frameworks does not have a widely accepted solution.
Moreover, timing accuracy in network simulation has been
mostly approached from the stochastic point of view, and
for TCP-IP based networks; real-time requirements cannot
be modeled by conventional network simulators.
In this work we propose a two-step solution to these two
challenges, by providing a complete software-network co-
simulation solution. We first address the first issue, by de-
vising a general solution to the problem of integrating ap-
plications into a network simulation environment. We then
target the second issue by leveraging the ideas of [3], and in-
corporate timing accuracy in the co-simulation by exploit-
ing time information available by the actual hardware de-
vices (i.e., the boards).
The proposed environment features both multi-point and
field-bus links, and has been applied to real-life Ultimodule-
based architectures, including UltiWIRE-driven boards and
CANopen field-bus. The experiments show that it can be
successfully used for rapid prototyping and exploration of
different configurations.

2. Previous Work
Several research efforts have dealt with the problem of mod-
eling and simulating fieldbuses and factory automation sys-
tems. The approaches proposed in the literature usually rely
on well-established formalisms for representing concurrent
systems, possibly including the time dimension. Petri nets
(PN) and their variants (timed, stochastic, fuzzy PN) are the
most popular solution [7, 8, 9, 10], and are sometimes com-
bined or complemented by the use of concurrent languages
such as Estelle or LOTOS [11, 12]. The use of timed PN, in
particular, allows to take timing constraints into account.
Other solutions rely on a control-system oriented modeling
style, where the system is modeled at a higher level [13],
while some others use analytical models for some of the
target quantities of the analysis (e.g., available bandwidth
or performance) [14, 15].
Even the most accurate of these approaches suffer from one
main limitation: the applications that can be modeled us-
ing the chosen formalism belong to a limited set of prede-
fined programs, such as sampled systems (i.e., control loops
– [14]), or in the best case, PLC applications [8, 10].
None of these schemes is able to model and simu-
late complex applications which may be implemented
by a processor-based board, possibly executing on top
of a real-time operating system (RTOS). This limita-
tion is precisely the target of this work, in which we
propose an extension of an existing co-simulation method-
ology [3] that allows to integrate a model of software with
a model of a network.

3. Modeling
The network scenario shown in Figure 1, when applied to
the the factory automation target of this work, results in the
protocol architecture of Figure 2.

����������	


�����������������

������	

���

��������

�
��

���
��
��
	



�	

	�
��
��
��

�
�

��
��

�

Figure 2. Protocol Architecture of the Target
Network.

We define three rough layers: application, connectivity (i.e.,
data-link/network), and physical. The picture clearly shows
the non-layered nature of the involved protocols. As a mat-
ter of fact, the two bottom levels may partially overlap, de-
pending on what parts of a protocol are included.
The physical level protocol can either be UltiWIRE or
the physical layer of CAN, although CAN (its upper lev-
els) may use UltiWIRE as a backbone interconnection. For
the connectivity layer, the only strict requirement is that
CANOpen must rely on CAN for its services. The appli-
cation layer may rely either on a full CANOpen/CAN stack
or directly on the physical layer protocol, and may or may
not include a real-time middleware (the dashed box) layer.
Modeling this heterogeneous scenario requires a full-
fledged network simulation environment, which, however,
is by definition suitable to model only the two bottom lay-
ers. Incorporating the application layer in the simulation
needs a more general solution.
The contribution of this work is two-fold. First, we pro-
vide a general co-simulation solution based on (i) extend-
ing an existing network simulator (in this work, NS-2 [5])
so as to model all the various protocols (UltiWIRE, CAN,
and CANOpen) involved in our target environment, and (ii)
finding a suitable way to connect the applications to the net-
work simulation environment. This solution has the advan-
tage of offering an homogeneous way to simulate the en-
tire system, but cannot be used to model time-related prop-
erties of the application (essential in factory automation),
such as the real-time middleware of Figure 2.
The second contribution is the solution of this limitation. In
particular, we discuss the role and the use of an instruction-
set simulator (ISS) and a board to improve the overall mod-
eling methodology thus allowing to interface an application
(executed by an ISS) and a generic simulated network (i.e.,
the NS network), where the application layer is replaced by
the actual application.



