
Design and Implementation of Scalable Low-Power Montgomery Multiplier

Hee-Kwan Son
Multimedia Lab, SoC R&D Center
Samsung Electronics Co., Korea

martin.son@samsung.com

Sang-Geun Oh
Multimedia Lab, SoC R&D Center
Samsung Electronics Co., Korea

stephen.oh@samsung.com

Abstract

In this paper, an efficient Montgomery multiplier is
introduced for the modular exponentiation operation,
which is fundamental to numerous public-key
cryptosystems. Four aspects are considered:
performance, power, reliability, and scalability. To
increase performance, the architecture is based on the
radix-4 Carry-Save Adder (CSA). To lower power
consumption, we devised several effective techniques
for reducing the spurious transitions and the Expected
Switching Activity (ESA) of high fan-out signals. To
achieve scalability, we implement a 4-fold nested loop
for the whole data processing flow. It is compatible
with the multiple-precision digit-serial arithmetic as
well as the data transfer to/from an external memory.
Lastly, to make sure that the arithmetic operation runs
correctly without inducing data overflow error, we find
out the optimum numbers of bits for all vectors
appearing in the operation through a mathematical
analysis and a logic simulation. In the evaluation of
hardware implemented using 0.18 um CMOS standard
library and 4 metal layers, area and current
consumption are 59 K gates and 0.4 mA/MHz at 1.8 V
supply voltage, respectively. The presented low power
techniques save more than 20% of power consumed.

1. Introduction

Modular multiplication is widely used in secure
communications. For example, the RSA [1] and the
Diffie-Hellman [2] public-key cryptosystems require
modular exponentiation, and this can be computed
using a series of modular multiplications. Montgomery
multiplication algorithm [3], [4], [13] is an efficient
method for modular multiplication. The algorithm uses
simple divisions by a power of two instead of divisions
by a modulus, which are used in a conventional
modular operation.

A number of Montgomery multipliers have been
suggested in papers [5], [6], [7]. Their hardware

architectures were designed to deal with a specific
maximum number of bits. However, as computers’
processing power increases, to provide the same
“effective” security level, cryptosystems will require
security parameters to be increased. To be able to cope
with such coming requests, the architecture of
cryptographic hardware has to be scalable.

Recently, A.F. Tenca and C.K. Koc published
several papers [8], [9] about the scalable Montgomery
multipliers. They introduced so-called word-based
Montgomery multiplication algorithm to implement the
scalability. However, they did not consider their
hardware from the low power consumption point of
view. Their algorithm cannot be applicable to the case
when the data-path size is greater than the memory
data bus width due to 2-fold nested loop structure,
either.

To improve the performance by reducing the
number of iterations to a half, a modified Booth
recoding scheme is used for Montgomery
multiplication [10]. Through this recoding scheme, the
authors can achieve on-the-fly and simple calculation
of a partial product. However, since they still use a
triple of modulus, storing the value after pre-
calculation or preparing an additional hardware to
calculate it on the fly is needed. To solve this problem,
a negative of modulus is used [11], instead of a triple
of modulus. However, our mathematical analysis and
simulation with random data prove that implementing
the multiple-precision operation for scalability with a
negative of modulus causes a data overflow at the
intermediate result of multiplication.

In this paper, we propose an efficient architecture
for a Montgomery multiplier. It is very unique in that it
is developed considering all kinds of design factors
such as performance, power consumption, scalability
and reliability. Reliability is guaranteed through
analyzing the minimum bit lengths of all internal
vectors as well as input and output data.

This paper is organized as follows. Section 2
explains the digit-serial radix-4 Montgomery
multiplication algorithm with only full-precision

numbers. In this section, we also introduce a
specialized recoding scheme as well as the well-known
Booth recoding scheme. Section 3 explains a method
that allows our hardware to be scalable. Section 4
presents the structure of accumulator in detail. To
guarantee reliable arithmetic calculation by preventing
data overflow error Section 5 shows the optimum
number of bits to be allocated to all of the vectors
appearing in operation. Section 6 describes several
techniques to decrease power dissipation and then
explains the block diagram of data path. Experimental
results, with power, area, and time measurements are
given in Section 7. Finally Section 8 concludes the
paper.

