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Abstract 
 
Redundant rows and columns have been used for years 

to improve the yield of DRAM fabrication. However, 

finding a memory repair solution has been proved to be 

an NP-complete problem. This paper presents an 

efficient algorithm which is able to find a repair 

solution for shared spare memory arrays if a solution 
exists. The remarkable performance of the algorithm 

can be demonstrated by experimental results. 

 

1. Introduction 
 

Nowadays billions of memory dies are fabricated 

worldwide each year. Even a small percentage of yield 
improvement can be quite beneficial. One of the 

techniques used to improve the yield is to employ 

redundant rows and columns to replace the rows and/or 

columns where faulty cells (faults or defects in short) 

lie [1-4]. A row or a column is called a line. It has been 
proved that memory repair by line deletion is an 

NP-complete problem [2]. An algorithm which can 

find a repair solution whenever one exists is called a 

perfect algorithm. A few perfect algorithms have been 

presented [1-4] but they are not efficient enough. 

Spare lines can be cut into segments [4-5]. This 
allows more flexible use of spare lines. With spare 

cutting, different segments of a spare line can be used 

to replace segments of different faulty lines in the 

original array. The yield may then be improved. 

Cutting spare lines into segments can make a memory 

repair problem more complex if spare lines are shared. 
In this paper, the term SSRRAM denotes shared spare 

RRAM (Redundant RAM). 

Approaches for improving the throughput have 

been proposed [6]. Many other heuristic algorithms are 

also proposed to reduce the time of searching for a 

repair solution [2-4, 7-11]. Though these heuristic 
algorithms are very efficient, they have a common 

drawback: they cannot guarantee a solution to be found 
even if one exists. 

This paper presents an algorithm that finds a repair 

solution for SSRRAM by using BDD (Binary Decision 

Diagram) [12]. The algorithm is not only perfect but 

also highly efficient if a good variable ordering is 

chosen. The remarkable performance of the algorithm 
can be demonstrated by experimental results. 

 

2. Traditional Algorithms 
 

Previously published perfect algorithms are based 

on the concept of exhaustive search. A partial solution 

is chosen for branching into two partial solutions: one 
uses spare rows and the other uses spare columns. All 

partial solutions are sorted according to a user-defined 

cost function. The partial solution with the least cost is 

chosen for branching. The previous steps repeat until a 

repair solution is found or no repair solution can be 
found. The branch-and-bound (B&B) algorithm [2] is a 

typical representation. The algorithm incorporating the 

improvements in [3] is called an improved B&B 

(IB&B) in this paper. IB&B can find a repair solution 

with less generated records. It is believed that IB&B is 

faster than B&B. 
A huge number of partial solutions will be 

generated for complex problems. Partial solutions have 

to be sorted or compared over and over again during 

the search process. This can be quite time-consuming. 

The more complex the problem is, the more partial 

solutions will be generated and the more data will be in 
each partial solution. The performance of these 

comparison-based perfect algorithms degrades severely 

as the problems become more complex. 

Memory repair problems can become more 

complex if spare lines are cut into segments and shared 

among sub-arrays. A heuristic algorithm is proposed in 
[4] to speed up the search process. The heuristic 

algorithm searches each sub-array for the minimal 



coverage in turn. A minimal coverage is a repair 

solution that uses the minimal number of spare lines. 

Consider the problem shown in Figure 1. White 
rectangles represent normal cells while grayed cells are 

faulty cells. Spare rows or columns are drawn as thick 

black lines. The original array is cut into two 

sub-arrays and the three spare rows are cut into 6 spare 

row segments. Two spare columns are shared between 

sub-array A and B. In Figure 1, the minimal coverage 
for sub-array A is (R4, C3, C4). The minimal coverage 

for sub-array B is (R8, C7, C8) which also requires two 

columns. Four spare columns are required but only two 

of them are provided. Thus, this heuristic algorithm 

cannot always find a solution even if one exists. In fact, 

there are 4 solutions to this problem as shown below. 
 

3. The Repair_SSRRAM algorithm 
 

The major difference between our algorithm and 

other perfect algorithms is that we transform a memory 

repair problems into Boolean function operations and 
use BDD to manipulate these Boolean functions. The 

motivation and goal is to improve the performance by 

avoiding the huge number of comparison and copy 

operations inherent in every exhaustive search 

algorithm. The algorithm is shown in Table 1. 

Since improving the variable ordering has been 
proved to be a NP-complete problem [13], a heuristic 

algorithm MaxRelated is used to find a relatively good 

variable ordering. The basic idea of MaxRelated is to 

keep more related variables closer. Two variables are 

related if one variable depends on the other to 

determine the value of the Boolean function. Though 
MaxRelated seems to be able to find a good variable 

ordering for most of test cases in this paper, it does not 

always do. 

