Hardware/Software Co-modeling of SAT Solver Based on Distributed
Computing Elements using SystemC

Jinwen Xi

Peixin Zhong

Dept. of Electrical and Computer Engineering, Michigan State Univeristy
East Lansing, MI 48824, U.S.A.
{xijinwen, pzhong} @ egr.msu.edu

Abstract

We propose the architecture of a novel distributed
SAT solver, which is composed of a control unit (CU)
and multiple implication units (IU). In this model, CU
handles the control-intensive tasks such as clause
partitioning, decision and backtracking, and IUs
process implications, which are computation-intensive.
This model has been modeled with SystemC
successfully and simulation results show that it has the
potential to get >35 speedup compared to software
solvers, and moreover, it doesn’t need to re-compile
implication circuits for different instances, in contrast
to other hardware SAT solvers.

1. Introduction

The Boolean Satisfiability Problem (SAT) is one of
the most studied NP-Complete problems because of its
significance in both theoretical research and practical
applications. For a given SAT problem that is normally
expressed in CNF formula, solving it means finding an
assignment that satisfies the formula or proving that
there doesn’t exist such an assignment. SAT has been
extensively employed in many VLSI CAD tools such as
circuit verification, ATPG and logic synthesis.

Many algorithms have been proposed to solve SAT
problems efficiently. The basic algorithm for most of
them is based on the backtracking search that Davis
and Putnam proposed in [1]. Several software-based
SAT solvers (e.g. GRASP[2], zChaff[3]) are designed
to run on general-purpose CPU. With the increasing
capacity and speed of FPGA, using reconfigurable
computing techniques to accelerate SAT solving has
become another research focus. Several -efficient
hardware SAT solvers were proposed [4][5]. Although
hardware solvers execute faster than software ones,
they have a significant overhead of re-compiling each
instance into customized circuits for each problem.

To make a trade-off between software’s flexibility
and hardware’s high performance, a novel architecture

of SAT solver is proposed in this paper. The main idea
comes from partitioning different stages in solving
SAT problems into separate processing modules. There
are two main function blocks, implication unit (IU) and
control unit (CU) in this architecture. IU deals with
implication tasks, which are computation-intensive,
while CU handles control-intensive tasks such as
decision and backtracking. One feature of this
architecture is that it is not instance-specific compared
to its predecessors because it need not map each
instance to implication circuit before computation. This
architecture is scalable since the number of IUs can
change according to the size of problem and
availability of hardware resources. This architecture
has been modeled successfully with SystemC, and it is
easy to port it into microprocessor-embedded FPGA
with some commercial synthesis tools.

The paper is organized in the following way.
Section 2 discusses the architecture and introduces the
implementation with SystemC. Section 3 analyzes
simulation results and section 4 concludes the research.

2. Architecture and Implementation

The most crucial part of DP-based SAT algorithm is
determining implications to prune the search space.
From statistic data, a major portion (greater than 90%
in most cases) of the solvers’ run time is spent in the
implication process for most SAT problems [3]. For
software implementation, the bottleneck is to detect
implications because this process is very slow. Each
clause containing the newly assigned or implied
variable is accessed and updated sequentially, until
there are no new implications.

Efficient implication engine is the key to any SAT
solver and parallelizing implication operations can
accelerate the speed greatly. The backtracking search
part, on the contrary, runs sequentially no matter it lies
in hardware or in software because decision and
backtracking must be processed variable by variable
according to its previous assignment. In our proposed

SAT solver, a novel implication architecture with local
memory can process implications without generating
implication circuits for different instances.

i o fU-in stsout| !lU,in stsout_ | ¥ T stsout
a i cu_ TU_out i TU_out w2 | g (U ,mnlqu
CU,slsmH cfgout fgout cfgout
config <, d delk _1 Delk ‘—‘ clk
dokv [

Figure 1. Architecture of the SAT solver

In this architecture, as shown in Figure 1, one CU is
the central controller, which is programmed to process
control-intensive tasks, such as instance partitioning,
clause distribution, making assignments, conflict
detection and backtrack search. Multiple IUs are
connected with CU via two unidirectional data buses.
IUs are designed to be finite state machine to compute
implications in parallel with the synchronization of
clock_IU and they communicate with CU by
handshaking signals and command data. Each IU has a
unique address for CU to access. This architecture is
scalable since the number of IUs can be adjusted
according to the size of instance and the resource
availability of target FPGA.

