
Placement with Alignment and Performance Constraints Using the B*-tree Representation �

Meng-Chen Wu� and Yao-Wen Chang�
�Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan

�Department of Electrical Engineering & Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan

Abstract
To facilitate sequential data transfer (e.g., bus or pipeline signals) and re-

duce bounded net delay (as well as total wirelength), it is desired to align circuit
blocks one by one and constrain the blocks within a certain bounding box. In
this paper, we handle the placement with alignment and performance (delay)
constraints using the B*-tree representation. We first explore the feasibility con-
ditions with the alignment and performance constraints, and then propose algo-
rithms that can guarantee a feasible placement with alignment constraints and
generate a good placement with performance constraints during each operation.
In particular, our method is the first algorithm to achieve the amortized linear-
time complexity for evaluating a placement with the alignment and performance
constraints. Experimental results based on the MCNC benchmark with the con-
straints show that our method significantly outperforms the previous work.

1 Introduction
Due to the growth in design complexity with continued technology scaling,

circuit sizes are getting much larger. To deal with the increasing complexity,
hierarchical design and IP blocks are widely used. This trend makes block
floorplanning/placement much more critical to the quality of a modern VLSI
design. To address particular design requirements, we can impose correspond-
ing position constraints for the circuit blocks in a floorplan/placement. Among
the floorplanning/placement constraints, alignment and performance constraints
have received increasing attention recently [11, 15]. The alignment constraint
requires that blocks abut one by one in an alignment range while the perfor-
mance constraint place blocks in a given bounding box to reduce critical nets
delay (and total wirelength as well). The following give major reasons that mo-
tivate the considerations of these constraints:

� Smooth data transfer in a bus structure or a pipeline. Since alignment
blocks abut one by one in a pre-defined range, we can set the bus width
be the alignment range to facilitate the routing.

� Minimize delay on some critical nets. Block placements are often per-
formed independently for each block. It is helpful if we place some
blocks near to each other to reduce critical net delay.

Therefore, it is desirable to find an efficient and effective way to handle the floor-
planning/placement problem with the alignment and performance constraints.

1.1 Previous Work
The floorplanning problem is often studied by the structures of floorplans,

say the slicing structure and the non-slicing structure. For a slicing structure,
Otten [6] presented a binary tree representation whose leaves denote blocks and
internal nodes describe horizontal or vertical merging of the two children. Wong
and Liu [12] proposed a normalized Polish expression for slicing floorplans.
Although the slicing structure can be handled more easily and efficiently, real
designs are often non-slicing.

The modelings for the non-slicing structures (and also the slicing struc-
tures) have been proposed recently. Among them, sequence pair [4], BSG [5],
and TCG [3] specify the topological relative positions between blocks. From
these representations, we can easily identify the geometric relation between two
blocks, such as below, above, left-to and right-to. O-tree [2] and B*-tree [1] give
partial topological relations among blocks by using ordered trees. In the trees,
a node represent a block and an edge describes the relation between the parent
node and the child node. Q-sequence [8] and twin binary tree [14] are coding
schemes for modeling mosaic floorplans, in which each room contains exactly
one block.

Problems related to floorplanning/placement with the performance and
alignment constraints, such as pre-placed and range constraints and rectilinear
blocks, were studied earlier. The floorplan design with the pre-defined range
constraint was proposed by Young and Wong [15]. Unlike pre-placed blocks,
the constrained blocks are required to place within a pre-defined range. They
handle the slicing floorplan design with the range constraint based on the nor-
malized Polished expression.

For rectilinear blocks, most previous works partition a rectilinear block into
a set of sub-blocks and then process the sub-blocks one by one and at the
same time try to maintain the original rectilinear shape. For example, Chang
et al. in [1] applied the B*-tree to handle this constraint by keeping a location
constraint between nodes associated with the sub-blocks of a rectilinear block.
Similar operations can be found in Pang et al. [7] based on the O-tree and Xu et
al. [13] based on sequence pair.

