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Abstract— We propose an automatic test pattern generation (ATPG)
framework for combinational threshold networks. The motivation be-
hind this work lies in the fact that many emerging nanotechnologies,
such as resonant tunneling diodes (RTDs) and quantum cellular au-
tomata (QCA), implement threshold logic. Consequently, there is a need
to develop an ATPG methodology for this type of logic. We have built the
first automatic test pattern generator and fault simulator for threshold
logic which has been integrated on top of an existing computer-aided
design (CAD) tool. These exploit new fault collapsing techniques we
have developed for threshold networks. We perform fault modeling to
show that many cuts and shorts in RTD-based threshold gates are
equivalent to stuck-at faults at the inputs and output of the gate.
Experimental results with the MCNC benchmarks indicate that test
vectors were found for all testable stuck-at faults in their threshold
network implementations.

I. I NTRODUCTION

Although complementary metal-oxide semiconductor (CMOS)
technology is not predicted to reach fundamental scaling limits
for another decade [1], alternative emerging technologies are being
researched in hopes of launching a new era in nanoelectronics.
One of the most promising nanotechnologies for mid-term, post-
CMOS technology is RTDs coupled with heterostructure field-
effect transistors (HFETs) [2]. This is due to several reasons. First,
RTDs can be grown with great precision and uniformity using
molecular-beam epitaxy. Second, RTD-HFET networks have been
demonstrated to work at very high clock frequencies [3]. Finally,
RTD-HFETs implement threshold logic which provides improved
computational functionality through smaller network logic depth,
fewer devices, and shorter wiring [4].

A tool called TELS [5] has been developed recently to synthesize
combinational threshold networks. Thus, the next step in a design
flow for RTDs is an ATPG methodology for threshold networks.
There has been no work done to date in this area that the authors
are aware of. Since RTDs are in their infancy and because a full
understanding of the behavior and properties of RTDs is currently
lacking, we must develop an ATPG framework at the logic level
first. This guarantees that our methodology will be applicable to
threshold networks, in general, and will be independent (for the
most part, except the fault model) of technology mapping – the
nanotechnology chosen to implement threshold networks.

The purpose of this paper is to present an ATPG framework for
combinational threshold networks. The novel contributions of this
work are as follows:

• This is the first ATPG methodology for combinational threshold
networks built upon sound mathematical principles and existing
ideas in Boolean testing.
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• We have implemented our framework on top of a logic synthe-
sis tool, namely SIS [6], to create the first threshold network
fault simulator and automatic test pattern generator.

The remainder of this paper is organized as follows. Section II
presents background material that is required to understand the
ideas presented in this paper and describes previous work. Sec-
tion III outlines the questions that need to be addressed in our
ATPG methodology for combinational threshold logic networks. The
theory needed to develop such a methodology is described in detail
in Section IV. The methodology is presented in Section V and the
experimental results are discussed in Section VI. We conclude the
paper in Section VII.

II. PRELIMINARIES AND PREVIOUS WORK

In this section, we present some preliminary concepts to help the
reader understand the remainder of the paper better.

A. Threshold Functions

A linear threshold function is a multi-input function in which
each digital input,xi, i ∈ {1, 2, . . . , n}, is assigned a weightwi

such that the output function assumes the value1 if and only if
the weighted sum of the inputs equals or exceeds the value of the
function’s threshold,T [7]. That is,

f(x1, x2, . . . , xn) =

{
1 if

∑n
i=1 wixi ≥ T + δon

0 if
∑n

i=1 wixi < T − δoff .
(1)

Parametersδon andδoff are positive numbers that represent defect
tolerances that may be considered since variations in the weights
(due to manufacturing defects, temperature changes, etc.) can lead
to network malfunction. When defect tolerance is not considered,
δon and δoff can be set to0. A linear threshold gate (LTG) is a
multi-terminal device that implements a threshold function. We will
use the weight-threshold vector〈w1, w2, . . . , wn; T 〉 to denote the
weights and threshold of a threshold gate.

B. Realizing a Threshold Function

A threshold function can be realized by a monostable-bistable
transition element (MOBILE) such as the one shown in Fig. 1(a) [2].
Fig. 1(b) shows a MOBILE’s equivalent LTG representation. The
modulation current,∆I, applied at the output node determines what
digital state the device transitions to [4]. The modulation current is
obtained from Kirchoff’s Current Law and is given as,

∆I =

Np∑
i=1

wiI(Vgs)−
Nn∑
i=1

wiI(Vgs), (2)
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Fig. 1. (a) An LTG implemented using a MOBILE, and (b) its schematic
representation.

whereNp andNn are the number of positive and negative weighted
inputs, respectively, andI(Vgs) is the peak current of a minimum-
sized RTD. The net RTD current for the load and driver isIT =
TI(Vgs). Consequently, the output is logic high if∆I − IT is
positive and logic low otherwise.