The defect function in step 2 is the Boolean 

function that encodes all faults. It can be easily built 

with the following equation. 
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The symbol ∏ and + denote the Boolean AND and OR 
operations respectively. 

The CF
m
 in step 3 can be built with the following 

equation and it has to be constructed for each set of 

spare lines. 
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, where m
x

i
C  is a combinatorial function for spare line 

set m, y
m
 is the number of spare lines in set m, and x

m
 is 

the number of faulty lines in the arrays that spare line 

set m should repair. 
However, it is not practical to enumerate all terms 

in the combinatorial function. Another method is to put 

all variables of the faulty lines that should be replaced 

by a spare line set into an array L. The CF
m
 can then be 

constructed by setting array index j to 0 in the 
following placement function PF. 
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PF runs recursively until (1) x
m
 is smaller or equal to y

m
 

or (2) y
m
 is equal to 0. The following two properties of 

PF can be applied to these two cases. 

( ) .,, yxiftrueyxLPF ≤=  

( )
121

0,,
−++

••••= xjjjj LLLLxLPF L

 

Step 4 and 5 just perform normal Boolean AND 

operations. After step 5, the repair function RF has 

been built and it encodes all solutions of a memory 

repair problem. A path from the top variable to the 
terminal node bdd_one is called a solution path. All 

variables in a solution path taking the 1-edge form a 

solution to the memory repair problem. 

Though the graph of a repair function does not need 

to be generated to find a repair solution, a BDD graph 

of the RF of Figure 1 is generated and shown in Figure 
2. Note that a variable ordering is deliberately chosen 

to make Figure 2 look better and this variable ordering 

 

Figure 1. A memory array with shared spare rows.

Table 1. The repair algorithm for SSRRAM. 

Repair_SSRRAM() 

{ 

1. Choose a variable ordering using MaxRelated 

heuristic algorithm. 

2. Construct the BDD of the defect function DF; 

3. Construct the BDD of the constraint function for 

each set of spare lines. CF
m
 denotes the constraint 

function for spare line set m. 

4. Construct the final constraint function CF by 

performing Boolean AND operations on all CF
m
. 
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5. Construct the repair function RF by performing the 

Boolean AND operation on DF and CF, that is, 

RF = DF AND CF; 

6. Traverse RF; 

if (RF contains only one BDD node bdd_zero) 

    no repair solution can be found; 

else 

    report a repair solution; 

} 

 



is different from the one generated by the MaxRelated 

heuristic algorithm. There are 4 solution paths in 

Figure 2: 
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4. Experimental Results 
 
The proposed algorithm is compared to IB&B 

because IB&B is one of the most efficient perfect 

algorithms. The CMU BDD library was used to handle 

the BDD operations. All other files were written in 

C++ and compiled with g++ 3.3.2. The hardware 

system had 512 MB of memory and a single Pentium 
III processor running at 1 GHz. The operating system 

was a Linux with kernel version 2.4.22. 

Figure 3 shows the arrangement of the 4-blocks test 

cases. Assume (1) S1 and S2 have the same number of 

spare line segments and (2) spare lines segments are 
shared by adjacent blocks. Table 2 shows some 

experimental results of 4-blocks test cases. The running 

time is in seconds. All cases in Table 2 are repairable. 

 

5. Conclusions 
 

The proposed algorithm encodes all repair solutions 
in a BDD and it is much faster than IB&B if a good 

variable ordering is chosen. The performance of the 

proposed algorithm highly depends on the variable 

ordering. The heuristic algorithm that we use to find a 

variable ordering seems to be able to find a good 

variable ordering for most of the test cases. But it is not 
guaranteed to find a good one. Finding the optimal 

variable ordering remains an open question. 
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Figure 2. An example BDD of RF. 

Table 2. Performance comparison. 

Case Sub-array Size S1 (S2) Faults IB&B Ours

1 256 x 256 7 60 0.05 0.01

2 512 x 512 8 80 90.85 0.04

3 512 x 512 12 120 > 3600 0.11
4 512 x 512 14 200 > 3600 0.26

5 512 x 512 16 250 > 3600 4.84

6 512 x 512 18 250 > 3600 8.75
7 512 x 512 20 300 > 3600 10.22

8 512 x 512 22 300 > 3600 2.64

9 512 x 512 22 330 > 3600 1.37
10 512 x 512 22 360 > 3600 2.20

11 512 x 512 25 400 > 3600 6.18

12 1024 x 1024 25 400 > 3600 13.79
13 1024 x 1024 25 400 > 3600 3.42
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Figure 3. Layout of 4-blocks test cases. 
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