2. Radix-4 Montgomery Multiplication

The basic full-precision algorithm for a radix-4
digit-serial interleaved Montgomery multiplication
[13] is given below:

[Inputs]

k : digit-length of M
M = (mk-1,···,m1,m0)4 : 2 < M < 4k, M is odd
A = (ak-1,···,a1,a0)4 : 0 ≤ A < M
B = (bk-1,···,b1,b0)4 : 0 ≤ B < M

[Output]
S = (sk-1,···,s1,s0)4 : 0 ≤ S < M

[Method]
S ← 0
for i=0 to (k–1)

qi ← ((s0 + bia0)m0’) mod 4
S ← (S + biA + qiM) div 4

endfor
if (S ≥ M) S ← (S – M) endif

where R = 4k and m0’ = –m0

-1 mod 4. Inputs A, B, and
M denote multiplicand, multiplier, and modulus of the
modular multiplication, respectively. The calculated
result S is expressed as S ≡ (AB + QM)R-1 ≡ ABR-1
(mod M). In this algorithm, qi is the i-th significant
digit of so-called Montgomery quotient Q = (qk-1,
···,q1,q0)4. Its value is calculated in such a way as to
make the least significant digit of (S + biA + qiM)4 zero
at each iteration. From now on, we use PP and MM to
represent a partial product (biA) and a multiple of
modulus (qiM), respectively.

In the case of radix-4, bi and qi are 2-bit numbers.
Thus, the value sets of PP and MM are as follows:

{ } { }M,M,M,MM,A,A,A,PP 320320 ∈∈

To calculate 3A and 3M on the fly, we need two extra
adders. To remove the burden of calculating 3A in the

PP’s value set, a modified Booth recoding scheme is
popularly used. Let the bi,1 and bi,0 are the two bits in
the i-th significant digit of B. Radix-4 modified Booth
recoding scheme takes a bit stream (bi,1,bi,0,bi-1,1)2 as
input and generates a recoded PP according to Table 1,
where b-1,1 is defined to be 0 and qai the recoded
quotient digit for a PP at the i-th iteration.

TABLE 1
Booth Recoding Scheme

Three input bits Recoded
quotient for PP

Recode
d PP

bi,1 bi,0 bi-1,1 qai PP
0 0 0 0 0
0 0 1 +1 +A
0 1 0 +1 +A
0 1 1 +2 +2A
1 0 0 –2 –2A
1 0 1 –1 –A
1 1 0 –1 –A
1 1 1 0 0

TABLE 2
Montgomery Recoding Scheme

Three input bits Recoded
quotient for MM

Recoded
MM

sp0,1 sp0,0 m0,1 qmi MM
0 0 0 0 0
0 0 1 0 0
0 1 0 –1 –M
0 1 1 +1 +M
1 0 0 +2 +2M
1 0 1 +2 +2M
1 1 0 +1 +M
1 1 1 –1 –M

Booth recoding scheme transforms the value set of

PP into {–2A, –A, 0, +A, +2A}. All elements in the set
are calculated by simple operations such as bit-
inversion and/or bit-shift. However, 3M still remains in
the value set of MM, and this problem cannot be
solved by the Booth recoding scheme. In this paper,
we adopt a specialized method named ‘Montgomery
recoding scheme’ [11] to transform the original value
set of MM into the one that also has easily obtainable
elements only. Let (sp0,1,sp0,0)2 be the 2 bits in the least
significant digit (LSD) of SP = S + PP and (m0,1,m0,0)2
be the 2 bits in the LSD of M. According to the input
condition that M has to be odd, m0,0 is always ‘1’. Then,
Montgomery recoding scheme takes a bit stream
(sp0,1,sp0,0,m0,1)2 as input and generates a recoded MM

according to Table 2, where qmi is the recoded
quotient digit for a MM at the i-th iteration.

Montgomery recoding scheme transforms the value
set of MM into {–M, 0, +M, +2M}. Due to adopting
the two recoding schemes, it is easy to calculate all the
elements in the value sets of PP and MM. But the
recoding schemes cause one negative effect: that is, all
operands except for M are changed to the signed
numbers that are more complicated to deal with than
the unsigned ones.

3. Scalability by Multiple Precision

The basic algorithm in Section 2 uses not the
multiple-precision numbers but the full-precision
numbers, thus it is not scalable. And since our
Montgomery multiplier exchanges its input/output data
with a host such as CPU or DSP via a shared data
memory, we have to consider data bus width of the
memory as well as the multiple-precision operation. To
make the algorithm scalable through multiple-precision
operation and compatible with the data memory, we
transform it into a 4-fold nested loop structure. Every
operand in multiple-precision arithmetic has to be
equally divided into p chunks, where p is an integer
specifying the precision (1 for single precision, 2 for
double precision, etc.). To help our explanation,
several unit bit-lengths are introduced:

n : bit-length of modulus M
c : bit-length of a chunk
w : bit-length of a word

where n = pc, c is a multiple of w, and w is the data bus
width of the memory. Since input/output operands
have sign bits as explained in Section 2, the bit-lengths
of them are extended to n’ ≥ n+1 and n’ = pc’ = p(c+x),
where c’ (= c+x) is the bit-length of an extended chunk
and x is a number decided by the memory’s data bus
configuration. In n’ bits, n’-n = p(c’-c) bits at the most
significant side are sign bits. If the memory has 32-bit
data bus and its transferable data units are 8-bit, 16-bit,
and 32-bit, then w = 32 and x = 8, 16, or 32. Choosing
smaller x leads to better performance but greater
complexity in hardware. Following the trade-off rule,
we choose x = w/2 in this paper.