4. All NS Modeling
The first solution for the simulation of the architecture of
Figure 1 consists of using NS-2 [5] to build the network
topology and to model and simulate the various devices.
NS-2 is a discrete event simulator that provides support for
the simulation of an IP-based protocol stack, in which a
number of network and data-link protocols are available (IP,
TCP, UDP, Ethernet, etc.).
NS-2 provides easy extension to the users, by separating
the network configuration phase (described through a Tcl
script) and the actual simulation engine, implemented in
C++.
The main entities involved in a simulation are nodes, links,
agents and applications; each one is a model of a real ob-
ject. For instance, a node in NS-2 can be used to represent a
node in a real network. Every object has a set of attributes,
(e.g., a link connects two nodes and it has a bandwidth and
a delay). To add a new protocol in NS-2, the programmer
must write a new class derived from the four above objects.
For instance, to add a new transport protocol it is neces-
sary to write a new Agent object. Once the new class has
been written, it becomes part of the compiled hierarchy. Fig-
ure 3 shows the class hierarchy that needs to built to model
the overall network architecture of Figure 1.

CAN
PLC,

Int Gen,
Int Hand

Agent Mac Application

TclObject

Ultiwire CANOpen

Connector BiConnector Process

NsObject

Figure 3. Extended NS-2 Class Scheme.

4.1. UltiWIRE
An UltiWIRE network is a daisy chain network with one
master and one or more slaves. The master is responsible
for initiating all communications over the network; slaves
can only communicate with the master, but not among them.
The network requires one single-ended signal for the inter-
connection between network nodes (master or slaves) over
short distances, while in the case of long distances a differ-
ent signal is required.
Communication evolves around the exchange of two basic
frame types: Tx and Rx. Frames are 16-bit words and basi-
cally contain a command, data (for writes) and CRC, plus
some other lower-level info. A typical communication cy-
cle starts with the master sending a Tx frame to all slaves.

The selected slave executes the TX frame command, and it
replies by sending an RX frame to the master. Special ar-
rangements for error handling as well as broadcasting are
supported. Further details can be found in [4].
The steps required to model UltiWIRE under NS-2 are (i)
defining two types of frame types (Tx and Rx), and (ii) mod-
eling the protocol by creating two new Agents, one for the
master (UltiWIREmaster) and one for the slave (Ul-
tiWIREslave). Each UltiWIRE node is modeled with an
Agent attached on an NS-2 node: the agent can be the Ul-
tiWIREmaster or the UltiWIREslave.

4.2. CAN and CANopen
CAN is a serial bus system suitable for the interconnection
of smart devices. CAN consists of three layers: object layer,
transfer layer and the physical layer. The object and the
transfer layer include all services and functions provided
by ISO/OSI data-link layer, while the physical layer is in
charge of transferring the bits between the different nodes
with respect to the all electrical properties.
Therefore, the NS-2 model of CAN protocol is a C++ class
extending the Media Access Control C++ class of the NS-
2 hierarchy. The NS-2 CAN object implements CSMA/CD
to handle access to the shared bus. CANopen is a CAN-
based higher layer (ISO/OSI layer 7) protocol originally de-
veloped for industrial control systems. CANopen is built
around the central concept of an Object Dictionary (OD),
the interface between the application and communication,
defined within each device, to define every function, vari-
able and data type seen via the network.
The NS-2 model of the CANOpen protocol is a C++
class derived from the NS-2 Agent class. To simulate a
CANopen Network a new NS-2 Agent called CANope-
nAgent have been defined. This new agent models the
nodes on a CANopen network. The CANopenAgent pro-
vides the features to support a desired traffic profile. This
agent has a local memory to store data. The CANopenA-
gent implements two operations to read/write from/to
the memory of another CANopen node. These opera-
tions are exported to the applications running on it.

