
Technique to Eliminate Sorting in IP Packet Forwarding Devices

Raymond W. Baldwin
Electrical and Computer Engineering

University of Illinois at Chicago
rbaldw3@uic.edu

Enrico Ng
Electrical and Computer Engineering

University of Illinois at Chicago
eng3@uic.edu

Abstract

This paper will present a solution to eliminate the
requirements of sorting by prefix length in IP forwarding
devices using Ternary Content Addressable Memories
(TCAMs). This will do away with delays arising from
inserting into a sorted list. To achieve this, the routing
table entries in the TCAM are split by output port. This
solution requires slight modifications to current TCAMs
including the elimination of the built-in encoder. Overall,
the solution presented reduces the insertion problem to
lookup speed while maintaining similar clock rates and
storage requirements of traditional TCAMs.

1. Introduction

Routers are growing more and more complex with
each passing year. They must continually support new
features such as Quality of Service and Service Level
Agreement monitoring. To make this even more
challenging they must perform these tasks at a faster and
faster pace to match new Internet connection speeds.
Many routers now include a co-processor to perform the
crucial task of IP lookup. This paper focuses on a new
design for an IP lookup co-processor.

This paper is organized as follows. In Section 2, we
present background information about routing and the use
of TCAMs in routers. Section 3 states our design
including block diagrams and detailed logic circuits. In
Section 4, we present our results. Section 5 presents
possible future work. Section 6 concludes the paper.

2. Background

TCAMs are currently used to perform the task of

Longest Prefix Match (LPM) in high-end routers. Figure
1 [8] illustrates a typical TCAM. In this example, the bits
01101 represent a destination IP address and is used to
search the four-entry lookup table in parallel. Entries
must be stored in order by length so the longest match
may be found. The middle two rows result in a match
using the “X” bits as don’t care states. The matching line

corresponding to the lowest address is chosen by the
priority encoder shown on the right. The address of the
LPM is the result from the TCAM. The address is then
used to look up the corresponding output port in SRAM.

Figure 1. TCAM Diagram

There are several downsides to using TCAMs for

implementation of LPM. First, TCAMs have a very high
cost/density ratio [6]. This may make TCAMs less
attractive than cheaper options. Second, TCAMs also
have high power consumption. Having to search the
entire table on each lookup causes this high power
consumption [6]. These two issues can be overlooked for
high-end routers since cost is not the main concern. The
two most important issues are with the performance
drawback when inserting a new entry into the table and
the limitations imposed by the large encoder logic. We
will first look at the problems from the need to maintain
sorting in the table.

2.1. Insertion

Since the lookup table must remain sorted by prefix

length, the insertion will take O(N) time to complete in
the worst case where N represents the number of entries
in the routing table. Internet core routers typically
exchange three to six million updates per day, and these
updates to the routing table appear to happen in bursts [7].
This means a router may get hit with several hundred
prefix updates per second. On an average day, this same
router will spend up to 10% of the time updating the table.
Figure 2 shows a graph of the percentage of time that

would be used for updates for various table sizes and
update frequencies [7]. It is easy to see from this graph
that insertion time has a dramatic effect on performance
for routers with large tables.

0
10
20
30
40
50
60
70
80
90

100

5 10 30
Updates per Day in Millions

Pe
rc

en
t o

f T
im

e
N

ee
de

d
fo

r U
pd

at
es 50000

100000
150000
200000
250000

Figure 2. Effects of Updates

Figure 3 shows the percentage of time needed for

updating the routing table using different table sizes [7].
With a constant insertion time of O(1), table size does not
affect the graph. We can also see that O(N) insertion
schemes on larger tables (>150k) basically saturate
around 30 million updates since the time required to
update the table would leave no additional time for IP
lookup, but even with updates per day approaching 50
million, the effects of constant insertion are well below
1%. 30 million updates may seem large enough not to
have to be concerned with the problem, but one study
recorded a case where an Internet router received 30
million updates in one day [7]. It is also important to note
that while an insertion is occurring, no lookups are
possible. This means if 10% of the time is spent
performing updates, the effective throughput of the router

is now only 90% of its capabilities. This stresses the
problems with insertion even more. This figure also
shows an insertion time that takes 32 cycles. This is
another option that some TCAMs use today. The
improvement between the O(1) and O(32) is negligible in
this graph, but it becomes a important improvement when
a large burst of updates hits the router. These bursts will
have no impact on single cycle insertion since it will take
similar time as a lookup.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Updates per Day in Millions
Pe

rc
en

t o
f T

im
e

N
ee

de
d

fo
r U

pd
at

es

O(N) - 250K
O(N) - 150K
O(N) - 50K
O(32)
O(1)

