
Scalable Sequential Equivalence Checking across Arbitrary Design
Transformations

Jason Baumgartner1 Hari Mony1 Viresh Paruthi1 Robert Kanzelman1 Geert Janssen2

1IBM Systems & Technology Group1 2IBM Research Division

Abstract

High-end hardware design flows mandate a variety
of sequential transformations to address needs such as
performance, power, post-silicon debug and test. Industrial
demand for robust sequential equivalence checking (SEC)
solutions is thus becoming increasingly prevalent. In this
paper, we discuss the role of SEC within IBM. We motivate
the need for a highly-automated scalable solution, which
is robust against a variety of design transformations –
including those that alter initialization sequences. This
motivation has caused us to embrace the paradigm of SEC
with respect to designated initial states. We furthermore
describe the diverse set of algorithms comprised within
our SEC framework, which we have found necessary for
the automated solution of the most complex SEC prob-
lems. Finally, we provide several experiments illustrating
the necessity of our diverse algorithm flow to efficiently
solve difficult SEC problems involving a variety of design
transformations.

I. Introduction

Combinational equivalence checking (CEC) is a frame-
work commonly used for validating that logic synthesis
does not alter the functionality of a design. For such appli-
cations, CEC operates on two versions of a design: the first
is pre-synthesis, often a register-transfer level (RTL) ver-
sion of a design which is used for functional verification;
the second is post-synthesis, often a gate- or transistor-
level version of the design. CEC operates by correlating
primary inputs and latch points between the two designs,
and proving that this pairing guarantees equivalence of
all primary outputs and next-state functions. Due to ease
of use and scalability, CEC has become by far the most
pervasively-used form of formal verification throughout
the industry. Many design methodologies enforce the use

of CEC, which requires sequential transformations to be
back-translated into the pre-synthesis RTL model [1].

While powerful, CEC is for the most part limited in
applicability to designs with 1:1 state element pairings.
CEC tends to become ineffective if significant sequential
transformations are performed on a design, e.g., by opti-
mizations such as retiming or FSM re-encoding, addition
of power-saving logic such as clock-gating, etc. Due to
the growing demands of hardware design, however, such
transformations tend to comprise an increasing portion
of the modifications performed during the life-cycle of
a product. With a purely CEC-based methodology, this
means that sequential transformations often require a full
regression of the functional verification process, which
is often time-consuming and, if simulation-based, incom-
plete. Practically, this means that performing sequential
optimizations becomes somewhat of a bottleneck in design
cycles, and that certain design suboptimalities are instead
tolerated to avoid the risk of late-introduced bugs.

Sequential equivalence checking (SEC) is a paradigm
to help offset these limitations of CEC. SEC performs a
true sequential check of input/output equivalence, hence is
not limited to operation on designs with 1:1 state element
pairings. The benefits of SEC are manifold. For example,
one may use SEC to efficiently prove the “correctness”
of sequential transformations that preserve design func-
tionality, without a need to re-run lengthier, often lossy
functional verification regressions. This enables resource
savings during the design cycle, andeliminates the risk
associated with sequential transformations– enabling
more aggressive optimizations than otherwise would be
tolerated, especially late in the design phase. Ultimately,
a methodology based upon SEC implies that sequential
transformations can be automated by synthesis tools, al-
lowing more abstract of reference models to be the basis
of verification and synthesis.

In practice, SEC enables a more flexible set of applica-
tions than direct input/output equivalence, including white-
box functional checks. For example, one may check the

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

equivalence of specificmodes of operationof a design,
such as backward-compatibility modes of design evolu-
tions. In cases, one may wish to deploy SEC against
designs that are not even strictly equivalent – but can
be made so by disabling initialization/test/debug logic, by
ignoring output mismatches duringdon’t caretime-frames,
by accounting for differing pipeline stages, etc.

Unfortunately, this benefit does not come without a
price; SEC is much more computationally expensive than
CEC. CEC often assumes not only 1:1 latch correspon-
dence, but also 1:1 design hierarchy equivalence, enabling
CEC to scale efficiently up to even the largest chip-level
designs. SEC, in contrast, often does not assume latch
or hierarchy equivalence; SEC certainly can benefit from
such equivalences if they exist, but these relaxations are
precisely the benefits that SEC is intended to offer over
CEC. This often limits SEC in applicability to only smaller
design units, mandating in cases a fair amount of user
sophistication to decompose a larger design and specify in-
variants at the corresponding boundaries to yield a higher-
level equivalence proof [2]. In many cases, the lack of
scalability of SEC results in an incomplete application of
the technology.