4.3. PLC and Interrupt Generator
A typical industrial application is a PLC (Programmable
Logic Controller); the typical pattern of a PLC is to gen-
erate cyclic burst of timed read/write operations to the net-
worked nodes, that have to be executed within a given time
threshold.
The NS-2 model of the PLC is a C++ class derived from the
NS-2 Application class. An application is attached on
an agent. It can generate and send/receive data through the
underlying agent, or it can invoke the agent’s methods to ac-
cess and execute the services of the agent’s protocol.
Any PLC application has a local memory to store data. The
NS-2 model reads a program from a file, which typically



consists of a sequence of read, wait (a specified amount
of time) and write operations that are iterated in a cyclic
fashion. Finally, the NS-2 PLC application calls the corre-
sponding operations on the underlying agent, e.g., the Ul-
tiWIREmaster agent. The PLC Application object is pa-
rameterized with respect to (i) the PLC memory size, and
(ii) the operation burst.
Another application used to increase the traffic on the net-
work is an Interrupt Generator (IG). This application mod-
els the interrupt behavior of an UltiWIRE device. The inter-
rupts are used by a UltiWIRE slave to inform the master of
an event. The IG embeds a parametric random number gen-
erator to generate interrupts at random times during the sim-
ulation. The user can configure the properties of the appli-
cation, such as the type of the random distribution. The IG
interrupts the master by setting a proper bit in the Rx frame;
when the Rx frame reaches the master, the interrupt polling
routine is invoked to determine which slave has generated
the interrupt. The master calls then the ISR (Interrupt Ser-
vice Routine) associated to the slave that has generated the
interrupt. This ISR is modeled by a Interrupt Handler ap-
plication attached to the UltiWIRE master agent.
The user has to define a PLC-like program (a sequence of
read, write and wait operations) to be loaded by the Inter-
rupt Handler Application, and associate this program to a
slave. This program will be executed whenever that slave
generates an interrupt.

5. Board-Based Modeling
Once the network has been modeled using the described
framework, the designer might be interested in applying re-
alistic workloads by plugging real industrial applications
into the network. For instance, one may replace the NS-
2 implementation of a PLC with a real soft PLC applica-
tion, i.e., a program that runs on an ordinary computer and
mimics the operation of a standard PLC. In this case, we
have to establish a communication between the actual hard-
ware controller running the PLC application and the NS-2
simulator, modeling the rest of the network topology. Mor-
ever, most real-life applications execute using the function-
alities offered by an operating system, which provides a set
of APIs through which the devices can be accessed.
If, in our simulated network scenario, we want to replace
a simulated application with a softPLC, we have to mod-
ify the simulator’s kernel as well as the driver of the actual
device used by the application. The new driver would not
use the real hardware device, but rather it has to commu-
nicate with the simulated device (i.e., the simulator). This
is the solution proposed in [3], which we leverage to es-
tablish the communication between NS-2 and a generic ap-
plication. In this work, we use the methodology of [3], so
that the network is modeled as a device, accessible through
a suitable device driver of the host operating system. An-

other advantage of this scheme is the seamless replacement
of the ISS with a board running the real-time application.

5.1. Programming Model
In order to establish a communication between the applica-
tion and NS-2, the programmer must implement a driver for
the host operating system, which controls the NS-2 simu-
lation. The driver consists of (i) the code that handles the
interaction with the external device through proper chan-
nels, (ii) the ISR to handle interrupts, and (iii) a suitable
API that allows to interact with the driver from the applica-
tion source code.

NS-2
Kernel

RTOS

Application
Device
Driver

Interrupt
Service
Routine

Thread

socket

APPLICATION

Instruction Set Simulator

Socket
Interrupt

Port

Socket
Data
Port

4444

4445

NS-2
Network

Figure 4. Programming Model Architecture.