Figure 3. O(N) vs. O(1) Insertion Time

2.2. Priority Encoders

One major part of a TCAM’s critical path is its
priority encoder. The latency needed for this selection
will result in decreased performance from the TCAM.
Figure 4 shows how the encoder chooses the LPM from
among all the entries in the TCAM [5]. Since the entries
are stored by prefix length, the LPM is simply the lowest
physical address from among the matching entries.

Figure 4. Longest Prefix Match Example Using TCAMs

A table can have many thousands of entries; this
tends to make the delay of these large encoders very high.
There are several designs that limit the time needed for
the encoder, but they require large amounts of die area
[4]. This introduces a tradeoff in encoder delay and size.

3. Technical Approach

Having to maintain sorting means an update to the

table may result in O(N) moves. The proposed design
removes this requirement, improving insertion time to
O(1).

Since entries will not be stored in sorted order, a
different method for locating the LPM will be used.
Figure 5 shows our proposed design. The TCAM will be
divided by output port into several smaller TCAMS. The
number of TCAMs will now be equal to the number of
output ports on the router. Each TCAM will hold a
collection of all the entries that map to the output port it
represents. Since all entries in a partitioned table map to
the same output port, there is no longer a need to keep the
entries sorted. When a search occurs each TCAM looks
up the IP address in parallel. The TCAMs output all their
length matches to a selection logic. After the selection
logic chooses the LPM, the packet is forwarded to the
output port based on which table had the longest match.
When an insertion occurs, the entry is first analyzed to see
which output port it matches. Then, the entry is then
inserted into any open location in the corresponding
TCAM.

Figure 5. Proposed Architecture

The Figure 6 shows the modified design for the

partition table. Typical TCAM cells are shown on the left
for storing the network address prefix. The priority
encoder is removed, and SRAM cells are shown on the
right for storing the length. There is also no need for
SRAM memory to store the output ports since this
information is known after the logic selects which table
contains the LPM. The encoder and decoders are not
needed because the TCAM cells can be connected to the
corresponding rows since they are directly related. In
addition, more than one SRAM row can be asserted at
once. This is possible because there can only be one
match per length. If a lookup results in multiple matches
of the same length, this would mean duplicate entries

have been stored. Therefore, the maximum number of
matches is the length of an IP address, 32 bits. Since
lengths are being stored in SRAM cells instead of output
ports, the number of SRAM cells needed is more than in a
typical router.

Figure 6. Modified TCAM

Figure 7 shows the Length Selection Logic (LSL).

The LSL finds the length of the longest matching prefix.
The logic is constructed entirely from 2-input logic gates.
The first level of logic will check all the lengths for a
match by ORing together the outputs from each
partitioned table corresponding to each length. After
identifying which lengths contain matches, the next level
of logic determines the highest bit match. It can be
observed from the diagram that the logic complexity
depends on the number of possible lengths and the
number of output ports. This logic takes (32*P) inputs
and outputs 32 lines where P is the number of output
ports. The outputs from the LSL connect to the next level
of logic. This is shown in Figure 8.

Figure 7. Length Selection Logic

Figure 8 shows the Port Selection Logic (PSL). After
the highest length is found, we then need to identify the
table that had this match to determine the output port.
The PSL simply checks to see which port the highest
length is associated with by taking 32 inputs from the
LSL and 32*P inputs from the individual TCAMs. Only
1-bit of the 32 will be high to indicate the longest prefix
length. The logic contains P output lines. The logic will
set one of these lines high to indicate the direction the IP
packet should take. This level of logic also depends on
the IP address length and the number of output ports.
After the port is found, the packet can be forwarded to the
correct port.

Figure 8. Port Selection Logic

Partitioning the table will decrease the storage

efficiency unless additional steps are taken. This would
occur since each TCAM must contain enough space to
hold all the entries for that output port. The router would
effectively “run-out” of memory if any partition filled.
This improvement would obviously work best when the
routing table is balanced, or the routing table grows in a
predictable manor. This balancing would also grow more
complex for each output port added. For this reason,
routers with relatively few output ports would work best
with this design.