Tang and Wong [11] recently extended the range constraint to the perfor-
mance constraint, and the rectilinear constraint to the alignment constraint. With

�This work was partially supported by the National Science Council of Tai-
wan under Grant No. NSC-92-2215-E-002-018. E-mail: kenwu@eda.ee.nctu.edu.tw;
ywchang@cc.ee.ntu.edu.tw

the performance constraint, blocks are placed in a movable bounding box to re-
duce the net delay and minimize the total wire length as well. Different from
the rectilinear constraint that must maintain the predefined rectilinear shape, the
alignment constraint describes that some blocks are aligned in a row without
fixed relative positions. They solved the placement with the two constraints
using FAST-SP [10].

1.2 Our Contribution
In this paper, we handle the floorplanning/placement with the alignment and

performance constraints using the B*-tree representation. We first explore the
feasibility conditions with the alignment and performance constraints, and then
propose algorithms that can guarantee a feasible placement with alignment con-
straints and generate a good placement with performance constraints during
each operation. In particular, our method is the first algorithm to achieve the
amortized ����-time complexity for evaluating a placement with the alignment
and performance constraints (compared to the ��� �� �� ��-time algorithm pro-
posed by Tang and Wong in [11]), where � is the number of blocks. (Note that
both works assume that the number of groups of modules with alignment and
performance constraints is constant.) Experimental results based on the MCNC
benchmark with the constraints show that our method significantly outperforms
the previous work; for example, our method achieved an average deadspace of
only 3.2%, compared to that of 5.8% by [11].

The remainder of this paper is organized as follows. Section 2 reviews B*-
trees. Section 3 gives the definitions of the alignment and performance con-
straints. The methods for solving these constraints are proposed in Section 4.
Section 6 presents our algorithm. Experimental results are reported in Section 7.
Finally, we give conclusions in Section 8.

2 Preliminaries
B*-trees [1] are an ordered binary tree for modeling a compacted floorplan.

Given an admissible placement [2] (in which no module can move left or bot-
tom), we can construct a unique B*-tree in linear time. Further, given a B*-tree,
we can obtain a placement by packing the blocks in amortized linear time with
a contour structure [2].

Given an admissible placement � , we can represent it by a unique B*-tree
� . (See Figure 1(b) for the B*-tree representing the placement of Figure 1(a).)
A B*-tree is an ordered binary tree whose root corresponds to the block on the
bottom-left corner. Similar to the DFS procedure, we construct the B*-tree �
for an admissible placement � in a recursive fashion: Starting from the root,
we first recursively construct the left subtree and then the right subtree. Let ��
denote the set of blocks located on the right-hand side and adjacent to �� . The
left child of the node �� corresponds to the lowest block in �� that is unvisited.
The right child of �� represents the lowest block located above and with its
�-coordinate equal to that of ��.

Based on the definition, the root of � represents the block on the bottom-
left corner, and thus the �- and �-coordinates of the block associated with the
root ������� ������ � ��� ��. If node �� is the left child of node ��, block
�� is placed on the right-hand side and adjacent to block �� in the placement;
i.e., �� � �� � 	�. Otherwise, if node �� is the right child of ��, block ��
is placed above block ��, with the �-coordinate of �� equal to that of ��; i.e.,
�� � ��. With the contour structure, we can compute the �-coordinate of a
block in amortized constant time.

(a) (b)

b1
b0

b2

b6

b3 b4

b7

b5

n1

n0

n3

n2

n4

n5 n6

n7

Figure 1: (a) An admissible placement. (b) The B*-tree representing the
placement.

3 Problem Formulation
In this section, we first define the alignment and the performance constraints

and then formulate the placement problem.



3.1 Alignment Constraint
The alignment constraint is for placement with bus structures or pipelines.

Unlike abutment that only requires the constrained blocks to be adjacent, align-
ment blocks are placed in an alignment range. Different from rectilinear blocks
with fixed relative positions, alignment blocks are flexible to move within the
pre-specified alignment range. Specifically, alignment blocks must abut one by
one horizontally or vertically and aligned in a pre-defined range like a bus width.
Therefore, alignment can be classified into H-alignment and V-alignment ac-
cording to the orientation of blocks, horizontal and vertical, respectively. Given
an alignment range 
 and a set of � blocks, ��� � � �� �� ��, whose width,
height, and the coordinate of bottom-left corner are denoted by 	�� ��� ���� ���,
� � �� �� ��, respectively. We follow the definitions given in [11] as follows.