To prevent the performance degradation due to
carry propagation through the entire bits, the
accumulator in our Montgomery multiplier has been
designed using Carry-Save Adder (CSA) architecture.
The accumulator sums up PP and MM generated at
each iteration. We call this operation “PPnMM
accumulation”. Because of the CSA architecture, the
accumulator’s output is not in a conventional

representation (CR) but in a redundant representation
(RR) where a number is expressed as a sum of multiple
numbers. Any type of Carry-Propagate Adder (CPA)
can be used to convert a RR number into CR number
by summation. We call this operation “RR2CR
conversion”.

SI

CSA0,0CPA0,2

QO

CSA0,1

QI

SOZO

CSA1,0CPA1,2

SI

SB

CSA1,1

SI

SO

AC
C

_C
/S

/L

AC
C

_C
/S

/L

MS

SA

SM

AC
C

_C
/S/L

QO

SOZO

AC
C

_C
/S

/L
AC

C
_C

/S/L

AC
C

_C
/S/L

QI

SO

SMS

A[1]

M[1]

A[0]

M[0]

B[0]

B[1]

1st Step2nd Step3rd Step

4th Step5th Step6th Step

Calculate Q0
Store Q0

Calculate Q1
Store Q1

Reuse Q0
Store S0

Add ACC_C/S/L
Store S1

Reuse Q1
Store S0

c' = c+w/2

w w/2

c' = c+w/2

w/2 w

w
w

/2
w

c' = c+w
/2

c' = c+w
/2

w
/2

w
w

w w

S1 S0SS

SS

00

R
O

W
 0

R
O

W
 1

COLUMN 0COLUMN 1COLUMN 2

Add ACC_C/S/L
Store S1

0

0

DATA MEMORY

DATA MEMORY

SA : Sign bit(s) of A
SB : Sign bit(s) of B
SM : Sign bit(s) of M (=0)
SS : Sign bit(s) of S
MS : Most significant but not
 sign bit of S
SMS : Extended SS with one bit MS

SMS SI

MSSS

0

Fig 1. Processing Matrix

The operation flow diagram is shown in Fig. 1. To
simplify explanation, although p can be any positive
integer, we use p = 2 (i.e., double-precision case). We
name the diagram “processing matrix” since it looks
like a matrix with p rows and p+1 columns. In each
row, RR2CR conversion is performed at the last
column and PPnMM accumulations are performed at
all others. At the first column in a row, an extended
chunk of the row’s Montgomery quotient Q is
calculated and stored into a memory. At each non-first
column in a row, an extended chunk of the row’s result
S is calculated and stored into the memory. The
extended chunk of Q stored at the first column is
reused in calculating each extended chunk of S at the
non-first and non-last column in the corresponding row.
Every non-first row reloads the previous row’s result
SI and uses it as the initial value of the accumulator.
The i-th row uses the i-th extended chunk of B as well
as full data of A, M, and SI. The j-th column other than
the last one in a row uses the j-th extended chunk of A,
M, and SI. The last row outputs the final result.

The actual data processing operation represents a 4-
fold nested loop and can be explained by a pseudo
code as follows:

/* iteration for each ext. chunk of B */
for row_idx = 0 to (p-1)

clr_acc();
/* iteration for each ext. chunk of A and M */
for col_idx = 0 to (p-1)

if (row_idx != 0) ld_chnk_si(); endif
ld_chnk_ai();
ld_chnk_mi();
ini_acc();
/* iteration for each word of ext. chunk of B */
for wrd_idx = -1 to (c/w)

if (wrd_idx != -1) ld_word_bi(); endif
if (col_idx != 0) ld_word_qi(); endif
/* iteration for each digit of a word of B */
for dgt_idx = 0 to (w/2-1)

if ((wrd_idx == 0)&&(dgt_idx == 0))
acc_sft_fb = 0;

else
acc_sft_fb = 1;

endif
booth_rec();
pp_gen();
sp_gen();
montg_rec();
mm_gen();
ppnmm_acc();
if (wrd_idx == -1) break; endif
if (dgt_idx == w/4-1)

if (((row_idx%2 == 0) &&
(wrd_idx == w/2-1)) ||

 ((row_idx%2 == 1) &&
(wrd_idx == 0))) break;

