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Abstract 
 

In this paper, an efficient Montgomery multiplier is 
introduced for the modular exponentiation operation, 
which is fundamental to numerous public-key 
cryptosystems. Four aspects are considered: 
performance, power, reliability, and scalability. To 
increase performance, the architecture is based on the 
radix-4 Carry-Save Adder (CSA). To lower power 
consumption, we devised several effective techniques 
for reducing the spurious transitions and the Expected 
Switching Activity (ESA) of high fan-out signals. To 
achieve scalability, we implement a 4-fold nested loop 
for the whole data processing flow. It is compatible 
with the multiple-precision digit-serial arithmetic as 
well as the data transfer to/from an external memory. 
Lastly, to make sure that the arithmetic operation runs 
correctly without inducing data overflow error, we find 
out the optimum numbers of bits for all vectors 
appearing in the operation through a mathematical 
analysis and a logic simulation. In the evaluation of 
hardware implemented using 0.18 um CMOS standard 
library and 4 metal layers, area and current 
consumption are 59 K gates and 0.4 mA/MHz at 1.8 V 
supply voltage, respectively. The presented low power 
techniques save more than 20% of power consumed. 
 
1. Introduction 
 

Modular multiplication is widely used in secure 
communications. For example, the RSA [1] and the 
Diffie-Hellman [2] public-key cryptosystems require 
modular exponentiation, and this can be computed 
using a series of modular multiplications. Montgomery 
multiplication algorithm [3], [4], [13] is an efficient 
method for modular multiplication. The algorithm uses 
simple divisions by a power of two instead of divisions 
by a modulus, which are used in a conventional 
modular operation. 

A number of Montgomery multipliers have been 
suggested in papers [5], [6], [7]. Their hardware 

architectures were designed to deal with a specific 
maximum number of bits. However, as computers’ 
processing power increases, to provide the same 
“effective” security level, cryptosystems will require 
security parameters to be increased. To be able to cope 
with such coming requests, the architecture of 
cryptographic hardware has to be scalable. 

Recently, A.F. Tenca and C.K. Koc published 
several papers [8], [9] about the scalable Montgomery 
multipliers. They introduced so-called word-based 
Montgomery multiplication algorithm to implement the 
scalability. However, they did not consider their 
hardware from the low power consumption point of 
view. Their algorithm cannot be applicable to the case 
when the data-path size is greater than the memory 
data bus width due to 2-fold nested loop structure, 
either. 

To improve the performance by reducing the 
number of iterations to a half, a modified Booth 
recoding scheme is used for Montgomery 
multiplication [10]. Through this recoding scheme, the 
authors can achieve on-the-fly and simple calculation 
of a partial product. However, since they still use a 
triple of modulus, storing the value after pre-
calculation or preparing an additional hardware to 
calculate it on the fly is needed. To solve this problem, 
a negative of modulus is used [11], instead of a triple 
of modulus. However, our mathematical analysis and 
simulation with random data prove that implementing 
the multiple-precision operation for scalability with a 
negative of modulus causes a data overflow at the 
intermediate result of multiplication. 

In this paper, we propose an efficient architecture 
for a Montgomery multiplier. It is very unique in that it 
is developed considering all kinds of design factors 
such as performance, power consumption, scalability 
and reliability. Reliability is guaranteed through 
analyzing the minimum bit lengths of all internal 
vectors as well as input and output data. 

This paper is organized as follows. Section 2 
explains the digit-serial radix-4 Montgomery 
multiplication algorithm with only full-precision 



numbers. In this section, we also introduce a 
specialized recoding scheme as well as the well-known 
Booth recoding scheme. Section 3 explains a method 
that allows our hardware to be scalable. Section 4 
presents the structure of accumulator in detail. To 
guarantee reliable arithmetic calculation by preventing 
data overflow error Section 5 shows the optimum 
number of bits to be allocated to all of the vectors 
appearing in operation. Section 6 describes several 
techniques to decrease power dissipation and then 
explains the block diagram of data path. Experimental 
results, with power, area, and time measurements are 
given in Section 7. Finally Section 8 concludes the 
paper. 
 