Definition 1 (H-alignment) The � blocks are H-aligned iff �� � 	� �
����� � � � � � � � (abutting one by one) and ���� � 
 � �� � ��� � �
� � �, where ���� � �������� � �� �� �� (aligning horizontally).

Definition 2 (V-alignment) The � blocks are V-aligned iff �� � �� �
����� � � � � � � � (abutting one by one) and ���� � 
 � �� � 	�� � �
� � �, where ���� � �������� � �� �� �� (aligning vertically).

alignment range r

(a) (b)

alignment range r

Figure 2: (a) Blocks with the H-alignment constraint. (b) Blocks with the
V-alignment constraint.

Figures 2(a) and (b) show two sets of blocks with the H-alignment and the V-
alignment constraints, respectively. The shaded regions illustrate the alignment
ranges. Due to the similarity between the H-alignment and the V-alignment
constraints, we can transform the V-alignment constraint into the H-alignment
constraint during processing. We shall focus our discussions on the H-alignment
constraint, unless specified otherwise.

3.2 Performance Constraint
For very deep submicron VLSI design, the interconnect delay dominates the

circuit performance. Therefore, it is desirable to minimize the critical net delay
to optimize circuit performance. The performance constraint is intended for this
purpose; the constraint requires designated nets (blocks) to be placed within a
predefined bounding box nets. Imposing the performance constraint, we can
optimize not only the circuit delay, but also the total wire length. Here gives the
definition.

Definition 3 (Performance constraint) Given a set of blocks and the perfor-
mance constraints, minimize total wire length and place designated blocks in a
bounding box such that the critical net delay satisfy performance constraints at
the same time.

3.3 Problem Definition
Let � � ���� ��� � ��� be a set of � rectangular blocks whose respective

width, height, and area are denoted by ��, ��, and ��, � � � � �. Let
���� ��� denote the coordinate of the bottom-left corner of block �� , � � � � �,
on a chip. A placement � with the alignment and the performance constraints
is an assignment of the coordinate ���� ��� for each �� , � � � � �, such
that no two blocks overlap and the given constraints are satisfied. The goal of
floorplanning/placement is to optimize a predefined cost metric, such as the area
(the minimum bounding rectangle of �), induced by the assignment of ��’s on
the chip.

4 Placement with Alignment Constraints
In this section, we first present the solutions for alignment constraints with

B*-trees. Then, we propose the feasibility conditions for the B*-tree with the
constraints.

4.1 B*-trees with Alignment Blocks
The alignment blocks have two properties: (1) Alignment blocks must abut

one by one; (2) These blocks have to be located in an alignment range. First,
we give solutions for abutment placement. For a B*-tree, the left child �� of the
node �� represents the lowest adjacent block �� which is right to block �� (i.e.
�� � �� � 	�). Therefore, blocks can abut one by one if their corresponding
nodes form a left-skewed sub-tree in a B*-tree. An an example shown in Fig-
ure 1, the four sets of abutment blocks �� and �� , �� and ��, �� and �� , and ��
and �� correspond to four left-skewed sub-trees.

Property 1 In a B*-tree, the nodes in a left-skewed sub-tree may correspond to
a set of abutment blocks.

alignment range

(a)

alignment range

(b)
dummy blockD2

b4

b3

b2

b1 b1
b2

b3 b4

D4

Figure 3: (a) An infeasible placement with blocks falling out of the alignment
range; block �� and �� are not in the alignment range. (b) Inserting dummy
blocks, we obtain a feasible placement without any block violating the alignment
constraint.

After packing, blocks are compacted to the bottom and left. The blocks
associated with a left-skew sub-tree of a B*-tree may be aligned together if
no block falls down during packing. To solve the falling down problem, we
introduce dummy blocks to fix it.

A dummy block comes for an alignment block. The dummy block has the
same �-coordinate with the alignment block and right below it. The width of the
dummy block is equal to its corresponding alignment block, and its height can
be adjusted to make a displaced alignment block shift into the right alignment
range. As illustrated in Figure 3(a), the blocks �� and �� fall out of the alignment
range. As shown in Figure 3(b), we adjust the heights of the two dummy blocks
to shift the displaced alignment blocks into the correct alignment range. After
adjusting the heights of the dummy blocks, we can guarantee that the resulting
placement is feasible with the alignment constraints.