2.1. Implication Unit (IU)

Implication unit generates implications based on the
current assignments and communicates with CU. U
contains 4 main blocks: (1) address decoder and input
buffer (ADIB), (2) local clause memory (LCM), (3)
local variable memory (LVM), (4) finite state machine
(FSM), (5) output buffer (OPB).

ADIB interfaces with input data bus and receives
the commands and data from CU and directs them to
LCM, LVM and FSM according to the types of input
data. LCM is designed as a local memory to store the
clauses including literals and their relationship. Its
structure is a memory array with redundant elements to
store clauses with different length. FSM accesses LCM
by address pointers via local bus. LVM is another
block of local memory to store variables’ information
such as values and status (assigned, implied or free).
FSM functions as scheduler of the whole implication
process. It will evaluate LCM to find possible
implications when it senses that there are data changes
in LVM. The implication process employs a counter
for each clause structure. This counter records the
number of free literals in the clause. An implication
will be generated if the counter’s content is 1 and the
clause evaluates ‘0’ with current assignments.

Meanwhile, IU outputs its status by signals “cfgout”
and “stsout”. The first one will be driven from low to
high if CU finishes transferring sub-instance to this [U
and the other one indicates that there are implications
under current assignment data.

Catlaa[sla L aald ot
Lol rl s o]]]2

cfgout

stsout

data_out

Figure 2. Architecture of IU

2.2. Control Unit (CU)

CU is designed as a firmware of microprocessor to
perform different operations according to status signals
from IUs. While it is possible to create a custom circuit
to implement CU’s functions, using microprocessor
provides flexibility to implement more sophisticated
algorithms.

After hardware reset, CU enters into its software
initialization state, where all internal variables and data
structures are reset to their defaults. In the starting
stage, CU reads the SAT instance and decomposes it
into sub-instances according to the number of IUs in
the system. Then CU distributes sub-instances to IUs
one by one. Once all IUs are configured successfully,
the “config” signal will be driven to low, indicating CU
to start decision and backtrack search engines. At first,
CU clears the implication data in CU and IUs, and then
makes an assignment and broadcasts it to all IUs. Once
all IUs receive assignment data, they start their
implication process simultaneously.

A variable database is maintained by CU according
to the input SAT instance to trace status of all variables
in making assignment and backtracking search. At first,
CU chooses a free variable and assigns it a value by
broadcasting this assignment to all IUs. IUs will start
their state machines to perform implication algorithm
simultaneously. IU’s status signal “stsout” will be
driven from low to high if there are valid implications.
CU will choose the next free available variable from
the database and make a new assignment if there are no
implications (“CU_stsin” is low), or broadcast another
command to read the implication data from IUs when
“CU_stsin” signal is high. When all IUs send out their
implication data to CU, CU will analyze the data to
decide whether there are conflicts. CU will make
backtracking search and flip the most recently assigned
variable in the next assignment operation if a conflict

occurs, or choose a free variable to make a new
assignment if there is no conflict. Finally CU will find
that all variables in the database are assigned and no
conflicts are generated and it means all sub-instances
are satisfied and hence the original problem is satisfied.
Otherwise the instance is unsatisfiable since the solver
accesses all search space and doesn’t find a solution.

2.3 Implementation with SystemC

SystemC is chosen as the platform to model this
proposed architecture in system level. SystemC is a
C++ library and it has the ability to effectively create
cycle-accurate models of software algorithms,
hardware architecture and system-level designs. For
this architecture, there are several IUs that works in
parallel and one CU to perform control functions, and
they are corresponding to the concurrent hardware part
(IU) and the sequential software part (CU). In SystemC,
CU and IU can be implemented as separate modules,
and simulation scheduler can make IUs works
concurrently in the cycle-accurate simulation. CU is
executed as a firmware in a microprocessor, which is
the same as what C++ does in the simulation.