endif
endif

endfor
if (wrd_idx == -1) break; endif
if (col_idx == 0)

 st_word_qo();
else

 st_word_so();
endif

endfor
endfor
/* iteration for each word of Z */
for wrd_idx = 0 to (c/w-1)

rr2cr_cvt();
st_word_zo();

endfor
endfor

Note that row_idx and col_idx are the row index and
the column index in the processing matrix,
respectively, wrd_idx and dgt_idx are the index of a

word in an extended chunk and the index of a digit in a
word, respectively. In the pseudo code above, we use
several data processing functions: clr_acc() clears the
accumulator’s registers, booth_rec() performs the
Booth recoding, pp_gen() generates a PP, sp_gen()
generates an SP, montg_rec() performs the
Montgomery recoding, mm_gen() generates an MM,
ini_acc() modifies the initial values of the
accumulator’s registers by summing up an extended
chunk of SI to the accumulator, ppnmm_acc()
accumulates a PP and a MM, and rr2cr_cvt() converts
an RR number into a CR number. Also, there are
several functions to load data from or to store data into
memory: ld_chnk_ai(), ld_chnk_mi(), and ld_chnk_si()
load an extended chunk of A, M, and SI, respectively,
ld_word_qi() and ld_word_bi() load a word of Q and B,
respectively, st_word_qo(), st_word_so(), and
st_word_zo() store a word of Q, S, and Z, respectively.
Z represents the output of RR2CR conversion.

4. Structure of Accumulator

The accumulator consists of 2-way 1-bit
multiplexers (MUXs) and 4-2 compressors as well as
three kinds of registers, ACC_C, ACC_S, and ACC_L.
The bit-length of ACC_L is fixed to 3 bits. The other
two registers’ bit-lengths, however, are not fixed and
depend on the bit-length of an extended chunk, c’. We
will explain the optimal bit-lengths of ACC_C and
ACC_S in Section 6. Among numerous circuit
configurations for 4-2 compressors, we select the one
depicted in Fig. 2 (a) since it consumes less power than
the others [12].

0 1

0 1

X1 X2 X3 X4

CO

C S

CI
0 1

S

CI

A B

(a) (b)

CO

Fig 2. Circuit Diagram of (a) 4-2 Compressor
and (b) Full Adder

The structure of the accumulator is illustrated in Fig.
4. Two MUXs and one compressor are located at each
bit position in the accumulator. The role of the MUXs
is selecting one between the shifted feedback input and
the non-shifted feedback input. The feedback input

selection is controlled by ACC_SFT_FB signal: shifted
one when it is ‘1’ and non-shifted one when it is ‘0’.
At the first cycle of each non-last column in a row, we
sum up the previous row’s result SI to the
accumulator’s registers by setting PP’s value to 0 and
MM’s value to SI. This cycle is only for updating the
initial values of the accumulator’s registers, not for
generating the row’s calculation result. Thus at the
next cycle, the non-shifted outputs of the
accumulator’s registers are fed back for that cycle’s
PPnMM accumulation. To say briefly, the accumulator
uses two kinds of feedback inputs: 2-bit right shifted
ones and non-shifted ones. Only at the second cycle of
each non-last column, the accumulator uses non-
shifted feedback inputs, and at all the other cycles, it
uses shifted feedback inputs.

Except for its two lowest bit positions and three
highest bit positions, the accumulator has a regular
structure. All of the four 4-2 compressors at the highest
bit positions use the sign bits (i.e., MSBs) of PP and
MM. And the sign bits of ACC_C and ACC_S are
suitably extended when they are fed back. At the two
lowest bit positions, two more full adders (FAs)
depicted in Fig. 2 (b) are attached to generate least
significant three bits that are registered at ACC_L. The
values in ACC_C and ACC_S are signed numbers but
the value in ACC_L is an unsigned number. The
registered value in the accumulator is 2*(ACC_C +
ACC_S) + ACC_L.

5. Reliable Arithmetic

To optimize the size of hardware without causing a
data overflow error, the exact number of bits has to be
allocated to each vector. The right numbers of bits for
all vectors excluding rows’ results and ACC_C and
ACC_S registers are clear. Each non-last column in a
row needs c’ bits of A and M, each row needs c’ bits of
B. Both PP and MM need c’+2 bits, inputs A and B
need pc+1 bits including their sign bits, input M needs
pc bits, ACC_L needs 3 bits, etc. Thus, we have to
determine the optimum numbers of bits for ACC_C
and ACC_S registers and for rows’ results S.

First, we show how to determine the minimum
numbers of bits for rows’ results. For convenience of
explanation, we introduce an integer r indicating a row
in the processing matrix, { }110 −⋅⋅⋅∈ p,,,r .