Property 2 Inserting a dummy block of an appropriate height, we can guaran-
tee a feasible placement for the corresponding alignment block.

4.2 Feasibility Condition for Alignment Constraints
The properties mentioned in the preceding section provide the way to de-

velop the feasibility condition of a B*-tree with the alignment constraints. Con-
sequently, we can take advantage of the feasibility condition to transform an
infeasible placement to a feasible one of alignment blocks.

Given a B*-tree, we refer to the node representing an alignment block as an
alignment node. For each alignment node, we introduce a dummy node in the
B*-tree and make the alignment node the right child of its corresponding dummy
node. By the definition of the B*-tree, this will make a dummy block right
under its corresponding alignment block, and we can thus adjust the height of
the dummy block to change the �-coordinate of the alignment block, if needed.
We refer to a set of an alignment node and its corresponding dummy node as a
cluster node, i.e., each cluster node consists of an alignment node and a dummy
node. To make a set of alignment blocks abut one by one, by Property 1, we
further require that the corresponding cluster nodes form a left-skewed sub-tree.
We say that the cluster nodes form an alignment shape iff they form a left-
skewed sub-tree. As an example shown in Figure 4(a), the three cluster nodes
��� �� , and �� form a left-skewed sub-tree and thus an alignment shape, for
which the corresponding placement for the alignment blocks �� , �� , and �� can
abut one by one, as shown in Figure 4(b). In Figure 4(b), the placement is
obtained by packing the blocks corresponding to the B*-tree of Figure 4(a) and
adjusting the heights of the dummy blocks to satisfy the alignment constraints.
We have the following theorem for the feasibility condition of a B*-tree with
alignment constraints.

dummy node

alignment node

D3

D4

D5

n0

n1

n2

n3

n4

n5

n6

b0
b1

b3

b4

b5

b2

b6

(a) (b)

alignment rangealignment shape

D4

Figure 4: (a) The alignment shape in a B*-tree (b) The corresponding place-
ment of (a)

Theorem 1 There exists a feasible placement with alignment constraints if the
alignment nodes in a B*-tree form an alignment shape.



To deal with the alignment constraints, we need two passes to pack blocks
correctly. In the first pass, we compute the coordinate for each non-dummy
block (a regular block or an alignment block). Then, we verify whether ev-
ery alignment block is in the alignment range. If there is any violation of the
alignment constraints, we compute in the second pass the minimum movement
(height) for the corresponding alignment (dummy) block to shift into the align-
ment range.

Given � alignment blocks and the alignment range 
, the equation for com-
puting the minimum movement (height) 	� for the alignment block ��� � �
�� �� ��, in H-alignment is as follows:

	� �

�
����� � 
�� ��� � ��� if ����� � 
� � ��� � ���
� otherwise

where
���� � �������� � �� �� ���

b2
b5

alignment range r

(a) (b)

b0

b6

b1

alignment range r

D5

b0

b6

b0

b4
b3 b2

b3 b4
b5

D2

Figure 5: (a) The placement obtained in the 1st pass, where blocks 2 and 5
fall out of the alignment range. (b) The placement obtained in the 2nd pass,
where those blocks violating the alignment constraint are adjusted by inserting
corresponding dummy blocks with appropriate heights.

After getting the minimum movement for each alignment block, we set the
height of the corresponding dummy block to 	� to shift the alignment block
upward to the alignment range. Using such a two-pass packing scheme, we can
guarantee that the final placement is feasible without violating any alignment
constraint. As shown in Figure 5(a), the alignment blocks �� , �� , �� , and �� ,
abut one by one, but the blocks �� and �� fall out of the alignment range after
the 1st-pass packing. Then, we compute the minimum movement (height) for
each alignment (dummy) block �, 	�, and shift �� and �� upward by 	� and
Æ� , respectively. Fig 5(b) gives a feasible placement after the adjustment.