4. Results

The main improvement of our design is with

insertion time. The entries in the table no longer need to
be sorted, so worst-case insertion time is reduced to a
constant. As shown in the Figures 2 and 3, update time
can have a severe impact. Since updates tend to come in
groups, a large number of updates in a short amount of
time can severely slow the router’s performance [7].

Table size is expected to grow in the future at an
exponential rate, as shown in Figure 9, and the update
time will grow linear with table size [1]. The impact is
examined more closely in this section.

0

50

100

150

200

250

300

350

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Year

Ta
bl

e
Si

ze
 (k

 e
nt

rie
s)

Figure 9. Table Growth Projection

Qualitative analysis of the proposed design is

compared to a typical co-processor design. The typical
design for this comparison contains a standard TCAM
capable of holding up to 256 thousand entries [10].
Typical core routers contain between four and sixteen
output ports. For this analysis, sixteen output ports are
used. Another assumption is that packets are distributed
evenly over output ports. This avoids problems that could
occur if a partitioned TCAM filled.

Table 1 shows estimates for transistor counts and
gate delays. These estimates are based off similar designs
and our own calculations. TCAM cells require 16
transistors, and SRAM cells require six transistors. Each
prefix stored in the table is of length L. This is 32 for
IPv4 and 128 for IPv6. N represents the total number of
entries stored in the routing table.

The number of transistors needed for the TCAM in
each design is the same. In the typical design, only the
output port value is stored in SRAM. The new design
will require more SRAM since log P is less than L.
Assuming 16 output ports, the storage requirement will be
32 / (log 16) = 8 times greater for the new approach. The
number of rows of SRAM still remains the same, only the
width increases in size. The equations for the priority
encoder can be found in the reference article [3]. An
address decoder requires 2N AND gates of 2N inputs each.
Since we use two input gates, the gate delay becomes log
(2N) or N. In the case of the address decoder, the number
of inputs is (log N) so the gate delay becomes (log N).
Using the logic developed from Figures 7 and 8 we
calculated the number of gates needed and the logic gate
delay for the port selection logic and length selection
logic.

Table 1. Estimates for Transistor Count and Gate
Delay: N=Number of Entries, L=IP Length,

P=Number of Output Ports

 Transistors Gate Delay
TCAM
Prefix 16*N*L UNCHANGED

SRAM 6*N*logP : Typical
6*N*L : New Design UNCHANGED

Priority
Encoder 16*N+6*(N/4) logN

Address
Decoder N*logN loglogN

LSL L*(P-1) + (L2-L)/2 logP + logL

PSL P*(2*L-1) logL + 1

Table 2. Typical Design

 Transistors Gate Delay

TCAM Prefix 134M UNCHANGED

Priority
Encoder 4.6M 18

Address
Decoder < 1M 5

SRAM 6.3M UNCHANGED

Total 146M 23

Table 3. Proposed Design

 Transistors Gate Delay

TCAM Prefix 134M UNCHANGED

SRAM 50M UNCHANGED

LSL 0.0006M ~18

PSL 0.001M ~12

Total 200M 30

Tables 2 and 3 compare logic complexity between

the two designs. The design of the TCAM and SRAM
cells are the same for each design. The shaded rows show
the differences between the two logic designs with respect
to size and speed.

We will look at differences in speed between the
designs. The speed of the first TCAM lookup, to find
matching rows, remains the same since the design for the
TCAM cells have not been changed. The time it takes to
read a SRAM cell also has not changed since only the
block width has changed. The main difference in speed
comes from the difference in encoder/decoder and
LSL/PSL. The logic for the encoder/decoder is using the
latest high-speed technology that sacrifices space for
speed [4]. Our estimates were taken from the logic
developed in Figures 7 and 8. To get a rough estimate for
CMOS gate delays we multiply the number of logic gates
along the longest path by two. This gives us a general
estimate of the speed. Further calculations will be needed
to get an exact number. We expect that the CMOS gates
will perform better than this. We can see from the above
table that our speed is slower but comparable to the
typical design with future work. We must stress that
these numbers are estimates, and numbers that are more
accurate can be found with further research.

By comparing the size and speed of each design, we
see our design trades some size for better insertion speed.
A comparison between these two approaches in presented
in Figure 10. Note that the major change is the
replacement of the encoder with the selection logic and
the placement of the SRAM lookup stage.