3. Simulation Results and Discussions

We use Visual C++ 6.0 and SystemC 2.0.1 library
as the main implementation tool suites. ModelSim 6.0
is used to view simulation waveforms. All these tools
run on a PC with Pentium-M 1.3GHz CPU and 512MB
RAM. There are 3 IUs in the experimental model and
the address bus width is 9-bit so it can process at most
512-variable instances. The clock is set to 10MHz and
a subset of well-known DIMACS benchmark is chosen
for testbench. The run time converted from number of
clock cycles for each instance is recorded as Figure 3.
Meanwhile, we compare our results (“sat_sc”) with the
hardware solver that Zhong proposed (“sat_hw”) in [5].
We also create a basic DP-based solver with C++ and
run the same benchmark on it to compare performances
with the other two as “sat_sw” in Figure 3 shows.

For most of the experimental instances, our solver is
a bit slower than the “sat_hw” by only comparing clock
cycle number because of its memory storage structure
for clauses and variables. Since “sat_hw” solver needs
to compile each instance into customized circuit before
starting computation. Our solver is faster than, at least
comparable with, the hardware one if all compilation,
placement and routing time are taken into consideration.
From the data, we can see that this architecture is much
faster than software one with the same algorithm and
the speed-up ratio ranges from 35.4 to 133.9.

We just test the solver with 3 IUs and see the speed-
up compared with software solvers, so we can estimate
that the more the IUs in the system, the better the
performance we can get. Since all IUs are in the same
structure, we can implement more IUs if there are
enough hardware resources in FPGA in the future.

1. aim-50-1_6-no-1

2. aim-50-1_6-yes1-1
3. aim-50-2_0-no-1

4. aim-50-2_0-yes1-2
5. aim-100-1_6-yes1-1
6. hole6

7. par8-1-c

8. parl6-1-c

Figure 3. Simulation results comparison
4. Conclusions and Future Work

In this paper we propose the architecture of a SAT
solver, which makes a trade-off between software’s
flexibility and hardware’s concurrence. CU takes the
responsibility of making decisions, detecting conflicts
and performing backtrack search, and IU computes the
implications according to different assignments. This
architecture has been modeled and simulated with
SystemC successfully. Since this architecture is not
instance-specific, there is no compilation overhead and
large problems can be fit into available hardware, as
long as the local memory is adequate.

One of the next steps of the research is to implement
this architecture in real FPGA. SystemC synthesis tool
will be used to create the hardware portion. On the
other side, communication overhead will be more
significant with increasing size of instance and number
of IUs in the system. It is necessary to consider an
optimized on-chip communication protocol between
CU and IUs for higher performance. The other
direction is to model non-chronological backtracking
algorithm, which is key to advanced software solvers,
into this model, to get further performance.

References

[1] M. Davis, and H. Putnam, “A Computing Procedure for
Quantification Theory ”, ACM Journal, 1960, pp. 201-215.
[2] Marques-Silva, J. P., and Sakallah, K.A., “GRASP: A
Search Algorithm for Propositional Satisfiability”, IEEE
Transactions on Computers, vol. 48, 1999, pp. 506-521.

[3] Matthew, W. M., Conor F. M., Zhang, L., Malik, S.,
“Chaff: Engineering an Efficient SAT Solver”, pp. 151-153.
[4] Suyama, T., Yokoo, M.., “Solving Satisfiability Problems
on FPGASs”, Proceedings International Workshop on Field
Programmable Logic and Applications, 1996.

[5] Zhong, P., Martonosi, M., Ashar, P. and Malik, S.,
“Using Reconfigurable Computing Techniques to Accelerate
Problems in CAD Domain: A Case Study with Boolean
Satisfiability”, Proceedings of DAC, June 1998.

