
An Efficient Algorithm for Reconfiguring Shared Spare RRAM

Hung-Yau Lin
1
, Hong-Zu Chou

1
, Fu-Min Yeh

2
, Ing-Yi Chen

3
, and Sy-Yen Kuo

1

1 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
2 Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan.

3 Department of Computer Science and Information Engineering, National Taipei University of
Technology, Taipei, Taiwan.

hylin@lion.ee.ntu.edu.tw sykuo@cc.ee.ntu.edu.tw

Abstract

Redundant rows and columns have been used for years

to improve the yield of DRAM fabrication. However,

finding a memory repair solution has been proved to be

an NP-complete problem. This paper presents an

efficient algorithm which is able to find a repair

solution for shared spare memory arrays if a solution
exists. The remarkable performance of the algorithm

can be demonstrated by experimental results.

1. Introduction

Nowadays billions of memory dies are fabricated

worldwide each year. Even a small percentage of yield
improvement can be quite beneficial. One of the

techniques used to improve the yield is to employ

redundant rows and columns to replace the rows and/or

columns where faulty cells (faults or defects in short)

lie [1-4]. A row or a column is called a line. It has been
proved that memory repair by line deletion is an

NP-complete problem [2]. An algorithm which can

find a repair solution whenever one exists is called a

perfect algorithm. A few perfect algorithms have been

presented [1-4] but they are not efficient enough.

Spare lines can be cut into segments [4-5]. This
allows more flexible use of spare lines. With spare

cutting, different segments of a spare line can be used

to replace segments of different faulty lines in the

original array. The yield may then be improved.

Cutting spare lines into segments can make a memory

repair problem more complex if spare lines are shared.
In this paper, the term SSRRAM denotes shared spare

RRAM (Redundant RAM).

Approaches for improving the throughput have

been proposed [6]. Many other heuristic algorithms are

also proposed to reduce the time of searching for a

repair solution [2-4, 7-11]. Though these heuristic
algorithms are very efficient, they have a common

drawback: they cannot guarantee a solution to be found
even if one exists.

This paper presents an algorithm that finds a repair

solution for SSRRAM by using BDD (Binary Decision

Diagram) [12]. The algorithm is not only perfect but

also highly efficient if a good variable ordering is

chosen. The remarkable performance of the algorithm
can be demonstrated by experimental results.

2. Traditional Algorithms

Previously published perfect algorithms are based

on the concept of exhaustive search. A partial solution

is chosen for branching into two partial solutions: one
uses spare rows and the other uses spare columns. All

partial solutions are sorted according to a user-defined

cost function. The partial solution with the least cost is

chosen for branching. The previous steps repeat until a

repair solution is found or no repair solution can be
found. The branch-and-bound (B&B) algorithm [2] is a

typical representation. The algorithm incorporating the

improvements in [3] is called an improved B&B

(IB&B) in this paper. IB&B can find a repair solution

with less generated records. It is believed that IB&B is

faster than B&B.
A huge number of partial solutions will be

generated for complex problems. Partial solutions have

to be sorted or compared over and over again during

the search process. This can be quite time-consuming.

The more complex the problem is, the more partial

solutions will be generated and the more data will be in
each partial solution. The performance of these

comparison-based perfect algorithms degrades severely

as the problems become more complex.

Memory repair problems can become more

complex if spare lines are cut into segments and shared

among sub-arrays. A heuristic algorithm is proposed in
[4] to speed up the search process. The heuristic

algorithm searches each sub-array for the minimal

coverage in turn. A minimal coverage is a repair

solution that uses the minimal number of spare lines.

Consider the problem shown in Figure 1. White
rectangles represent normal cells while grayed cells are

faulty cells. Spare rows or columns are drawn as thick

black lines. The original array is cut into two

sub-arrays and the three spare rows are cut into 6 spare

row segments. Two spare columns are shared between

sub-array A and B. In Figure 1, the minimal coverage
for sub-array A is (R4, C3, C4). The minimal coverage

for sub-array B is (R8, C7, C8) which also requires two

columns. Four spare columns are required but only two

of them are provided. Thus, this heuristic algorithm

cannot always find a solution even if one exists. In fact,

there are 4 solutions to this problem as shown below.