In our case, the driver operates as follows (Figure 4):

1. It communicates with the NS-2 kernel through port
4444 (called the socket data port) by sending a proper
message based on Application protocol;

2. It creates a thread that listens to the interrupts gener-
ated from the NS-2 simulation; interrupts are received
through port 4445 (called the socket interrupt port).
When an interrupt occurs, the ISR written by the pro-
grammer, has to be started to manage the interrupt.

The programmer uses the methods of the driver API to build
a communication between the application and the NS-2.
This communication is made possible by properly modify-
ing the NS-2 scheduling algorithm. The driver and the NS-2
kernel communicate by exchanging messages on a commu-
nication channel and on an interrupt channel for the inter-
rupt handling.
Figure 5 shows the extra checks done by the NS-2 scheduler
for implementing the driver-kernel co-simulation mecha-
nism. At the beginning of a new simulation cycle, the NS-
2 kernel checks the channel; if there is no incoming mes-
sage, the kernel does the normal handling of the events in
the scheduler queue. At the end of the event scheduling, be-
fore moving to the next simulation cycle, it verifies if an in-
terrupt has been generated. In this case, the interrupt is noti-
fied to the driver by sending a message on the reserved inter-
rupt channel. Whenever a message arrives, the kernel reads
this message and processes it in according to the applica-
tion protocol.



C
hannel

em
pty

?

R
ead

m
essage

on 4444 portnum
ber

Init

M
essage

processing

E
vents

schedulation

R
eportinterrupt

on 4445 portnum
ber

S
T

O
P

G
enerated

Interrupt?

A
nother

event?

Y

Y

N

N

N

Y

F
ig

u
re

5.
M

o
d

ifi
ed

N
S

-2
S

ch
ed

u
lin

g
A

lg
o

-
rith

m
.

6.
P

erform
ance

A
nalysis

T
he

tw
o

proposed
co-sim

ulation
strategies

(the
all-N

S
and

the
board-based

ones)
provide

different
tradeoffs

betw
een

sim
ulation

speed
and

sim
ulation

accuracy,
w

hich
w

ill
be

discussed
in

this
section.

Table
1

show
s

the
perform

ance
ofthe

tw
o

proposed
sim

ula-
tion

schem
es.T

he
three

colum
ns

refer
to

differentam
ounts

of
sim

ulated
tim

es
(1000,

10000,
and

100000
seconds).

T
he

table
clearly

show
s

how
the

A
ll-N

S
schem

e
outperform

(roughly
50%

faster)
the

board-based
one.

Sim
ulated

Tim
es

[m
s]

1000
10000

100000

A
l
l
N
S

M
o
d
e
l
i
n
g

2090
21420

227120

B
o
a
r
d
-
B
a
s
e
d
M
o
d
e
l
i
n
g

4877
40175

359428

Tab
le

1.
S

im
u

latio
n

P
erfo

rm
an

ce
R

esu
lts.

T
he

latter
schem

e,how
ever,allow

s
to

replace
the

applica-
tion

layer
w

ith
a

m
ore

com
plex

application,w
ith

real-tim
e

constraints
and

even
including

an
operating

system
s.

W
e

tested
the

overall
m

ethodology
on

a
typical

con-
figuration

of
an

industrial
netw

ork,
consisting

of
a

C
A

N
/C

A
N

O
pen

bus
perform

ing
hardw

are
PL

C
(Figure

6).
In

order
to

im
plem

entthis
environm

entusing
a

proprietary
protocol,

nam
ely,

U
ltiW

IR
E

,
w

e
have

to
replace

the
H

W
PL

C
w

ith
a

softw
are

solution,
if

no
hardw

are
PL

C
exists

for
the

proprietary
protocol.

T
he

softw
are

solutions
are

the
follow

ing:

1.
U

se
a

standard
softPL

C
,such

as
ISaG

R
A

F
[16];

2.
U

se
an

ad-hoc
C

/C
+

+
application

thatem
ulates

the
be-

havior
of

the
hardw

are
PL

C
.