2. Radix-4 Montgomery Multiplication 
 

The basic full-precision algorithm for a radix-4 
digit-serial interleaved Montgomery multiplication 
[13] is given below: 
 
[Inputs] 

k : digit-length of M 
M = (mk-1,···,m1,m0)4 : 2 < M < 4k,  M is odd 
A = (ak-1,···,a1,a0)4 : 0 ≤ A < M 
B = (bk-1,···,b1,b0)4 : 0 ≤ B < M 

[Output] 
S = (sk-1,···,s1,s0)4 : 0 ≤ S < M 

[Method] 
S ← 0 
for i=0 to (k–1) 

qi ← ((s0 + bia0)m0’) mod 4 
S ← (S + biA + qiM) div 4 

endfor 
if (S ≥ M) S ← (S – M) endif 

 
where R = 4k and m0’ = –m0

-1 mod 4. Inputs A, B, and 
M denote multiplicand, multiplier, and modulus of the 
modular multiplication, respectively. The calculated 
result S is expressed as S ≡ (AB + QM)R-1 ≡ ABR-1 
(mod M). In this algorithm, qi is the i-th significant 
digit of so-called Montgomery quotient Q = (qk-1, 
···,q1,q0)4. Its value is calculated in such a way as to 
make the least significant digit of (S + biA + qiM)4 zero 
at each iteration. From now on, we use PP and MM to 
represent a partial product (biA) and a multiple of 
modulus (qiM), respectively. 

In the case of radix-4, bi and qi are 2-bit numbers. 
Thus, the value sets of PP and MM are as follows: 

{ } { }M,M,M,MM,A,A,A,PP 320320 ∈∈  

To calculate 3A and 3M on the fly, we need two extra 
adders. To remove the burden of calculating 3A in the 

PP’s value set, a modified Booth recoding scheme is 
popularly used. Let the bi,1 and bi,0 are the two bits in 
the i-th significant digit of B. Radix-4 modified Booth 
recoding scheme takes a bit stream (bi,1,bi,0,bi-1,1)2 as 
input and generates a recoded PP according to Table 1, 
where  b-1,1 is defined to be 0 and qai the recoded 
quotient digit for a PP at the i-th iteration. 

TABLE 1 
Booth Recoding Scheme 

Three input bits Recoded 
quotient for PP 

Recode
d PP 

bi,1 bi,0 bi-1,1 qai PP 
0 0 0 0 0 
0 0 1 +1 +A 
0 1 0 +1 +A 
0 1 1 +2 +2A 
1 0 0 –2 –2A 
1 0 1 –1 –A 
1 1 0 –1 –A 
1 1 1 0 0 

TABLE 2 
Montgomery Recoding Scheme 

Three input bits Recoded 
quotient for MM 

Recoded 
MM 

sp0,1 sp0,0 m0,1 qmi MM 
0 0 0 0 0 
0 0 1 0 0 
0 1 0 –1 –M 
0 1 1 +1 +M 
1 0 0 +2 +2M 
1 0 1 +2 +2M 
1 1 0 +1 +M 
1 1 1 –1 –M 

 
Booth recoding scheme transforms the value set of 

PP into {–2A, –A, 0, +A, +2A}. All elements in the set 
are calculated by simple operations such as bit-
inversion and/or bit-shift. However, 3M still remains in 
the value set of MM, and this problem cannot be 
solved by the Booth recoding scheme. In this paper, 
we adopt a specialized method named ‘Montgomery 
recoding scheme’ [11] to transform the original value 
set of MM into the one that also has easily obtainable 
elements only. Let (sp0,1,sp0,0)2 be the 2 bits in the least 
significant digit (LSD) of SP = S + PP and (m0,1,m0,0)2 
be the 2 bits in the LSD of M. According to the input 
condition that M has to be odd, m0,0 is always ‘1’. Then, 
Montgomery recoding scheme takes a bit stream 
(sp0,1,sp0,0,m0,1)2 as input and generates a recoded MM 



according to Table 2, where qmi is the recoded 
quotient digit for a MM at the i-th iteration. 