3. The Repair_SSRRAM algorithm

The major difference between our algorithm and

other perfect algorithms is that we transform a memory

repair problems into Boolean function operations and
use BDD to manipulate these Boolean functions. The

motivation and goal is to improve the performance by

avoiding the huge number of comparison and copy

operations inherent in every exhaustive search

algorithm. The algorithm is shown in Table 1.

Since improving the variable ordering has been
proved to be a NP-complete problem [13], a heuristic

algorithm MaxRelated is used to find a relatively good

variable ordering. The basic idea of MaxRelated is to

keep more related variables closer. Two variables are

related if one variable depends on the other to

determine the value of the Boolean function. Though
MaxRelated seems to be able to find a good variable

ordering for most of test cases in this paper, it does not

always do.

The defect function in step 2 is the Boolean

function that encodes all faults. It can be easily built

with the following equation.

()∏ +=

ifaulteachfor

ii CRDF

The symbol ∏ and + denote the Boolean AND and OR
operations respectively.

The CF
m
 in step 3 can be built with the following

equation and it has to be constructed for each set of

spare lines.

∑
=

=

=

m

m

yi

i

x

im
CCF

0

, where m
x

i
C is a combinatorial function for spare line

set m, y
m
 is the number of spare lines in set m, and x

m
 is

the number of faulty lines in the arrays that spare line

set m should repair.
However, it is not practical to enumerate all terms

in the combinatorial function. Another method is to put

all variables of the faulty lines that should be replaced

by a spare line set into an array L. The CF
m
 can then be

constructed by setting array index j to 0 in the
following placement function PF.

() () ()1,1,,1,,,

11
−−•+−•=

++ mmjjmmjjmmj
yxLPFLyxLPFLyxLPF

PF runs recursively until (1) x
m
 is smaller or equal to y

m

or (2) y
m
 is equal to 0. The following two properties of

PF can be applied to these two cases.

() .,, yxiftrueyxLPF ≤=

()
121

0,,
−++

••••= xjjjj LLLLxLPF L

Step 4 and 5 just perform normal Boolean AND

operations. After step 5, the repair function RF has

been built and it encodes all solutions of a memory

repair problem. A path from the top variable to the
terminal node bdd_one is called a solution path. All

variables in a solution path taking the 1-edge form a

solution to the memory repair problem.

Though the graph of a repair function does not need

to be generated to find a repair solution, a BDD graph

of the RF of Figure 1 is generated and shown in Figure
2. Note that a variable ordering is deliberately chosen

to make Figure 2 look better and this variable ordering

Figure 1. A memory array with shared spare rows.

Table 1. The repair algorithm for SSRRAM.

Repair_SSRRAM()

{

1. Choose a variable ordering using MaxRelated

heuristic algorithm.

2. Construct the BDD of the defect function DF;

3. Construct the BDD of the constraint function for

each set of spare lines. CF
m
 denotes the constraint

function for spare line set m.

4. Construct the final constraint function CF by

performing Boolean AND operations on all CF
m
.

∏=

m
CFeachfor

mCFCF

__

5. Construct the repair function RF by performing the

Boolean AND operation on DF and CF, that is,

RF = DF AND CF;

6. Traverse RF;

if (RF contains only one BDD node bdd_zero)

 no repair solution can be found;

else

 report a repair solution;

}

is different from the one generated by the MaxRelated

heuristic algorithm. There are 4 solution paths in

Figure 2:

.8,5,4,1,
7,8

6,7
,

3,4

2,3
RRRR

RC

RC

RC

RC

4. Experimental Results

The proposed algorithm is compared to IB&B

because IB&B is one of the most efficient perfect

algorithms. The CMU BDD library was used to handle

the BDD operations. All other files were written in

C++ and compiled with g++ 3.3.2. The hardware

system had 512 MB of memory and a single Pentium
III processor running at 1 GHz. The operating system

was a Linux with kernel version 2.4.22.