5 Placement with Performance Constraints
Traditional floorplanners try to minimize total wire length but cannot guar-

antee that critical nets meet the delay constraint. In order to make critical net
delay satisfy the delay constraint, we need to place the blocks, called perfor-
mance blocks, connected by critical nets near each other. The delay �	
� of a
two-pin net from the source at (�	� �	) to a sink at (��� ��) at the floorplanning
stage can be approximated by the following equation:

�	
� � Æ���� � �	�� ��� � �	��,

where Æ is a constant to scale the distance to timing.
Note that we can use the above linear function to estimate the delay because

the actual delay is close to linear to the source-sink distance with appropriate
buffer insertions. (Of course, more sophisticated approximation can also be
used for this purpose by trading off the running time.) From the above equation
and the given delay bound, ����, the distance from the source � to the sink �,
�	
�, must satisfy the following inequality to meet the performance constraint:

�	
� � ��� � �	�� ��� � �	� �
����

Æ
� ����

Æ
.

For a net, we use the popular approximation that the distance of pins is given
by half of the perimeter of the minimum bounding box of the blocks connected
by the net. (Again, more sophisticated approximation can also be used by trad-
ing off the running time.) To meet the performance constraints, we shall place
the constrained blocks in a bounding box whose half of the perimeter is smaller
than the distance with the delay bound.

In Figure 6(a), the bounding box (dotted lines) of the blocks is smaller than
the bounding box (dash lines) with the delay bound, so the placement is feasible
for the given performance constraint. The placement of Figure 6(b) is infeasible
because the bounding box of the blocks is greater than that with the delay bound.
In Figure 6(c), we obtain a feasible placement with the performance constraint
from Figure 6(a). Then we cluster the blocks as a rectilinear super block and fix
the shape of the rectilinear super block. Therefore, the performance constraint
will be satisfied afterwards. We can repartition the rectilinear super block into a
set of new blocks for further processing with other blocks.

Let ����� denote the bounding distance which is half of the perimeter of
the maximum bounding box of blocks connected by the net, and ���� the max-
imum bounding distance which is the distance with the delay bound. We have
the following property:

Property 3 We can get a feasible placement with performance constraints by
placing performance blocks in the bounding box whose bounding distance is
smaller than or equal to the maximum distance bound.

b1

b2
b3

b
2

b
3

b
1

(a) (b)

b
1
' b

2
'

(c)

b3'

Figure 6: (a) A placement with performance blocks only. The dotted rectangle
gives the bounding box of the blocks. The rectangle with dash lines gives the
bounding box with the delay bound. The placement is feasible for performance
constraints. (b) An infeasible placement with the blocks and the delay bound
given in (a). (c) We can cluster the feasible placement in (a) into a new rectilinear
block and repartition the rectilinear block into a set of new blocks for further
processing with other blocks.

5.1 Feasibility Conditions for Performance Con-
straints

Given a set of blocks and performance constraints, we call the nodes rep-
resenting performance blocks as performance nodes in a B*-tree. To meet the
performance constraint, the performance blocks shall be located near each other.
We take advantage of the processing for a rectilinear block presented in [7] to
guarantee a feasible placement with the performance constraint. Given a place-
ment � of � performance blocks whose areas are ��� � � �� �� � ��, the width
�, the height �, and the dead space ����� of the placement � , the sub-placement
of the performance blocks must satisfy the following inequality:

�� � � ����� � ����

We do not restrict � or � so that the ratio of the bounding box can be adjusted.
If the bounding distance of sub-placement is greater than the distance bound, the
sub-placement cannot meet the performance constraints and thus the placement
with the sub-placement either. Thus, we shall modify the sub-placement until
it is smaller than the distance bound. By doing so, we obtain a set of feasi-
ble sub-placements for the performance blocks. Among these sub-placements,

we pick the one with the minimum ����� � � � � �
��

�	�
�� and treat

the sub-placement as a rectilinear block. Then we fix the rectilinear block (and
thus fix the delay) for further processing with other blocks. By clustering per-
formance blocks into an appropriate rectilinear block and fixing its shape, we
can guarantee that the performance constraint will be satisfied throughout the
remaining processing. For example, we repartition the rectilinear super block
of Figure 6(a) as the new sub-blocks shown in Figure 6(c) and fix the relation
between the new sub-blocks. By maintaining such a rectilinear block, we can
guarantee a feasible placement with the performance constraints after the whole
processing.