C. Previous Work

Research in Boolean testing has flourished since the 1960s [8].
On the other hand, there has been virtually no research in testing of
arbitrary threshold networks. The bulk of research in threshold logic
was done in 1950s and 1960s and focused primarily on the synthesis
of threshold networks [7]. Recently, a practical methodology for
synthesis of multi-level threshold networks has been presented [5].
Finally, a survey of technologies capable of implementing threshold
logic can be found in [9].

III. QUESTIONS TO BEADDRESSED

Some of the interesting questions that need to be addressed in
ATPG for combinational threshold networks are as follows:

1) How is a fault modeled in an LTG?
2) Are test generation and redundant faults as intricately related

in threshold ATPG as they are in Boolean ATPG?
3) What condition must be satisfied to excite a fault?
4) How are the propagationD-cubes and singular covers of a

threshold function determined?
5) Do any universal relationships exist between the inputs and

output of an LTG that we can exploit to reduce the number
of faults in the faults list, i.e., perform fault collapsing?

We answer these questions in the next section.

IV. ATPG FOR COMBINATIONAL THRESHOLDNETWORKS

In this section, the theory that is needed to develop an ATPG
methodology for combinational threshold networks is presented.
We begin with fault modeling. We then relate redundant faults to
threshold ATPG. Next, we derive the conditions that need to be
satisfied in order to find a test vector for a given fault. We show
one possible way to determine the propagationD-cubes and singular
covers of a threshold function. Finally, we develop some theorems
for fault collapsing.

A. Fault Model

Before developing a fault model, it is important to pinpoint
the defects that are most likely to occur in RTDs. Given their
integration with HFETs, cuts and shorts are a certainty. Furthermore,
RTD area variation will cause peak current fluctuations which will

cause logic faults [10]. While it is difficult to model and detect
parametric defects, in general, it is possible to model them if we
make the assumption that the weight will change in such a way
that the implemented threshold function will be different from the
original threshold function. Due to limited space, we will not address
parametric faults here.

Fig. 2(a) shows the cuts and shorts in a MOBILE gate that can
be modeled as single stuck-at faults (SSFs) at the logic level. A cut
(sites1, 2, and3) on an HFET or on a line connecting the RTD and
HFET will render it permanently non-conducting and is modeled as
a stuck-at-0 (SA0) fault. Similarly, a short across an RTD (site4)
or the driver RTD (site8) is also modeled as an SA0 fault because
in the former, the input weight will become zero while in the latter,
there will be a direct connection between the output and ground. A
cut at site6 represents either an SA0 or SA1 fault depending upon
the threshold of the gate. If the threshold is less than zero, then the
cut is modeled as an SA1 fault. Otherwise, it is modeled as an SA0
fault. On the other hand, faults at sites5 and7 are modeled as SA1
faults. A short across the HFET will make it conduct permanently
while a direct connection between the output and bias voltage will
exist in the presence of a short across the load RTD, making the
fault appear as an SA1 when the MOBILE gate is active. These fault
models have been verified through HSPICE simulations. HSPICE
models for RTD-HFET gates were obtained from [10].

B. Irredundant Threshold Networks and Redundancy Removal

In Boolean testing, irredundant networks are intricately related
to circuit testability [8]. We define similar concepts for irredundant
threshold networks and threshold ATPG.

Definition 1: A combinational threshold network,G, is irredun-
dant if the removal of any node or edge inG does not represent the
same set of Boolean functions.

Definition 2: If no test vector exists for faults in G, then s is
redundant.

This leads us to the following theorem that relates redundancy
and ATPG for threshold networks.

Theorem 1:Given networkG, if no test vector exists to detect
fault s, then the corresponding node or edge in the network can be
removed without affecting the functionality ofG.

The rules for removing a redundant fault in a threshold network
are as follows:

1) If an SA0 fault on an edge is redundant, the edge in the
network can be removed, as shown in Fig. 2(c).

2) If an SA1 fault on an edge is redundant, the edge in the
network can be removed, as shown in Fig. 2(d). The threshold
of the nodes in the edge’s fanout must be lowered by the
weight of the removed edge.

Furthermore, all nodes and edges in the sub-network that do not
fan out and are in the transitive fanin of the removed edge can be
removed from the network in both cases.

C. Test Generation

We must now find a test vector for a given fault in an LTG. To
find a test vector for a fault atxi, it is necessary that the termwixi

in Equation (1) be the dictating factor in determining the output
value of the function.