T
hese

tw
o

solutions
m

ust
guarantee

the
sam

e
behavior

as
the

hardw
are

PL
C

,
in

term
s

of
tim

e
constraints,

m
easured

using
the

m
axim

um
cycle

tim
e

associated
to

a
PL

C
m

odel.

C
A

N
open

C
A

N
open

C
A

N
open

C
A

N
open

C
A

N
/C

A
N

O
pen

N
etw

ork

A
P

P
L

IA
N

C
E

H
W

 P
L

C

F
ig

u
re

6.E
xam

p
le

In
d

u
strialN

etw
o

rk.

6.1.
A

ll-N
S

M
odeling

T
he

scenario
show

n
in

Figure
6

is
firstm

odeled
using

N
S-2

com
ponents,as

described
in

Section
4.Figure

7
show

s
that

the
evolution

over
tim

e
of

the
execution

of
the

PL
C

appli-
cation.

W
e

notice
that

all
PL

C
cycles

are
w

ithin
the

m
ax-

im
um

cycle
tim

e,
and

w
e

can
thus

say
that

the
netw

ork
is

able
to

supportthe
w

orkload
generated

by
the

PL
C

and
the

sam
e

behavior
m

ustbe
im

plem
ented

by
the

SW
solutions.

0,0057
m

sec

F
ig

u
re

7.
C

ycle
T

im
e

P
ro

fi
le

fo
r

th
e

A
ll-N

S
M

o
d

el.

6.2.
B

oard-B
ased

m
odeling

To
im

prove
the

accuracy
of

the
sim

ulation
w

e
m

odel
the

scenario
of

Figure
6

using
the

m
ethodology

presented
in

section
5

in
w

hich
a

real
application

is
used

instead
of

the
sim

ulated
one.W

e
w

ill
exam

ine
tw

o
possible

solution:
the

use
of

a
softPL

C
softw

are
and

the
use

of
a

standard
C

/C
+

+
application.

6.2.1.
U

sing
a

Soft
P

L
C

In
the

first
case

study
the

hard-
w

are
PL

C
is

replaced
by

ISaG
R

A
F,as

show
n

in
Figure

8.
ISaG

R
A

F
is

a
w

idely
used,IE

C
61131-3

com
pliantcontrol

softw
are

environm
ent

for
creating

distributed
control

sys-
tem

s.It
is

essentially
an

interpreter
of

a
user

program
(the

ISaG
R

A
F

program
)

w
ritten

by
using

a
ISaG

R
A

F
develop-

m
entenvironm

entand
debuggertool.

A
typical

w
orkflow

of
ISaG

R
A

F
(and

usually
of

any
other

softPL
C

)
is

a
cyclic

execution
of

these
operations:(i)scan-

ning
the

physicalinputs
ofthe

process
to

drive;(ii)process-
ing

application
data

according
to

the
ISaG

R
A

F
application

program
s;(iii)

perform
ing

physicaloutputs
update.



U
LT

IW
ire

S
lave

U
LT

IW
ire

S
lave

U
LT

IW
ire

M
aster

C
A

N
open

C
A

N
open

C
A

N
open

C
A

N
open

B
R

ID
G

E

C
A

N
/C

A
N

O
pen

N
etw

ork

U
LT

IW
ire

N
etw

ork

IS
aG

R
A

F
A

P
P

L
IA

N
C

E

F
ig

u
re

8.IS
aG

R
A

F
as

a
S

u
b

stitu
te

o
f

a
H

ard
-

w
are

P
L

C
.