In this paper, we describe the use of SEC within IBM.
Though SEC has also been used on various ASICs, our
focus is primarily on IBM’s high-end custom processor
designs. The demands of such designs is quite extreme
in all aspects, from aggressive clock periods that mandate
timing-aware placement of level-sensitive latches, to circuit
placement issues that may alter the amount of sequential
redundancy in the design to minimize propagation delays,
to aggressive power-saving needs that require techniques
such as clock-gating, to elaborate initialization, test, and
debug logic intertwined with the functional logic at all
hierarchy points. Due to the need for the highest levels of
performance, these optimizations are performed largely by
hand. Thus, for the most part, SEC at IBM is currently
used as an HDL-to-HDL pre-synthesis methodology, with
CEC used to close the gap with post-synthesis gate- and
transistor-level netlists [3].

This methodology has placed significant demands on
our SEC solution, as it tends to be deployed against
arbitrary transformations (even those that do not strictly
preserve equivalence), without the ability to leverage any
feedback from synthesis tools to simplify the check. Fur-
thermore, this often results in our SEC solution being
deployed at fairly large design slices to ensure that all
changes comprising a non-local transformation are cap-
tured.

We discuss our SEC framework in Section II. Our SEC
solution is comprised inSixthSense, which is an IBM
internal (semi-)formal verification toolset for functional
verification as well as for SEC. We discuss front-end

and back-end aspects of SixthSense in Section III. In
Section IV we discuss the technologies comprised within
SixthSense, which have enabled us to scale SEC up to
tens of thousands of state elements and beyond, across
a variety of sequential transformations. In Section V we
discuss some SEC experiments. Finally, in Section VI, we
conclude this paper.

II. SEC with Designated Initial States

We represent the designs being equivalence checked as
netlists, comprising gates of various types including con-
stants, primary inputs, registers, and combinational gates
with various functions. Registers have designatednext-
state functionswhose time-i values define their behavior at
time i+1. Registers also have (possibly symbolic)initial
values which define their time-0 behavior.1 A state is
a cross-product of concurrent valuations to registers; an
initial state is one producible at time 0. Atrace is a set
of 0;1 valuations to a netlist’s gates over time (or 0;1;X
in ternary analysis).

Certain gates may be labeled astargets, where the
verification goal is to obtain a trace illustrating an assertion
of a target from a valid initial state, or to prove that no such
trace exists. Other gates may be labeled asconstraints,
where a valid trace is one that assigns all the constraint
gates to 1 for its possibly finite duration. Finally, certain
gates may be attributed asprimary outputs.

Sequential equivalence checking frameworks generally
validate that from some cross-products of states, two
designs exhibit identical sequences of valuations to their
primary outputs under all possible sequences of valuations
to their primary inputs. Given two netlistsN1 andN2, such
frameworks typically operate upon a composite netlistN3

formed as the union ofN1 and N2, though merging cor-
responding primary input gates to ensure that an identical
sequence of input valuations is applied to bothN1 and
N2, and adding targets representing the exclusive-OR of
corresponding primary output gates ofN1 andN2.

Numerous notions of sequential equivalence have been
proposed over the years. In coarse terms, these approaches
can be categorized into two classes: those that prove equiv-
alence with respect to a specified initial state set (e.g., [4]),
and those that attempt to demonstrate resetability across
all states during an equivalence proof (e.g., [5], [6], [7]).
Our framework utilizes the former approach [8]. We have
several compelling reasons for this choice.

First, initialization data tends to be readily available in
some form for IBM designs. Once the design is mature,
its initialization logic is integrated, and its initialization

1Time is thus defined onN. Registers are presented as our only
sequential gate type merely for simplicity of exposition; more complex
state elements may be decomposed into registers and combinational gates.

sequence is known. For example, many designs use a scan-
based initialization approach where a stream of config-
urable data is flushed through a serially-connectedscan
chain interconnecting most of the state elements of the
design. The set of initial states, often referred to as the
“power-on reset state,” is obtainable via ternary simulation
by X’ing all initial values; simulating the deterministic
reset sequence (e.g., enabling the scan clock and providing
the proper scanned-in data) andX’ing all other inputs; then
using the resulting 0;1;X state as the initial state [9].2

Even when the design is less mature and the initialization
logic is not yet implemented, an approximated initial
state is available and designed against, often 0’ing all
initial values aside from a small subset that is desired to
behave otherwise. While the development of verification
techniques that can be employedbeforeinitialization data
is available are well-motivated (e.g., [7], [2]), this initial
state requirement has not been a practical hindrance in our
environment.