Typical

New Design

Time

TCAM
Lookup

Priority
Encoder

Address
Decoder

SRAM
lookup

Length
SL

Port SL

Figure 10. Factors Effecting Timing

5. Future Work

Several possible improvements can be made to our
design. Currently, 32 bits are being used for each entry to
store the prefix lengths. This is because the maximum
prefix length is 32. In reality, 24-bits would be enough to
store all lengths in the table since lengths less than 8-bits
never occur. Several other routing techniques use this
same approach [6]. Using only 24-bits would decrease

storage requirements in SRAM and increase the speed of
the selection logic.

The selection logic has some similarities to the
priority encoder logic. Current priority encoders take
advantage of techniques like priority lookahead to
improve gate delay [4]. Similar techniques can be applied
the selection logic design to improve total gate delay.

The design is naturally broken down into four parts.
The initial TCAM prefix lookup, the length output, and
the two levels of selection logic. A pipeline can be
implemented since each of these sections could be made
independent. The pipeline implementation should greatly
improve the performance and allow improved latency
over the original design.

The quantitative values given above are estimates
based on current designs and calculations. Future work
will require simulating this design to extract more
accurate results for an improved quantitative comparison.

6. Conclusion

A main purpose of IP routers is to forward packets
correctly by performing routing table lookups. As the
wire speed increases and more routes are added, it grows
increasingly more difficult to scale up based on current
designs. The main contribution of this design is to
improve update time for TCAMs by allowing the table to
be stored in an unsorted order. This reduces the worst-
case update time from O(N) to O(1) time. This reduction
forced a change in the design for lookups. Lengths are
now stored via SRAM in the table. The logic for the
priority encoder and other logic have been replaced with
simpler selection logic. The current values discussed in
Section 4 are only simple estimates for size and speed.
Exact results were not available since they have not been
simulated yet. Overall, our design shows a large
improvement in insertion time without greatly increasing
lookup time.

7. Acknowledgments

We would like to acknowledge Prof. Gyungho Lee,
at University of Illinois at Chicago, for his help with this
paper.

References

[1] Geoff Huston, “AS1221 – BGP Table Statistics”,

http://bgp.potaroo.net/as1221/bgp-active.html
[2] Mohammad J. Akhbarizadeh and Mehrdad Nourani, “An IP

Packet Forwarding Technique Based on Partitioned Lookup
Table”, ICC 2002 - IEEE International Conference on
Communications, no. 1, April 2002 pp. 2263-2267.

[3] JG Delgado-Frias and J. Nyathi, “A high-performance
encoder with priority lookahead”, IEEE Trans. Circuit Sys.
I, vol.47, pp.1390-1393, Sept. 2000.

[4] C.H. Huang, J.S. Wang, and Y.C. Huang, “Design of high-
performance CMOS priority encoders and
incrementer/decrementers using multilevel lookahead and
multilevel folding techniques”, IEEE Journal of Solid-State
Circuits, 37(1):63-76, January 2002.

[5] Mike Ichiriu, “High Performance Layer 3 Forwarding, The
Need for Dedicated Hardware Solutions”, 2000.

[6] Stefanos Kaxiras and Georgios Keramidas, “IPStash: a
Power-Efficient Memory Architecture for IP-lookup”,
IEEE/ACM International Symposium on Microarchitecture,
no 36, 2003.

[7] C. Labovitz, R. Malan, and F. Jahanian, "Internet routing
instability", IEEE/ACM Trans. Networking, vol. 6, no. 5,
pp. 515-558, 1998.

[8] Kostas Pagiamtzis, “CAM Primer”,
http://www.eecg.toronto.edu/~pagiamt/cam/camintro.html

[9] D. Shah and P. Gupta, "Fast incremental updates on
Ternary-CAMs for routing lookups and packet
classification", Proc. of Hot Interconnects-8, Stanford, CA,
USA, Aug. 2000.

[10] SiberCore Technologies, “Ultra-18M SCT1842 Product
Brief”,
http://www.sibercore.com/products_siberCAM.htm#3

[11] Francis Zane, Girija Narlikar, and Anindya Basu,
“CoolCAMs: Power-Efficient TCAMs for Forwarding
Engines”, IEEE Infocom, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