In the final row (i.e., r = p-1), full bits of A, B, and
M are used in calculating the final result SF. Thus, the
ranges of inputs are as follows:

M : 0 ≤ M ≤ 2pc–1
A : –M+1 ≤ A ≤ M–1
B : –2pc+1 ≤ B ≤ 2pc–1

According to Montgomery’s equation,
() R/QMBAS F += , where 'pcR 2= ,

∑
−

=

=
12

0

4
/pc'

i

i
iqmQ , { }2101 ++−∈ ,,,qmi . The maximum

and the minimum values of Q are as follows:

() () ()12
3
242

12

0

−+=+= ∑
−

=

'pc
/'pc

i

iQmax

() () ()12
3
141

12

0

−−=−= ∑
−

=

'pc
/'pc

i

iQmin

Using the value of R and the boundary values for A, B,
and Q, we can calculate the maximum and the
minimum values of SF.

()
()() ()

() ()

MM

M

MM
Smax

'pcc'cp'pcc'cp

'pc

'pcpc

F

+<≅

 −−

 −+=

−+−−
=

−−

3
2

2
1

2
1

2
52

3
1

2
1

2

12
3
2112

()
()() ()

() ()

MM

M

MM
Smin

'pcc'cp'pcc'cp

'pc

'pcpc

F

−>−≅

 −+

 −−−=

−−−+−
=

−−

3
1

2
1

2
1

2
51

3
1

2
1

2

12
3
1112

Since the bit-length of M is n (n = pc), n+1 bits are
needed to represent SF including its sign bit.

In an intermediate row (i.e., 0 ≤ r < p-1), partial bits
of B, BI, are used with full bits of A and M in
calculating the intermediate result SI. Thus, the ranges
of inputs are as follows:

M : 0 ≤ M ≤ 2pc–1
A : –M+1 ≤ A ≤ M–1
BI : –2(r+1)c’–1 ≤ BI ≤ 2(r+1)c’–1–1

According to Montgomery’s equation,
() IIII R/MQABS += , where () 'cr

IR 12 += ,

∑
−

=

=
12

0

4
/pc'

i

i
iI qmQ , { }2101 ++−∈ ,,,qmi . The maximum

and the minimum values of QI are as follows:

() ()
()

()()12
3
242 1

121

0

−+=+= +
−+

=
∑ 'cr

/'cr

i

iQmax

() ()
()

()()12
3
141 1

121

0

−−=−= +
−+

=
∑ 'cr

/'cr

i

iQmin

Using the value of RI and the boundary values for A, BI,
and QI, we can calculate the maximum and the
minimum values of SI.

()
()()() ()()

()

() ()

MM

M

MM
Smax

'cr'cr

'cr

'cr'cr

I

2
6
7

2
1

2
1

2
52

3
1

2
1

2

12
3
2112

11

1

111

+<≅

 −−

 −+=

−+−−
=

++

+

+−+

()
()()() ()()

()

()

M

M

MM
Smin

'cr

'cr

'cr'cr

I

−>−≅

+

 −−−=

−−−−
=

+

+

+−+

6
5

2
1

2
11

3
1

2
1

2

12
3
112

1

1

111

Since the bit-length of M is n (= pc), n+2 bits are
needed to represent SI including its sign bit.

In summary, n+1 bits are needed for the final result
SF, but n+2 bits are needed for the intermediate result
SI. The most significant two bits of a row’s result are
calculated at the end of the RR2CR conversion step.
We denote the most significant bit and the next bit of a
row’s result SIGN_S and MS1B_S, respectively.
Specifically, SIGN_S represents the sign bit of a row’s
result. Since SF needs only n+1 bits, MS1B_S achieved
at the final row can be dropped out.

Second, to determine the minimum number of bits
to represent ACC_C and ACC_S, we take a simulation
approach. A small sized data path and full set of input
data are used in our simulation. Through this
simulation analysis, we find out that at least c’+4 bits
for ACC_C and c’+3 bits for ACC_S are needed to
prevent the overflow error. It also means that we need
c’+5 compressors in the accumulator.

Modular exponentiation, the mathematical model of
RSA and Diffie-Hellman algorithms, consists of
chained modular multiplications. If we use original
Montgomery’s algorithm for the modular
multiplication, so-called “post-reduction step” is
required after completing the iterating loop, as shown

in Section 2. But for the Montgomery multiplier
presented in this paper, such an additional step is not
required because its output does not go beyond the
value ranges of inputs. Only the last multiplication
during the entire exponentiation process needs the
post-reduction step.