Montgomery recoding scheme transforms the value 
set of MM into {–M, 0, +M, +2M}. Due to adopting 
the two recoding schemes, it is easy to calculate all the 
elements in the value sets of PP and MM. But the 
recoding schemes cause one negative effect: that is, all 
operands except for M are changed to the signed 
numbers that are more complicated to deal with than 
the unsigned ones. 
 
3. Scalability by Multiple Precision 
 

The basic algorithm in Section 2 uses not the 
multiple-precision numbers but the full-precision 
numbers, thus it is not scalable. And since our 
Montgomery multiplier exchanges its input/output data 
with a host such as CPU or DSP via a shared data 
memory, we have to consider data bus width of the 
memory as well as the multiple-precision operation. To 
make the algorithm scalable through multiple-precision 
operation and compatible with the data memory, we 
transform it into a 4-fold nested loop structure. Every 
operand in multiple-precision arithmetic has to be 
equally divided into p chunks, where p is an integer 
specifying the precision (1 for single precision, 2 for 
double precision, etc.). To help our explanation, 
several unit bit-lengths are introduced: 

n : bit-length of modulus M 
c : bit-length of a chunk 
w : bit-length of a word 

where n = pc, c is a multiple of w, and w is the data bus 
width of the memory. Since input/output operands 
have sign bits as explained in Section 2, the bit-lengths 
of them are extended to n’ ≥ n+1 and n’ = pc’ = p(c+x), 
where c’ (= c+x) is the bit-length of an extended chunk 
and x is a number decided by the memory’s data bus 
configuration. In n’ bits, n’-n = p(c’-c) bits at the most 
significant side are sign bits. If the memory has 32-bit 
data bus and its transferable data units are 8-bit, 16-bit, 
and 32-bit, then w = 32 and x = 8, 16, or 32. Choosing 
smaller x leads to better performance but greater 
complexity in hardware. Following the trade-off rule, 
we choose x = w/2 in this paper. 

To prevent the performance degradation due to 
carry propagation through the entire bits, the 
accumulator in our Montgomery multiplier has been 
designed using Carry-Save Adder (CSA) architecture. 
The accumulator sums up PP and MM generated at 
each iteration. We call this operation “PPnMM 
accumulation”. Because of the CSA architecture, the 
accumulator’s output is not in a conventional 

representation (CR) but in a redundant representation 
(RR) where a number is expressed as a sum of multiple 
numbers. Any type of Carry-Propagate Adder (CPA) 
can be used to convert a RR number into CR number 
by summation. We call this operation “RR2CR 
conversion”. 
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Fig 1. Processing Matrix 

The operation flow diagram is shown in Fig. 1. To 
simplify explanation, although p can be any positive 
integer, we use p = 2 (i.e., double-precision case). We 
name the diagram “processing matrix” since it looks 
like a matrix with p rows and p+1 columns. In each 
row, RR2CR conversion is performed at the last 
column and PPnMM accumulations are performed at 
all others. At the first column in a row, an extended 
chunk of the row’s Montgomery quotient Q is 
calculated and stored into a memory. At each non-first 
column in a row, an extended chunk of the row’s result 
S is calculated and stored into the memory. The 
extended chunk of Q stored at the first column is 
reused in calculating each extended chunk of S at the 
non-first and non-last column in the corresponding row. 
Every non-first row reloads the previous row’s result 
SI and uses it as the initial value of the accumulator. 
The i-th row uses the i-th extended chunk of B as well 
as full data of A, M, and SI. The j-th column other than 
the last one in a row uses the j-th extended chunk of A, 
M, and SI. The last row outputs the final result. 