T
he

PL
C

application
running

on
the

T
piC

U
T

M
SC

M
20

board
[17]is

attached
to

the
U

ltiW
IR

E
N

S-2
m

odelvia
a

de-
vice

driver,using
the

co-sim
ulation

m
ethodology

presented
in

Section
5.T

his
PL

C
application

reads/w
rites

data
from

/to
the

A
ppliance

on
the

C
A

N
open

node.
T

he
C

A
N

open
net-

w
ork

and
the

U
ltiW

IR
E

bus
are

connected
togetherthrough

a
U

ltiW
IR

E
-C

A
N

bridge,w
hich

receives
U

ltiW
IR

E
fram

es
from

the
U

ltiW
IR

E
m

aster
and

executes
the

requests
on

a
C

A
N

open
node.

T
his

approach
allow

s
to

solve
the

problem
described

atthe
beginning

of
this

section
w

ith
a

m
inim

al
effort,due

to
use

of
a

user-friendly
solution

provided
by

the
ISaG

R
A

F
de-

velopm
ent

environm
ent.O

n
the

other
hand,

this
approach

is
expensive

from
a

C
PU

load
point

of
view

,since
the

IS-
aG

R
A

F
solution

consists
ofan

interpreted
code.B

ecause
of

this
overhead,tim

e
constraints

cannotbe
satisfied,as

show
n

in
Figure

9.

0,0057
m

sec

F
ig

u
re

9.C
ycle-T

im
e

P
ro

fi
le

fo
r

th
e

IS
aG

R
A

F
P

L
C

S
o

lu
tio

n
.

6.2.2.
U

sing
a

G
eneric

A
pplication

T
here

are
tw

o
m

ain
solutions

to
the

previous
problem

:(i)enlarge
the

bandw
idth

of
the

U
ltiW

IR
E

channelor
(ii)

reduce
the

load
due

to
the

softw
are.W

e
focus

on
the

second
solution

(Figure
10).

Sim
plfying

the
softw

are
overhead

allow
s

to
satisfy

the
PL

C
cycles

constraints,and
the

cycle-tim
e

profile
becom

es
again

close
to

that
of

Figure
7.

N
otice,

how
ever,that

w
riting

an
ad-hoc

C
/C

+
+

code
m

odeling
a

PL
C

application
could

be
a

non-trivialtask.T
herefore

this
solution

trades
efficiency

for
program

m
ing

effort.

U
LT

IW
ire

S
lave

U
LT

IW
ire

S
lave

U
LT

IW
ire

M
aster

C
A

N
open

C
A

N
open

C
A

N
open

C
A

N
open

B
R

ID
G

E

C
A

N
/C

A
N

O
pen

N
etw

ork

U
LT

IW
ire

N
etw

ork

P
L

C
A

p
p

licatio
n

A
P

P
L

IA
N

C
E

F
ig

u
re

10.
C

A
p

p
licatio

n
as

a
S

u
b

stitu
te

o
f

a
H

ard
w

are
P

L
C

.

7.
C

onclusions
A

nalyzing
heterogeneous

netw
orks

such
as

those
com

-
m

only
found

in
industrialautom

ation
is

a
challenging

task.
T

he
use

ofnetw
ork

sim
ulatoris

nota
solution,how

ever,be-
cause

it
does

not
allow

to
m

odel
tim

ing
constraints

and
to

integrate
real-life

applications.
In

this
w

ork,
w

e
have

pre-
sented

a
heterogeneous

m
odeling

solution
that

allow
s

to
integrate

m
odels

of
a

netw
ork

w
ith

m
odels

of
soft-

w
are

and
hardw

are,and
to

effectively
co-sim

ulate
them

.

R
eferences

[1]
C

A
N

In
A

utom
ation,

h
t
t
p
:
/
/
w
w
w
.
c
a
n
-
c
i
a
.
d
e

.
[2]

U
ltim

odule
Inc.,h

t
t
p
:
/
/
w
w
w
.
u
l
t
i
m
o
d
u
l
e
.
c
o
m

.
[3]

F.
Fum

m
i,

S.
M

artini,
G

.
Perbellini,

M
.