Theorem 2 By pre-processing the performance blocks into the rectilinear
blocks and keeping their shapes, we can guarantee to generate feasible place-
ments with performance constraints.

6 Algorithm
The flow of our algorithm is summarized in Figure 7. We use simulated

annealing to search for an optimal solution. We perturb a B*-tree to another by
the following operations:

� Op1: Rotate a block.

� Op2: Flip a block.

� Op3: Move a block to another place.

� Op4: Swap two blocks.

� Op5: Move a set of alignment blocks to another place.

The first four operations are used in [1] and the last one is designed for alignment
constraints. In ���, we rotate a block. This action can be applied to any node
without changing the relationship between any two nodes except performance
blocks. For performance blocks, we need to rotate its corresponding rectilinear
blocks together. In ���, we flip a block. Same as ���, we need to maintain
the correct relation for rectilinear blocks. ��
 and ��� change the relations
of blocks to get a different placement. We do not apply these two operations to
alignment nodes. For performance blocks, we still need to move its correspond-
ing rectilinear block to another place. ��� moves a set of alignment blocks to
another place. We first change the positions of the first pair of a dummy and an
alignment nodes in the alignment shape. Then, we attach other pairs of dummy
and alignment nodes to the correct positions to maintain their shape.

7 Experimental Results
We implemented our algorithm in the C++ programming language on a 450

MHz SUN Sparc Ultra 60. The benchmark circuits used for the comparative
studies were adopted from [11]. Columns 1, 2, 3, and 4 of Table 1 give the
name of the circuit, the number of blocks, the number of blocks with the align-
ment constraint, and the number of block with the performance constraint, re-
spectively. Note that the constrained blocks are also the same as those defined
in [11].



circuit block constrained blocks Tang and Wong [11] Ours
align perf time (�) area (���) dead space time (�) area (���) dead space

apte 9 4 0 8 47.08 1.1% 3.6 46.92 0.8%
xerox-1 10 4 0 9 20.16 4.0% 5.8 20.08 3.7%
xerox-2 10 4 2 9 20.93 7.5% 6.4 20.08 3.7%

hp-1 11 4 0 10 9.342 5.5% 5.9 9.20 4.0%
hp-2 11 4 2 17 9.342 5.5% 6.1 9.349 5.6%

ami33-1 33 4 0 31 1.221 5.3% 35.4 1.180 2.0%
ami33-2 33 4 3 45 1.226 5.7% 52.6 1.181 2.2%
ami49-1 49 5 0 41 38.20 7.2% 132.7 36.60 3.2%
ami49-2 49 4 3 241 38.51 7.8% 97.9 36.56 3.1%
ami49-3 49 4 6 278 38.72 8.4% 109.2 36.64 3.3%

average - 5.8% - 3.2%

Table 1: Area and runtime comparison based on the benchmark circuits used in [11]. Note that the results reported in [11] ran on a 440 MHz SUN Sparc Ultra
10 machine while ours ran on a 450 MHz SUN Sparc Ultra 60 machine.

Algorithm: Placement with Alignment and Performance
Constraints(�� ���, � ���
�����)

Input: A set of blocks and alignment and performance constraints.
Output: A placement without violating the given constraints.
1. Generate the rectilinear blocks for performance blocks
2. Initialize a B*-tree for the input blocks and constraints;
3. Simulated annealing process;
4. do
5. perturb();
6. first-packing();
7. adjust �-coordinates of the sub-blocks for rectilinear blocks.
8. if alignment blocks fall out of the required area
9. then adjust heights of dummy blocks

to fix alignment violations
10. final-packing();
11. evaluate the B*-tree cost;
12. until converged or cooling down;
13. return the best solution;

Figure 7: The alignment and performance driven design flow.

Table 1 shows the experimental results. The results show that our algorithm
obtained an average deadspace of only 3.2% for the set of ten benchmark circuits
with the alignment constraint (and the performance constraint), compared to
5.8% reported in the previous work [11]. Figure 8 shows the resulting layout
for ami49-3 with ten constrained blocks, four with alignment constraints and six
with performance constraints. Further, as shown in Table 1, our B*-tree based
algorithm is also very efficient. (Note that the results reported in [11] ran on
a 440 MHz SUN Sparc Ultra 10 machine while ours ran on a 450 MHz SUN
Sparc Ultra 60 machine.)