The actual data processing operation represents a 4-
fold nested loop and can be explained by a pseudo 
code as follows: 



/* iteration for each ext. chunk of B */ 
for row_idx = 0 to (p-1) 

clr_acc(); 
/* iteration for each ext. chunk of A and M */ 
for col_idx = 0 to (p-1) 

if (row_idx != 0)  ld_chnk_si(); endif 
ld_chnk_ai(); 
ld_chnk_mi(); 
ini_acc(); 
/* iteration for each word of ext. chunk of B */ 
for wrd_idx = -1 to (c/w) 

if (wrd_idx != -1) ld_word_bi(); endif 
if (col_idx != 0)  ld_word_qi(); endif 
/* iteration for each digit of  a word of B */ 
for dgt_idx = 0 to (w/2-1) 

if ((wrd_idx == 0)&&(dgt_idx == 0)) 
acc_sft_fb = 0; 

else 
acc_sft_fb = 1; 

endif 
booth_rec(); 
pp_gen(); 
sp_gen(); 
montg_rec(); 
mm_gen(); 
ppnmm_acc(); 
if (wrd_idx == -1) break; endif 
if (dgt_idx == w/4-1) 

if (((row_idx%2 == 0) && 
(wrd_idx == w/2-1)) || 

 ((row_idx%2 == 1) && 
(wrd_idx == 0))) break; 

endif 
endif 

endfor 
if (wrd_idx == -1)  break; endif 
if (col_idx == 0) 

 st_word_qo(); 
else 

 st_word_so(); 
endif 

endfor 
endfor 
/* iteration for each word of Z */ 
for wrd_idx = 0 to (c/w-1) 

rr2cr_cvt(); 
st_word_zo(); 

endfor 
endfor 
 
Note that row_idx and col_idx are the row index and 
the column index in the processing matrix, 
respectively, wrd_idx and dgt_idx are the index of a 

word in an extended chunk and the index of a digit in a 
word, respectively. In the pseudo code above, we use 
several data processing functions: clr_acc() clears the 
accumulator’s registers, booth_rec() performs the 
Booth recoding, pp_gen() generates a PP, sp_gen() 
generates an SP, montg_rec() performs the 
Montgomery recoding, mm_gen() generates an MM, 
ini_acc() modifies the initial values of the 
accumulator’s registers by summing up an extended 
chunk of SI to the accumulator, ppnmm_acc() 
accumulates a PP and a MM, and rr2cr_cvt() converts 
an RR number into a CR number. Also, there are 
several functions to load data from or to store data into 
memory: ld_chnk_ai(), ld_chnk_mi(), and ld_chnk_si()  
load an extended chunk of A, M, and SI, respectively, 
ld_word_qi() and ld_word_bi() load a word of Q and B, 
respectively, st_word_qo(), st_word_so(), and 
st_word_zo() store a word of Q, S, and Z, respectively. 
Z represents the output of RR2CR conversion. 
 
4. Structure of Accumulator 
 

The accumulator consists of 2-way 1-bit 
multiplexers (MUXs) and 4-2 compressors as well as 
three kinds of registers, ACC_C, ACC_S, and ACC_L. 
The bit-length of ACC_L is fixed to 3 bits. The other 
two registers’ bit-lengths, however, are not fixed and 
depend on the bit-length of an extended chunk, c’. We 
will explain the optimal bit-lengths of ACC_C and 
ACC_S in Section 6. Among numerous circuit 
configurations for 4-2 compressors, we select the one 
depicted in Fig. 2 (a) since it consumes less power than 
the others [12].  
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Fig 2. Circuit Diagram of (a) 4-2 Compressor 
and (b) Full Adder 

The structure of the accumulator is illustrated in Fig. 
4. Two MUXs and one compressor are located at each 
bit position in the accumulator. The role of the MUXs 
is selecting one between the shifted feedback input and 
the non-shifted feedback input. The feedback input 



selection is controlled by ACC_SFT_FB signal: shifted 
one when it is ‘1’ and non-shifted one when it is ‘0’. 
At the first cycle of each non-last column in a row, we 
sum up the previous row’s result SI to the 
accumulator’s registers by setting PP’s value to 0 and 
MM’s value to SI. This cycle is only for updating the 
initial values of the accumulator’s registers, not for 
generating the row’s calculation result. Thus at the 
next cycle, the non-shifted outputs of the 
accumulator’s registers are fed back for that cycle’s 
PPnMM accumulation. To say briefly, the accumulator 
uses two kinds of feedback inputs: 2-bit right shifted 
ones and non-shifted ones. Only at the second cycle of 
each non-last column, the accumulator uses non-
shifted feedback inputs, and at all the other cycles, it 
uses shifted feedback inputs. 