6. Low Power Techniques

From the basis of fundamental idea explained at
Section 2 to 5, we further improve our hardware to
dissipate less power than the one implemented directly.
Inevitably all digital devices have spurious transitions
or glitches internally due to unbalanced path delays,
which causes worthless dynamic power dissipation.
Furthermore, if fan-outs of the glitchy signals are big,
then the amount of worthlessly dissipated power is
significant. Such signals are the outputs from the two
circuit modules in charge of the Booth and
Montgomery recodings. Because the modules
comprise only combinational logic circuits according
to Table 1 and Table 2, their outputs must have
glitches. And the fan-outs of the outputs are c’+2 that
is usually very large number. To reduce the glitching
power dissipation, we put in some latches and force the
outputs to pass through latches. If all flip-flops and
registers capture their inputs at the clock’s rising edge,
then the latches are transparent when the clock is in a
low state. If the outputs of the two recoding modules
can reach their stable values before the clock’s falling
edge, none of the glitches can propagate to the fan-out
modules driven by the outputs. We name these latches
“glitch blockers”. The glitch blockers are also very
effective for reducing the glitches appearing in the
accumulator since they synchronize the arrival of PP
and MM at the accumulator’s inputs.

Fig. 3 shows the block diagram of data path. PP
generator makes a PP by modifying an extended chunk
of A according to the Booth recoder’s outputs, SEL_PP
and EN_PP. MM generator makes a MM by modifying
an extended chunk of M according to the Montgomery
recoder’s outputs, SEL_MM and EN_MM. Several
glitch blockers are located at the outputs of the two
recoders. To implement scalability, we have to add up
SI at the first cycle of each non-last column in a row.
Since the value set of MM has one less element than
the one of PP, we put SI into the value set of MM.
Thus, it is expanded into {SI, –M, 0, +M, +2M}. The
meanings of the two recoders’ outputs are as follows:

Booth Recoder’s outputs
SEL_PP: selects PP’s value from {–2A,–A,+A,+2A}
EN_PP: sets PP’s value to 0 or not
NEG_PP: indicates that PP’s value is –2A or –A

Montgomery Recoder’s outputs
SEL_MM: selects MM’s value from {SI,–M,+M,+2M}
EN_MM: sets MM’s value to 0 or not
NEG_MM: indicates that MM’s value is –M

When PP is zeroed by EN_PP, PP outputted from
the PP generator does not depend on SEL_PP. Thus,
keeping SEL_PP frozen at that time is effective for
reducing power dissipation. Same reasoning also
applies to SEL_MM. We place two 2-bit flip-flops and
construct feedback loops for SEL_PP and SEL_MM to
implement this idea.

Booth recoding scheme has a feature that +2A
cannot follow +A or +2A and –2A cannot follow –A or
–2A. Utilizing this feature to decrease power
consumption, we suggest a binary coding method for
SEL_PP as follows:

SEL_PP for +A = ~(SEL_PP for +2A)
SEL_PP for –A = ~(SEL_PP for –2A)

where ‘~’ denotes bit-inversion. This binary coding
method minimizes the ESA of SEL_PP.

MX_REG[c'-1:0]

D Q
LAT

GN
D Q
LAT

D Q
LAT

CK
Q D
FF

Montg. Recoder
SEL_MM_D
[1:0]

SEL_MM
[1:0]

EN_MM

NEG_MM

QI_DGT
[1:0]

QO_DGT
[1:0]

M1

SP[1:0]

QO[w-1:0]

MI[c'-1:0]

SEL_MM[1:0]

EN_MM

CSA Accumulator

NEG_MM

SEL_PP[1:0]

EN_PP

22222

22

2

2 2

Booth Recoder

PP[1:0]

NEG_PP

EN_PP

SEL_PP
[1:0]

SEL_PP_D
[1:0]

A[1:0]

B1

B0

BR
NEG_PP

w-bit Pipelined CPA

BR
B0
B1

SP Generator

PP[1:0]

ACC_C[1:0]

ACC_S[1:0] SP[1:0]

2

2

2

ACC_C[1:0]

ACC_S[1:0]

2

2

2

ZO_REG[w-1:0]

w

w

w

2

2

c'+2 c'+2

c'

SP[1:0]

2

PP[c'+1:0]

PP[c'+1:0]MM[c'+1:0]

MM[c'+1:0]Glitch
Blockers

Q D
LAT

GN
Q D
LAT

Q D
LAT

ACC_L[1:0]

MY_REG[c'-1:0]

MI[c'-1:0]

REG_DI[w-1:0]

w

AI[c'-1:0]

GN

GN

QI_REG[w-1:0]

REG_DI[w-1:0]

w

QO_REG[w-1:0]

GN

GN

SO_REG[w-1:0]

REG_DI[w-1:0]

w

BI_REG[w-1:0]

SP[1:0]

ZO[w-1:0]

MEM_DO
[w-1:0]