8 Conclusions
We have presented an efficient and effective algorithm to deal with the place-

ment with the alignment and performance constraints. The algorithm is based
on the B*-tree representation and the simulated annealing scheme. We have de-
rived the feasibility conditions with the alignment and performance constraints.
We have also proposed an algorithm that can guarantee a feasible placement
with alignment constraints and generate a good placement with performance
constraints during each operation. To evaluate a B*-tree with the constraints, it
takes only amortized linear time (based upon the same assumption as the pre-
vious work that the number of groups of constrained blocks is constant), which
achieves the best published time complexity for the evaluation operation. The
experimental results have shown the effectiveness and efficiency of our algo-
rithm.

Acknowledgments
We would like to thank Professor Martin D. F. Wong and Dr. Xiaoping Tang

for providing us with the benchmark circuits. Special thanks go to Dr. Xiaoping
Tang for his kind assistance.

References
[1] Y.C. Chang, Y.W. Chang, G.M. Wu, and S.W. Wu, ”B*-trees: A new representation

for non-slicing floorplans,” Proc. DAC, pp. 458-463, 2000.

[2] P.N. Guo, C.K. Cheng, and T. Yoshimura, ”An O-tree representation of non-slicing
floorplans and its applications,” Proc. DAC, pp. 268-273, 1999.

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000
ami49−3

1 

2 

3 

4 

5 

6 

7 

8 9 

10

11

12 

13 

14 

15

16

17 
18

19 
20 

21 

22 

23 

24 

25 
26

40

27 
42 

44 

30 

34 

28 

29 

31 

32 

33 

35

36

37

38

41 

43 

45 

46 

47 
48 

49 

39 

Figure 8: The placement of ami49-3. Blocks 1, 2, 3, and 4 are a group
of blocks with an alignment constraint, blocks 5, 6, and 7 are with the same
performance constraint, and blocks 30, 34, and 44 are another group of blocks
with the same performance constraint.

[3] J.M. Lin and Y.W. Chang, ”TCG: A transitive closure graph-based representation
for non-slicing floorplans,” Proc. DAC, pp. 764-769, 2001.

[4] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-packing based
module placement,” Proc. ICCAD, pp. 472–479, 1995.

[5] S. Nakatake, H.Murata, K. Fujiyoshi, and Y. Kajitani, ”VLSI module placement on
BSG-structure and IC layour applications,” Proc. ICCAD, pp. 484-491, 1996.

[6] R.H.J.M. Otten, ”Automatic floorplan design,” Proc. DAC, pp. 261-267, 1982.

[7] Y. Pang, C.-K. Cheng, K. Lampaert, and W. Xie, ”Rectilinear block packing using
O-tree representation,” Proc. ISPD, pp. 156-161, 2001.

[8] K. Sakanushi and Y. Kajitani, “The quarter-state sequence (Q-sequence) to represent
the floorplan and applications to layout optimization,” Proc. APCAS, pp. 829–832,
2000.

[9] X. Tang, R. Tian, and D.F. Wong, ”Fast evalution of sequence pair in block place-
ment by longest common subsequence computation,” Proc. DATE, pp. 106-111,
2000.

[10] X. Tang and D.F. Wong, ”FAST-SP: A fast algorithm for block placement based
sequence pair,” Proc. APS-DAC, pp. 521-526, 2001.

[11] X. Tang and D.F. Wong, ”Floorplanning with alignment and performance con-
straints,” Proc. DAC, pp. 848-853, 2002.

[12] D.F. Wong and C.L. Liu, ”A new Algorithm for floorplan design,” Proc. DAC, pp.
101-107, 1986.

[13] J. Xu, P.-N. Guo, and C.-K. Cheng, ”Rectilinear block placement using sequence-
pair,” Proc. ISPD, pp. 173-178, 1998.

[14] B. Yao, H. Chen, C.-K. Cheng, and R. Graham, ”Revisiting floorplan representa-
tions,” Proc. ISPD, pp. 138–143, 2001.

[15] F.Y. Young and D.F. Wong, ”Slicing floorplans with range constraint,” Proc. ISPD,
pp. 97-102, 1999.