Figure 3 shows the arrangement of the 4-blocks test

cases. Assume (1) S1 and S2 have the same number of

spare line segments and (2) spare lines segments are
shared by adjacent blocks. Table 2 shows some

experimental results of 4-blocks test cases. The running

time is in seconds. All cases in Table 2 are repairable.

5. Conclusions

The proposed algorithm encodes all repair solutions
in a BDD and it is much faster than IB&B if a good

variable ordering is chosen. The performance of the

proposed algorithm highly depends on the variable

ordering. The heuristic algorithm that we use to find a

variable ordering seems to be able to find a good

variable ordering for most of the test cases. But it is not
guaranteed to find a good one. Finding the optimal

variable ordering remains an open question.

References
[1] J. R. Day, “A fault-driven comprehensive redundancy

algorithm for repair of dynamic RAMs”, IEEE Design &

Test, Vol. 2, No. 3, 1985, pp. 35-44.

[2] S. Y. Kuo and W. K. Fuchs, "Efficient spare allocation in

reconfigurable arrays," IEEE Design & Test, Feb. 1987,

pp. 24-31.

[3] W. K. Huang, Y. N. Shen, and F. Lombardi, “New

approaches for the repairs of memories with redundancy

by row/column deletion for yield enhancement”, IEEE

Trans. on Computer-Aided Design, March 1990, pp.

323-328.

[4] N. Hasan and C. L. Liu, "Minimum fault coverage in

reconfigurable arrays," IEEE Symposium on

Fault-Tolerant Computing, June 1988, pp. 348-353.

[5] Y. N. Shen, N. Park, and F. Lombardi, “Spare cutting

approaches for repairing memories”, IEEE Conference on

Computer Design, Oct. 1996, pp. 106-111.

[6] R. W. Haddad, A. T. Dahbura, and A. B. Sharma,

“Increased throughput for the testing and repair of RAMs

with redundancy”, IEEE Trans. on Computers, Feb. 1991,

pp. 154-166.

[7] D. M. Blough and A. Pelc, “A clustered failure model for

the memory array reconfiguration problem”, IEEE Trans.

on Computers, May 1993, pp. 518-528.

[8] C. P. Low and H. W. Leong, “A new class of efficient

algorithms for reconfiguration of memory arrays”, IEEE

Trans. on Computers, May 1996, pp. 614-618.

[9] D. M. Blough, “Performance evaluation of a

reconfiguration algorithm for memory arrays containing

clustered faults”, IEEE Trans. on Reliability, June 1996,

pp. 274-284.

[10] C. P. Low and H. W. Leong, “Minimum fault coverage

in memory arrays: a fast algorithm and probabilistic

analysis”, IEEE Trans. on Computer-Aided Design, June

1996, pp. 681-690.

[11] W. Shi and W. K Fuchs, “Probabilistic analysis and

algorithms for reconfiguration of memory arrays”, IEEE

Trans. on Computer-Aided Design, Sep. 1992, pp.

1153-1160.

[12] R. E. Bryant, “Graph-based algorithms for Boolean

function manipulation”, IEEE Trans. on Computers, Aug.

1986, pp. 677-691.

[13] B. Bollig and I. Wegener, “Improving the variable

ordering of OBDDs is NP-complete”, IEEE Trans. on

Computers, Sep. 1996, pp. 993-1002.

Figure 2. An example BDD of RF.

Table 2. Performance comparison.

Case Sub-array Size S1 (S2) Faults IB&B Ours

1 256 x 256 7 60 0.05 0.01

2 512 x 512 8 80 90.85 0.04

3 512 x 512 12 120 > 3600 0.11
4 512 x 512 14 200 > 3600 0.26

5 512 x 512 16 250 > 3600 4.84

6 512 x 512 18 250 > 3600 8.75
7 512 x 512 20 300 > 3600 10.22

8 512 x 512 22 300 > 3600 2.64

9 512 x 512 22 330 > 3600 1.37
10 512 x 512 22 360 > 3600 2.20

11 512 x 512 25 400 > 3600 6.18

12 1024 x 1024 25 400 > 3600 13.79
13 1024 x 1024 25 400 > 3600 3.42

1 2

3 4

S
1

S
2

S
1

S
2

Figure 3. Layout of 4-blocks test cases.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