Theorem 2:Given an LTG implementing the threshold function,
f(x1, x2, . . . , xn), to find test vectors forxi SA0 andxi SA1, we
must find an assignment on the remaining input variables such that



(a)

(b)

(c)

Fault-free
threshold gate

x1 SA0

x1 SA1

T
w1

w2
w3

f
x1
x2
x3

T
w2

w3

f
x2

x3

T-w1

w2

w3

f
x2

x3

x1

CLK

T

w1
w2

-w3

fx2

x3

1

2

3

4

5

6

8

7

Fault
site

Equivalent
 fault

1

2

3

4

5

6

7

8
cut

short

(d)

x1 SA0

x1 SA0

x1 SA0

x3 SA0

x2 SA1

f SA0 or f SA1

f SA1

f SA0

Fig. 2. (a) Fault modeling and fault simulation of an LTG with (b) no faults, (c) an SA0 fault, and (d) an SA1 fault.

one of the following inequalities is satisfied:

T + δon − wi ≤
n∑

j=1,j 6=i

wjxj < T − δoff (3a)

or

T + δon ≤
n∑

j=1,j 6=i

wjxj < T − δoff − wi. (3b)

If an assignment exists, then〈x1, x2, . . . , xi = 1, . . . , xn〉 and
〈x1, x2, . . . , xi = 0, . . . , xn〉 are test vectors forxi SA0 andxi

SA1 faults, respectively. If no assignment exists, thenboth faults
are untestable and, therefore, redundant.

Theorem 3:Given an LTG implementing the threshold function,
f(x1, x2, . . . , xn), if there exist two (or more) inputsxj and xk

such that|wj | = |wk|, then test vectors to detectxk SA0 andxk

SA1 can be obtained simply by interchanging the bit positions of
xj and xk in the SA0 and SA1 test vectors forxj respectively,
assuming they exist.

The properties can best be demonstrated by an example. Consider
an LTG that realizes the threshold function,f(x1, x2, x3) = x1x2+
x1x3, with weight-threshold vector〈2, 1, 1; 3〉. For simplicity, as-
sume δon = δoff = 0. To test for x1 SA0, the inequalities to
be satisfied are1 ≤

∑3
j=2 wjxj < 3 or 3 ≤

∑3
j=2 wjxj < 1.

This leads to three test vectors namely, 101, 110, and 111. The test
vectors forx1 SA1 can be easily obtained by replacingx1 = 1 with
x1 = 0 in the original test vectors. Thus, vectors 001, 010, and 011
detectx1 SA1. Finally, given that vector 110 is a test forx2 SA0
and sincew2 = w3, a test vector that detectsx3 SA0 is obtained
by interchanging the bit positions ofx2 andx3 in 110 to get 101.

D. PropagationD-cubes and Singular Covers

PropagationD-cubes are used inD-algorithm to sensitize a path
from the fault site to one (or more) primary outputs. Knowing
the threshold function that is implemented by an LTG, we can
resort to algebraic substitution to determine the propagationD-
cubes by using theD-notation [8]. For example, to determine the
propagationD-cubes ofx1 SA1 in f(x1, x2, x3) = x1x2 + x1x3,
substitutingD for x1 in f we get Dx2 + Dx3. For the fault to
propagate, it is required that only the cubes containingD (or D̄) get
“activated” inf . In this case, since both cubes containD, activating
either or both cubes will result in a propagationD-cube. Thus, the
propagationD-cubes forx1 SA1 are{D10, D01, D11}. Of course,
{D̄10, D̄01, D̄11} are also propagationD-cubes.

Singular covers are used in test generation to justify the assign-
ments made to the output of an LTG. They are easily obtained from
the threshold function of the LTG.

E. Fault Collapsing

To reduce the run-time of test generation, it is necessary to reduce
the number of faults in the fault list. This can be done by exploiting
fault equivalence and dominance relationships.

Theorem 4:Given an LTG implementing the threshold function,
f(x1, x2, . . . , xn), if there exists an inputxi such thatwi = T +
δon, and if all other inputsxj have positive weightswj (i.e., wj >
0), thenxi SA1 is equivalent tof SA1.

Theorem 5:Given an LTG implementing the threshold function,
f(x1, x2, . . . , xn), the following fault dominance relationships hold:

1) An output f SA0 (SA1) dominates anxi SA0 (SA1) if
Equation (3a) is satisfied.

2) An output f SA1 (SA0) dominates anxi SA0 (SA1) if
Equation (3b) is satisfied.