Except for its two lowest bit positions and three 
highest bit positions, the accumulator has a regular 
structure. All of the four 4-2 compressors at the highest 
bit positions use the sign bits (i.e., MSBs) of PP and 
MM. And the sign bits of ACC_C and ACC_S are 
suitably extended when they are fed back. At the two 
lowest bit positions, two more full adders (FAs) 
depicted in Fig. 2 (b) are attached to generate least 
significant three bits that are registered at ACC_L. The 
values in ACC_C and ACC_S are signed numbers but 
the value in ACC_L is an unsigned number. The 
registered value in the accumulator is 2*(ACC_C + 
ACC_S) + ACC_L. 
 
5. Reliable Arithmetic 
 

To optimize the size of hardware without causing a 
data overflow error, the exact number of bits has to be 
allocated to each vector. The right numbers of bits for 
all vectors excluding rows’ results and ACC_C and 
ACC_S registers are clear. Each non-last column in a 
row needs c’ bits of A and M, each row needs c’ bits of 
B. Both PP and MM need c’+2 bits, inputs A and B 
need pc+1 bits including their sign bits, input M needs 
pc bits, ACC_L needs 3 bits, etc. Thus, we have to 
determine the optimum numbers of bits for ACC_C 
and ACC_S registers and for rows’ results S. 

First, we show how to determine the minimum 
numbers of bits for rows’ results. For convenience of 
explanation, we introduce an integer r indicating a row 
in the processing matrix, { }110 −⋅⋅⋅∈ p,,,r . 

In the final row (i.e., r = p-1), full bits of A, B, and 
M are used in calculating the final result SF. Thus, the 
ranges of inputs are as follows: 

M : 0 ≤ M ≤ 2pc–1 
A : –M+1 ≤ A ≤ M–1 
B : –2pc+1 ≤ B ≤ 2pc–1 

According to Montgomery’s equation, 
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∑
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Using the value of R and the boundary values for A, B, 
and Q, we can calculate the maximum and the 
minimum values of SF. 
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Since the bit-length of M is n (n = pc), n+1 bits are 
needed to represent SF including its sign bit. 

In an intermediate row (i.e., 0 ≤ r < p-1), partial bits 
of B, BI, are used with full bits of A and M in 
calculating the intermediate result SI. Thus, the ranges 
of inputs are as follows: 

M : 0 ≤ M ≤ 2pc–1 
A : –M+1 ≤ A ≤ M–1 
BI : –2(r+1)c’–1 ≤ BI  ≤ 2(r+1)c’–1–1 

According to Montgomery’s equation, 
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Using the value of RI and the boundary values for A, BI, 
and QI, we can calculate the maximum and the 
minimum values of SI. 
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Since the bit-length of M is n (= pc), n+2 bits are 
needed to represent SI including its sign bit. 

In summary, n+1 bits are needed for the final result 
SF, but n+2 bits are needed for the intermediate result 
SI. The most significant two bits of a row’s result are 
calculated at the end of the RR2CR conversion step. 
We denote the most significant bit and the next bit of a 
row’s result SIGN_S and MS1B_S, respectively. 
Specifically, SIGN_S represents the sign bit of a row’s 
result. Since SF needs only n+1 bits, MS1B_S achieved 
at the final row can be dropped out. 

Second, to determine the minimum number of bits 
to represent ACC_C and ACC_S, we take a simulation 
approach. A small sized data path and full set of input 
data are used in our simulation. Through this 
simulation analysis, we find out that at least c’+4 bits 
for ACC_C and c’+3 bits for ACC_S are needed to 
prevent the overflow error. It also means that we need 
c’+5 compressors in the accumulator. 