MEM_DI
[w-1:0]

SIGN_A
SIGN_B

REG_DI
[w-1:0]

MS1B_S
SIGN_S

Memory I/F

2

SIGN_S

c+1

ACC_S[c:0]ACC_C[c:0]

2

Glitch
Blockers

w

ww

2

SIGN_A

'0'

AX_REG[c'-1:0]

c'

AY_REG[c'-1:0]

AI[c'-1:0]

REG_DI[w-1:0]

w

c+1

ACC_S[c:0]ACC_C[c:0]

MM Generator PP Generator

QO[w-1:0]

SO[w-1:0]

AI[1:0]MI[1]

ACC_L[2:0]ACC_L[2:0]
3

Memory I/F

2

2

2

2

CK
D Q
FF

2

2
SI_REG[c'-1:0]

SIGN_AI

SIGN_S

'0'

SIGN_SI

SI[c'-1:0]

REG_DI[w-1:0]

w

ACC_L[2]

SFT_ACC_FB SFT_ACC_FB

SFT_ACC_FB

ACC_L[2]

2

Fig 3. Block Diagram of Data Path

The whole c’ bits of an extended chunks of A and M
are used at every cycle in the non-last columns. And
neighboring columns require different c’ bits of A and
M. To maximize the processing performance, we
implement the double buffering scheme by preparing a
pair of c’-bit registers for both A and M. While c’ bits
of A (and M) in one register is used for PPnMM
accumulations at a column, the next c’ bits of A (and
M) is pre-loaded into the other register for operations
at the next column. To the contrary, only 2 bits of
inputs B and/or Q are needed and also only 2 bits of
outputs S and/or Q are generated at a cycle in the non-
last columns. Thus we prepare two w-bit parallel-in-
serial-out (PISO) shift registers for inputs B and Q and

two w-bit serial-in-parallel-out (SIPO) shift registers
for outputs S and Q.

At the beginning of the last column in a row, higher
significant bits of the row’s result remain in the
accumulator’s registers without being stored into the
memory. We implement a module that contains a
pipelined w-bit CPA and undertakes three kinds of
tasks: summing up the bits remaining in the
accumulator’s registers for the RR2CR conversion,
storing lower significant cp-c’ (p-1) bits of the sum
(i.e., Z) into the memory, and registering next higher
significant two bits of the sum (i.e., SIGN_S and
MS1B_S) at flip-flops.

At each non-first cycle of the first column in a row,
Montgomery recoder calculates a digit of Q according
to Table 2. This calculation requires SP that is the LSD
of the sum of PP and accumulator’s feedback inputs.
Since there are two kinds of feedback inputs, namely,
shifted ones and none-shifted ones, determining SP
depends on the feedback input selection. SP generator
in Fig. 3 performs this task, as shown in the following
pseudo code:

if (SFT_ACC_FB==1) /*shifted feedback inputs*/
SP=PP[1:0]+ACC_C[1:0]+ACC_S[1:0]+ACC_L[2]
;

else /*non-shifted feedback inputs*/
 SP=PP[1:0]+ACC_L[1:0];
endif

7. Hardware Evaluation Results

We implement the presented Montgomery
multiplier using a (512+16)-bit data path. Chunk size
can be adjusted from 128-bit to 512-bit with a 32-bit
step size. Using a 2-Kbyte data memory, it supports
single, double, triple, and quadruple precisions. We
use Synopsys’ Design Compiler (DC) and Power
Compiler (PC) for logic synthesis and power
optimization with 0.18 um CMOS standard cell library
and 4 metal layers. The size of implemented hardware
is 59 K gates. It consumes 0.4 mA/MHz and runs up to
50 MHz at 1.8 V supply voltage. We show the
evaluation results of current consumption in Table 3.
The results prove that the low power techniques
introduced in this paper are very efficient.

As a public-key cryptographic coprocessor, the
presented Montgomery multiplier is embedded in the
Smart Card IC implemented in Samsung Electronics.
The measured time for 1024-bit RSA signing operation
without using CRT (Chinese Remainder Theorem) on
the Smart Card IC is 180 ms consuming 6 mA current,
which is the upper limit of the GSM (Global System

for Mobile) Class-B SIM (Subscriber Identification
Module) card.