To demonstrate Theorems 4 and 5, consider the threshold func-
tion, f(x1, x2, x3) = x1x2 + x1x3 again. Applying the theorems,
we see thatx1 SA0 andf SA0 are equivalent. Therefore, either fault
can be dropped from the fault list. Also,f SA0 (SA1) dominates
x1 SA0 (SA1),x2 SA0 (SA1) andx3 SA0 (SA1). Hence,f SA0
andf SA1 can also be discarded from the fault list.

Exploiting Theorem 5 leads to the following theorems on test
generation for irredundant combinational threshold networks. These
theorems are similar to those for Boolean testing.

Theorem 6:In an irredundant, fanout-free combinational thresh-
old network,G, any test set,V, that detects all SSFs on the primary
inputs detects all SSFs inG.

Theorem 7:In an irredundant combinational threshold network,
G, any test set,V, that detects all SSFs on the primary inputs and
fanout branches detects all SSFs inG.

V. ATPG METHODOLOGY

In this section, we present our test generation framework for
combinational threshold networks. The input is a Boolean network
and the output is a test set which detects a maximal number of
faults. The Boolean network is synthesized into a threshold network
using TELS [5]. Then, an equivalent gate-level network is derived
by replacing each LTG in the network with its two-level AND-OR
equivalent. Next, we generate the fault list using the fault collapsing
techniques we have developed and supply it to the SAT-based ATPG



TABLE I
TEST GENERATION ON MCNC BENCHMARKS

Benchmark No. of SSFs No. of SSFs with Reduction Test set size Fault coverage Test efficiency Time

fault collapsing (%) (%) (%) (s)

example2 1, 148 876 23.7 73 95.4 100 8

i3 1, 192 776 34.8 125 100 100 8

apex6 2, 608 2, 128 18.4 200 100 100 21

rot 2, 700 2, 220 17.7 212 97.8 100 18

x3 3, 298 2, 744 16.8 145 91.9 100 23

frg2 3, 316 2, 594 21.8 189 95.1 100 27

pair 6, 278 5, 042 19.7 312 95.3 100 57

i4 1, 056 616 41.7 133 100 100 46

i2 1, 790 1, 016 43.2 207 100 100 11

des 10, 872 8, 272 23.9 178 99.2 100 142

engine of SIS [6] to do test generation. We then perform threshold
logic fault simulation on the test set derived to determine if all
the faults for which tests were found were indeed tested. Note
that although an equivalent gate-level network is used for threshold
network ATPG, the set of stuck-at faults targeted is totally different
than what would be targeted in Boolean testing, owing to very
different fault collapsing techniques.

VI. EXPERIMENTAL RESULTS

We present experimental results to validate our ATPG methodol-
ogy for combinational threshold networks in this section. We used
the MCNC benchmarks in our experiments, which were conducted
on a Dell PowerEdge 600SC server with 768MB RAM running
Red Hat Linux 8.0. All the benchmarks were first synthesized into
threshold networks using TELS [5]. Due to space restrictions, results
for only ten benchmarks are reported.

Tables I shows the effect of using fault equivalence and domi-
nance relationships that we developed in Section IV. It can be seen
that on average there is a26.5% reduction in the number of faults
that need to be targeted in the networks. Thus, fault collapsing is
a valuable technique that should also be exploited in ATPG for
threshold networks. Note that this reduction is not as high as that that
can be achieved in Boolean networks (approximately50%), since
very few universal fault equivalence and dominance relationships
exist for threshold gates.

In the next set of experiments, we performed test generation using
the framework already present in SIS [6]. We modified the test
engine and supplied it with our fault list for threshold networks.
We then performed threshold fault simulation on the generated
vectors to obtain the fault coverage. Tables I shows the number
of faults which were targeted during test generation, test set size,
fault coverage, test efficiency, and total system execution time. Test
efficiency is the ratio of the fault tested or declared redundant and
the total number of faults being targeted while fault coverage is the
percentage of targeted faults for which test vectors were found. We
see that100% test efficiency is obtained in all cases. Furthermore,
the test generation times are very small.

VII. C ONCLUSIONS

As the revolution started by CMOS is likely to conclude in
the coming decade, emerging nanoscale technologies are being
researched for CMOS replacement or integration. Some of these
technologies, in particular RTDs and QCA, implement threshold

logic, which provides better logic depth and area than Boolean
logic. We have introduced an ATPG framework for combinational
threshold networks by describing all of its key components of
test generation. We showed how faults in an RTD-based gate can
be modeled using the stuck-at fault model and how test vectors
can be obtained. We related irredundant threshold networks to test
generation and developed some theorems on fault collapsing. We
implemented our framework in SIS and achieved excellent results.
Threshold logic is once again becoming an active area of research
(given the promise of future technologies implementing it) and we
hope that others in the design automation and testing communities
will join in our efforts.
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