Second, this power-on reset state is the basis of func-
tional verification as well as SEC at IBM. Ternary func-
tional verification may be used to validate that initial-
state X’es do not persist in the design, e.g., due to a
possible deadlock state. Binary functional verification will
randomize anyX’es in the power-on reset state, ensuring
that the design cannot violate any of its properties across
any possible initial state resolution. SEC (using ternary
or, more commonly, binary analysis) is also performed
using this power-on reset state to help ensure that design
modifications intended to preserve sequential equivalence
do not jeopardize the truth of any properties. In this
way, a successful sequential equivalence check can forgo
the need to re-run possibly lengthy functional verification
regressions.

Third, it is generally computationally easier to solve
the problem of SEC given designated initial states vs.
using alignability style of analysis. Though techniques
for the latter have progressed substantially, e.g., through
the use of SAT-based analysis [7], such approaches tend
to be limited in applicability to designs with hundreds
of state elements, or in cases, to a few thousand. In
contrast, through the ability to leverage a robust set of
transformation and verification algorithms, techniques for
performing SEC against known initial states can readily
scale up to designs with 10,000s of state elements [8].

Such scalability does rely to some extent on a significant
number of internal equivalences, hence in cases a man-

2Deterministic values result at most state elements throughthis simu-
lation. Some may retain anX state either because they are not initialized
during the sequence, or due to the weakness of ternary simulation. The
latter tends to be a minor point since most initialization mechanisms are
robust against the weakness of ternary evaluation, and due to methodology
requirements the initialization logic will often be enhanced in robustness
by the designer if an undesiredX results.

ual decomposition can be performed even under a more
general equivalence definition, e.g., using the framework
of [2]. However, we have found that relying heavily on
manual decompositions is somewhat of a barrier to wider-
scale adoption of SEC. In particular, such decomposition
requires a significant amount of manual effort and so-
phistication to set up lower-level constraints to enable the
equivalence check, whereas such constraints are inherent in
the context of a larger design unit, automatically derivable
modulo the complexity of the sequential analysis required
to do so. We thus have spent considerable effort in scaling
our SEC solution to as large of design slices as possible to
enable a maximal return on investment from using the tool,
relying upon manual decomposition only when absolutely
necessary.

Fourth, for some of the design transformations
against which we care to prove equivalence, traditional
alignability-style analysis is inapplicable. Recall thatour
SEC framework operates largely against manual trans-
formations of the design. Using scan-based initialization
schemes, for example, even optimizations such as retiming
may alter the necessary initialization mechanism to ensure
equivalent functionality of a design. This may preclude
a common initialization sequence for the designs being
equivalence checked, even though independent initializa-
tion mechanisms do render the designs into a state from
which they are functionally equivalent. In cases, it is
desired to run SEC before initialization logic is even inte-
grated into a design. Some of our applications furthermore
require specific initial states, e.g., to test against specific
modes of operationof a design; and some rely upon
the addition of logic to the design itself to normalize
out known mismatch conditions, as will be discussed
in Section III. Such applications mandate the need for
precise control of the initial state against which SEC will
be performed, decoupling the problem of validating the
initialization logic as a distinct verification task.

III. SEC Interface

In this section we discuss the front-end and back-end
interface to our SEC toolset. We will keep this discussion
brief, since the details of these interfaces are for the most
part intuitive, if not trivial.

Our SEC toolset takes as input two gate-level design
representations, typically obtained by a compilation of
HDL using a light-weight synthesis process common with
functional verification front-ends. By default, the two
designs have their primary inputs and outputs correlated
by simple name comparison, though this process can
be overridden. Hooks are also available to equivalence
check internal signals referenced in the functional veri-
fication environment, such that a successful SEC result

can completely forgo functional verification regressions.
Synthesizable properties may also be equivalence-checked,
which allows checking arbitrary relations between the two
designs.