TABLE 3
Current Consumption Results (@ 10 MHz)

Used EDA
Tools

Current w/o
Low Power
Schemes

Current w/
Low
Power
Schemes

Current
Saving
Percent

DC only 5.77 mA 4.39 mA 23.9 %
DC and PC 5.00 mA 3.99 mA 20.2 %

8. Conclusion

We propose an efficient VLSI architecture and
implementation methodology for a Montgomery
multiplier. Scalability is achieved through the multiple-
precision operation and the adjustable bit-length of a
chunk. High performance is achieved through a radix-
4 multiplier architecture based on CSA accumulation.
Applying Booth and Montgomery recoding schemes
reduces the amount of hardware resources and the
length of critical path. Power optimization is achieved
through decreasing the glitches and the ESA of high
fan-out signals. Hardware evaluation results show that
our low power techniques save more than 20% of
power consumed. We also present the optimum bit-
lengths for all the vectors in order to guarantee reliable
calculations by preventing data overflow error. Due to
its low-power and high-performance features, the
presented Montgomery multiplier can be applicable to
the mobile devices such as Smart Card IC and flash
card IC successfully.

9. References

[1] R.L. Rivest, A. Sharmir, and L. Adleman, “A Method of
Obtaining Digital Signature and Public-Key Cryptosystems,”
Comm. ACM., vol. 21, no. 2, pp. 120-126, 1982
[2] W. Diffie and M.E. Hellman, "New Directions in
Cryptography," IEEE Trans. Information Theory, vol. 22, pp.
644-654, 1976
[3] P.L. Montgomery, "Modular Multiplication without Trial
Division," Math. Computing, vol. 44, no. 170, pp. 519-521,
Apr. 1985
[4] J. Menezes, P.C. van Oorschot, and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997
[5] C. Walter, "Systolic Modular Multiplication," IEEE
Trans. Computers, vol. 42, no. 3, pp. 376-378, Mar. 1993
[6] P. Kornerup, "A Systolic, Linear-Array Multiplier for a
Class of Right-Shift Algorithms," IEEE Trans. Computers,
vol. 43, no. 8, pp. 892-898, Aug. 1994
[7] W.C. Tsai, C.B. Shung, and S.J. Wang, "Two Systolic
Architecture for Modular Multiplication,", IEEE Trans. VLSI,
vol. 8, no. 1, pp. 103-107, Feb. 2000
[8] A.F. Tenca and C.K. Koc, "A Scalable Architecture for
Modular Multiplication Based on Montgomery's Algorithm,"
IEEE Trans. Computers, vol. 52, no.9, pp. 1215-1221, Sep.
2003
[9] A.F. Tenca and C.K. Koc, “High-Radix Design of a
Scalable Modular Multiplier,” Proc. Cryptographic
Hardware and Embedded Systems (CHES 2001), pp. 189-
205, May 2001
[10] J.J. Leu and A.Y. Wu, “Design Methodology for Booth-
Encoded Montgomery Module Design for RSA
Cryptpsystem,” Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS-2000), pp. V.357-360, May 2000
[11] J.H. Hong and C.W. Wu, "Radix-4 Modular
Multiplication and Exponentiation Algorithm for the RSA
Public-key Cryptosystem," ASP-DAC, pp. 565-570, 2000
[12] S.F. Hsiao, M.R. Jiang and J.S. Yeh, "Design of high-
speed low-power 3-2 counter and 4-2 compressor for fast
multipliers," Electronics Letters, vol. 34, no. 4, pp. 341-343,
Feb. 1998
[13] H. Orup, “Simplifying Quotient Determination in High -
Radix Modular Multiplication,” Proc. 12th Symp. Computer
Arithmetic, pp. 193-199, July 1995

X2 X3X1 X4

C S

CO CI

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

X2 X3X1 X4

C S

CO CI

4-2 Comp.

FA
A B

CICO
S

FA
A B

CO
S

4-2 Comp.

ACC_C[c'+3:0] ACC_S[c'+2:0] ACC_L[2:0]

M
M

[c
'+

1]
P

P[
c'

+1
]

M
M

[c
']

P
P[

c'
]

M
M

[3
]

P
P[

3]

M
M

[2
]

P
P[

2]

M
M

[1
]

P
P[

1]

M
M

[0
]

P
P[

0]

SFT_ACC_FB

ACC_L[2:0]ACC_C[c:0] ACC_S[c:0]
c+1 c+1

CSA Accumulator

(c'+1)-th
bit pos.

(c'+2)-th
bit pos.

(c'+3)-th
bit pos.

(c'+4)-th
bit pos.

(c')-th
bit pos.

3-rd
bit pos.

2-nd
bit pos.

1-st
bit pos.

0-th
bit pos.

3

CI

1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 0

X2 X3X1 X4

C S

CO CI

4-2 Comp.

(c'+1)-th
bit pos.

1 01 0

M
M

[c
'-1

]
P

P[
c'

-1
]

X2 X3X1 X4

C S

CO CI

4-2 Comp.

M
M

[4
]

P
P[

4]

4-th
bit pos.

1 01 0

NEG_MM

NEG_PP

Fig 4. Circuit Diagram of Accumulator