Modular exponentiation, the mathematical model of 
RSA and Diffie-Hellman algorithms, consists of 
chained modular multiplications. If we use original 
Montgomery’s algorithm for the modular 
multiplication, so-called “post-reduction step” is 
required after completing the iterating loop, as shown 

in Section 2. But for the Montgomery multiplier 
presented in this paper, such an additional step is not 
required because its output does not go beyond the 
value ranges of inputs. Only the last multiplication 
during the entire exponentiation process needs the 
post-reduction step. 
 
6. Low Power Techniques 
 

From the basis of fundamental idea explained at 
Section 2 to 5, we further improve our hardware to 
dissipate less power than the one implemented directly. 
Inevitably all digital devices have spurious transitions 
or glitches internally due to unbalanced path delays, 
which causes worthless dynamic power dissipation. 
Furthermore, if fan-outs of the glitchy signals are big, 
then the amount of worthlessly dissipated power is 
significant. Such signals are the outputs from the two 
circuit modules in charge of the Booth and 
Montgomery recodings. Because the modules 
comprise only combinational logic circuits according 
to Table 1 and Table 2, their outputs must have 
glitches. And the fan-outs of the outputs are c’+2 that 
is usually very large number. To reduce the glitching 
power dissipation, we put in some latches and force the 
outputs to pass through latches. If all flip-flops and 
registers capture their inputs at the clock’s rising edge, 
then the latches are transparent when the clock is in a 
low state. If the outputs of the two recoding modules 
can reach their stable values before the clock’s falling 
edge, none of the glitches can propagate to the fan-out 
modules driven by the outputs. We name these latches 
“glitch blockers”. The glitch blockers are also very 
effective for reducing the glitches appearing in the 
accumulator since they synchronize the arrival of PP 
and MM at the accumulator’s inputs. 

Fig. 3 shows the block diagram of data path. PP 
generator makes a PP by modifying an extended chunk 
of A according to the Booth recoder’s outputs, SEL_PP 
and EN_PP. MM generator makes a MM by modifying 
an extended chunk of M according to the Montgomery 
recoder’s outputs, SEL_MM and EN_MM. Several 
glitch blockers are located at the outputs of the two 
recoders. To implement scalability, we have to add up 
SI at the first cycle of each non-last column in a row. 
Since the value set of MM has one less element than 
the one of PP, we put SI into the value set of MM. 
Thus, it is expanded into {SI, –M, 0, +M, +2M}. The 
meanings of the two recoders’ outputs are as follows: 

Booth Recoder’s outputs 
SEL_PP: selects PP’s value from {–2A,–A,+A,+2A} 
EN_PP: sets PP’s value to 0 or not 
NEG_PP: indicates that PP’s value is –2A or –A 



Montgomery Recoder’s outputs 
SEL_MM: selects MM’s value from {SI,–M,+M,+2M} 
EN_MM: sets MM’s value to 0 or not 
NEG_MM: indicates that MM’s value is –M 

When PP is zeroed by EN_PP, PP outputted from 
the PP generator does not depend on SEL_PP. Thus, 
keeping SEL_PP frozen at that time is effective for 
reducing power dissipation. Same reasoning also 
applies to SEL_MM. We place two 2-bit flip-flops and 
construct feedback loops for SEL_PP and SEL_MM to 
implement this idea. 

Booth recoding scheme has a feature that +2A 
cannot follow +A or +2A and –2A cannot follow –A or 
–2A. Utilizing this feature to decrease power 
consumption, we suggest a binary coding method for 
SEL_PP as follows: 

SEL_PP for +A = ~(SEL_PP for +2A) 
SEL_PP for –A = ~(SEL_PP for –2A) 

where ‘~’ denotes bit-inversion. This binary coding 
method minimizes the ESA of SEL_PP. 
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Fig 3. Block Diagram of Data Path 

The whole c’ bits of an extended chunks of A and M 
are used at every cycle in the non-last columns.  And 
neighboring columns require different c’ bits of A and 
M. To maximize the processing performance, we 
implement the double buffering scheme by preparing a 
pair of c’-bit registers for both A and M. While c’ bits 
of A (and M) in one register is used for PPnMM 
accumulations at a column, the next c’ bits of A (and 
M) is pre-loaded into the other register for operations 
at the next column. To the contrary, only 2 bits of 
inputs B and/or Q are needed and also only 2 bits of 
outputs S and/or Q are generated at a cycle in the non-
last columns. Thus we prepare two w-bit parallel-in-
serial-out (PISO) shift registers for inputs B and Q and 

two w-bit serial-in-parallel-out (SIPO) shift registers 
for outputs S and Q. 