As discussed in Section II, the desired initialization
is typically the power-on reset state. This state is of-
ten available in a format which is usable for functional
verification, and can be reused for SEC. Other possible
default initialization options include the all-0 state or the
all-random state, the latter of which often requires some
constraints to prevent bogus mismatches. These defaults
can be overridden on a fine-grained basis. For example,
one may wish to override certainmodebits of a design,
so that the SEC will check equivalence of a design across
all hardware modes to be supported in a product, not just
its default one. As another example, one may wish to
validate that a non-defaultbackward-compatibilitymode
of a redesign truly is sequentially equivalent to the prior
version of that design, despite a great deal of sequential
modifications.

Practically, additional hooks are necessary in SEC.
First, one may need to constrain the input valuations of the
design to avoid “uninteresting” mismatches. For example,
often it is desired to check sequential equivalence only
across the functional mode of the design. One will thus
disable initialization logic and establish functional clocking
during SEC, e.g., to prevent mismatches due merely to
differing scan chain lengths. Other examples include cases
where a design was optimized against an illegal input
valuation (e.g., an invalid opcode); such valuations must be
disallowed to avoid uninteresting mismatches. Such input
constraints are conservative given the stimulus the design
will be subjected to during functional operation, which
should be independently validated for completeness.

Second, in cases, direct comparison of outputs may
yield uninteresting mismatches even if input constraining
is performed. For example, a redesign may add a pipeline
stage to a design. Without accounting for this latency
difference, output mismatches would be inevitable. As
another example, one may optimize the design such that
certain outputs may behave differently duringdon’t care
time-frames. Clock gating is one prevalent case of this;
when a design is idle, its clocks may be disabled to save
power; however, the pre-clock-gated variant of that design
may produce differing output valuations during such idle
conditions. One may thus need to restrict the equivalence
check tocare time-frames.

Our SEC toolset supports an HDL-based language to
allow a flexible mechanism for adding constraints, over-
riding primary inputs and internals, and injecting logic to
be equivalence checked in place of certain outputs.

Given the two designs, their initialization data, and any
optional constraints, overrides, or alternate controls such

as black-boxing, the SEC is ready to run. The outcome of
this run is, on a per-compare-point basis, either a proof
of equivalence; the demonstration of a mismatch; or an
unsolved “partial validation” result indicating information
such as the number of time-frames from the initial states
for which a mismatch provably cannot occur. Mismatches
are reported in the form of traces, which can be viewed
using an IBM-internal waveform / design source browser,
illustrating valuations over time for both designs which
lead to the mismatch. An “unsolved” result is uncommon
even on large designs, and can almost always be resolved
through hand-tuning the algorithm flow used by SixthSense
(refer to Section IV-B). Otherwise, techniques such as
black-boxing of large arrays, or cutpointing temporally-
deep logic to facilitate the use of semi-formal approaches
to more adeptly identify redundancies in the composite
netlist, may be used.

IV. SEC Algorithms

In this section we discuss the algorithms used in
our SEC toolset. SixthSense is a multi-algorithmic
transformation-based verification(TBV) tool. TBV is a
framework proposed in [10] wherein one may synergisti-
cally utilize various transformation algorithms to iteratively
simplify and decompose complex problems until they
become tractable for automated formal verification. All
algorithms are encapsulated asengines, each interfacing
via a common modular API. Each engine receives a
verification problem represented as a netlist, then operates
on that problem to attempt to solve it (e.g., as with a
reachability engine) or to attempt to simplify or decompose
it (e.g., as with a retiming engine). In the latter case,
it is generally desirable to pass the simplified problem
to another engine to further process that problem. As
verification results are obtained on the simplified problem,
those results propagate through the sequence of engines
in reverse order, with each transformation engine undoing
the effects of the transformations it performed to present
its parent engine with results that are consistent with the
netlist that its parent transmitted.

SixthSense was initially developed for functional veri-
fication, hence our original set of engines was developed
with property checking applications in mind. To extend
the applicability of SixthSense to SEC, we added various
usability hooks (refer to Section III), as well as targeted
algorithms – primarily for sequential redundancy elimina-
tion. This has proven to be a synergistic framework, as
we have found that all of the engines that we initially
developed for functional verification have played a major
role in enabling the solution of complex SEC problems,
and vice versa.