Poncino,
“N

ative
ISS-

System
C

Integration
for

the
C

o-Sim
ulation

of
M

ulti-Processor
SoC

”,
D

A
T

E
’04,Feb.2004,pp.564–569.

[4]
N

.D
rago,

et
al.,

“E
stim

ation
of

B
us

Perform
ance

for
a

T
uplespace

in
an

E
m

bedded
A

rchitecture”.
D

A
T

E
’03,M

ar.2003,pp
188–193.

[5]
L

.B
reslau

em
etal.“A

dvances
in

N
etw

ork
Sim

ulation”,IE
E

E
C

om
-

puter,V
ol.X

,N
o.5,M

ay
2000,pp.59–67.

[6]
Profibus

In
A

utom
ation,

h
t
t
p
:
/
/
w
w
w
.
p
r
o
f
i
b
u
s
.
c
o
m

.
[7]

S.
H

.
H

ong,
S.

G
.

L
ee,

“Perform
ance

A
nalysis

of
the

D
ata

L
ink

L
ayer

in
the

IE
C

/ISA
Fieldbus

by
Sim

ulation
M

odel,”
E

T
FA

’96:
N

ov.1996,pp.593–601.
[8]

G
.

M
arschall,

“Petri
N

et
Sim

ulation
of

a
Fieldbus

C
om

m
unication

A
pplication,”

E
T

FA
’96

N
ov.1996,pp.63–69.

[9]
G

.N
oubir,

P.R
aja,

J.D
.D

ecotignie,
“Sim

ulating
the

Fieldbus
Syn-

chronous
M

odel
by

T
im

ed
Petri

N
ets,”

IE
C

O
N

’94:
Sep.

1994,
pp.1205–1210.

[10]
A

.
D

i
Stefano,

D
.

M
irabella,

“E
valuating

the
Field

B
us

D
ata

L
ink

L
ayer

by
a

Petri
N

et-B
ased

Sim
ulation,”

IE
E

E
Transactions

on
In-

dustrialE
lectronics,V

ol.38,N
o.4,A

ug.1991,pp.288–297.
[11]

L
.H

ohw
iller,

S.W
endling,

“Fieldbus
N

etw
ork

Sim
ulation

U
sing

a
T

im
e

E
xtended

E
stelle

Form
alism

,”
M

A
SC

O
T

S’00:
A

ug/Sep.2000,
pp.92–97.

[12]
L

.D
urante,R

.Sisto,A
.V

alenzano,
“Integration

of
T

im
e

Petri
N

ets
and

T
E

-L
O

T
O

S
in

the
D

esign
and

E
valuation

of
Factory

C
om

m
uni-

cation
System

s,”
IE

E
E

International
W

orkshop
on

Factory
C

om
m

u-
nication

System
s,O

ct.1997,pp.71–80.
[13]

H
.F.A

bdel-G
haffar,M

.F.A
bdel-M

agied,M
.Fikri,M

.IK
am

el,“Per-
form

ance
A

nalysis
of

Fieldbus
in

Process
C

ontrol
System

s,”
A

m
eri-

can
C

ontrol
C

onference,Jun.2003,pp.591–596.
[14]

P.
R

aja
et

al.,
“Synchronous

M
odel

for
Fieldbus

A
pplications,”

IE
C

O
N

’93:
N

ov.1993,pp.525–529.
[15]

M
.D

.
R

ubio
B

enito,
J.M

.
Fuertes,

E
.

K
ahoraho,

N
.

Perez
A

rzoz,
“Perform

ance
E

valuation
of

FourField
B

uses,”
E

T
FA

’99:O
ct.1999,

pp.881–890.
[16]

IC
S

T
riplex

ISaG
R

A
F,w

w
w
.
a
l
t
e
r
s
y
s
.
c
o
m

.
[17]

T
piC

U
,

T
heseus

Project
Integrated

C
ontrol

U
nit,

h
t
t
p
:
/
/
w
w
w
.
e
m
b
e
d
d
i
n
g
.
n
e
t
/
i
c
u