At the beginning of the last column in a row, higher 
significant bits of the row’s result remain in the 
accumulator’s registers without being stored into the 
memory. We implement a module that contains a 
pipelined w-bit CPA and undertakes three kinds of 
tasks: summing up the bits remaining in the 
accumulator’s registers for the RR2CR conversion, 
storing lower significant cp-c’ (p-1) bits of the sum 
(i.e., Z) into the memory, and registering next higher 
significant two bits of the sum (i.e., SIGN_S and 
MS1B_S) at flip-flops. 

At each non-first cycle of the first column in a row, 
Montgomery recoder calculates a digit of Q according 
to Table 2. This calculation requires SP that is the LSD 
of the sum of PP and accumulator’s feedback inputs. 
Since there are two kinds of feedback inputs, namely, 
shifted ones and none-shifted ones, determining SP 
depends on the feedback input selection. SP generator 
in Fig. 3 performs this task, as shown in the following 
pseudo code: 

if (SFT_ACC_FB==1) /*shifted feedback inputs*/ 
SP=PP[1:0]+ACC_C[1:0]+ACC_S[1:0]+ACC_L[2]
; 

else                               /*non-shifted feedback inputs*/ 
    SP=PP[1:0]+ACC_L[1:0]; 
endif 
 
7. Hardware Evaluation Results 
 

We implement the presented Montgomery 
multiplier using a (512+16)-bit data path. Chunk size 
can be adjusted from 128-bit to 512-bit with a 32-bit 
step size. Using a 2-Kbyte data memory, it supports 
single, double, triple, and quadruple precisions. We 
use Synopsys’ Design Compiler (DC) and Power 
Compiler (PC) for logic synthesis and power 
optimization with 0.18 um CMOS standard cell library 
and 4 metal layers. The size of implemented hardware 
is 59 K gates. It consumes 0.4 mA/MHz and runs up to 
50 MHz at 1.8 V supply voltage. We show the 
evaluation results of current consumption in Table 3. 
The results prove that the low power techniques 
introduced in this paper are very efficient. 

As a public-key cryptographic coprocessor, the 
presented Montgomery multiplier is embedded in the 
Smart Card IC implemented in Samsung Electronics. 
The measured time for 1024-bit RSA signing operation 
without using CRT (Chinese Remainder Theorem) on 
the Smart Card IC is 180 ms consuming 6 mA current, 
which is the upper limit of the GSM (Global System 



for Mobile) Class-B SIM (Subscriber Identification 
Module) card.  

TABLE 3 
Current Consumption Results  (@ 10 MHz) 

Used EDA 
Tools 

Current w/o
Low Power 
Schemes 

Current w/ 
Low 
Power 
Schemes 

Current
Saving 
Percent

DC only 5.77 mA 4.39 mA 23.9 %
DC and PC 5.00 mA 3.99 mA 20.2 %

 
8. Conclusion 
 

We propose an efficient VLSI architecture and 
implementation methodology for a Montgomery 
multiplier. Scalability is achieved through the multiple-
precision operation and the adjustable bit-length of a 
chunk. High performance is achieved through a radix-
4 multiplier architecture based on CSA accumulation. 
Applying Booth and Montgomery recoding schemes 
reduces the amount of hardware resources and the 
length of critical path. Power optimization is achieved 
through decreasing the glitches and the ESA of high 
fan-out signals. Hardware evaluation results show that 
our low power techniques save more than 20% of 
power consumed. We also present the optimum bit-
lengths for all the vectors in order to guarantee reliable 
calculations by preventing data overflow error. Due to 
its low-power and high-performance features, the 
presented Montgomery multiplier can be applicable to 
the mobile devices such as Smart Card IC and flash 
card IC successfully. 
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Fig 4. Circuit Diagram of Accumulator 