1. Guess theredundancy candidates: equivalence classes of
gates, where each pair of gates in an equiv class is
suspected to be functionally equivalent modulo inversion.

2. Select arepresentative gatefrom each equiv class.
3. Construct thespeculatively-reduced model: replace every

fanin reference to a gate by a reference to its representative;
add amiter over each gate and its representative.

4. Attempt to prove that each miter is unreachable.
5. If any miter cannot be proven unreachable, refine the equiv

classes to separate the corresponding gates; go to Step 2.
6. All miters have been proven unreachable; the equiv classes

reflect true redundancy hence their gates may be merged.

Fig. 1: Generic redundancy removal algorithm

A. Sequential Redundancy Removal

The technologies of our SEC tool have been presented
in [8]. Our sequential redundancy elimination flow is as
per Figure 1, using a scheme similar to that of [4], [11].
As noted in [4], “it is necessary to combine the detection
and utilization of similarities to really benefit from them”
during SEC proofs. This is accomplished via anassume-
then-proveparadigm. This paradigm often begins with a
redundant gate guessing approach as in Step 1, using a
variety of techniques such as semi-formal analysis (ran-
dom simulation and bounded model checking), structural
analysis, name and hierarchy comparisons, etc. Note that
semantic analysis is generally necessary for optimality;
e.g., in case sequential redundancy was added to one
design,N:M (vs. 1:1) register grouping may be needed.

Once the redundancy candidates are guessed, a specu-
lative merge of the redundancy candidates is performed in
Step 3 to create the model to be equivalence checked (the
“assume” step). Finally, proof analysis is performed on the
speculatively-reduced model to attempt to validate the cor-
rectness of the candidates (the “prove” step). This correct-
ness is represented by the unreachability of amiter, which
is an internally-generated target checking the exclusive-
OR of two candidates. Failed proofs, whether falsified
or inconclusive (e.g., due to an ineffective algorithm or
insufficient resources), cause a refinement of the candidates
and another assume-then-prove iteration.

In order to optimally leverage redundancies within the
design, we have found that redundancy must be exploited
not only at the register level, but also at the gate level. For
example, retiming is a fairly global design optimization
that may potentially relocateall registers in the design,
rendering an assume-then-prove framework which only
seeks redundancies across registers non-scalable. However,
using gate-level equivalence-classing, coupled with an ad-
equately strong proof technique, we can often efficiently
solve the most complex of retiming-and-resynthesis prob-
lems as demonstrated in [8].

To avoid an excessive number of refinement loops in

the algorithm of Figure 1, it is important to obtain a valid
set of redundancy candidates from which the speculatively-
reduced model is constructed. This is especially true for
some of the larger designs that we have equivalence
checked, which may have millions of gates and hundreds
of thousands of registers; poor equivalence classing may
be fatal to the conclusiveness of this algorithm. If pair-
ing based upon semi-formal analysis is inadequate, one
approach we have found to help augment this analysis is
to perform miter falsification on the speculatively-reduced
model prior to proof iterations [8]. This allows us to
exploit the speculative mergings to enable deeper symbolic
analysis, even if some of those speculative mergings are
incorrect at deeper time-frames. We can also deploy light-
weight algorithms before the core falsification effort, which
may discard miters that are implied by others via low-
cost transformation and proof analysis to better focus
differentiation resources on theroot incorrect pairings.

B. Scalable SEC via Algorithmic Synergies

What is particularly novel in our framework vs. prior
approaches is the much richer set of algorithms that we
use in the “prove” step. As we describe in [8], discarding
redundancy candidates during refinement effectively weak-
ens the induction hypothesis of the assume-then-prove
framework. Discarding candidates due to ineffective proof
techniques thus precludes the leveraging of those internal
equivalences to simplify the proof of other miters after
the refinement, which often ultimately avalanches into a
failed proof of output equivalence. Simply stated, even
within a single design component, every miter is essen-
tially a distinct verification problem. It is well-known that
using the proper set of algorithms for a given verification
problem can be exponentially faster than using an inferior
set. Prior work has relied primarily upon induction for the
proof step [4], [12], possibly augmented with localized
reachability analysis for redesigned regions which cannot
be well-paired [11]. While such algorithms are indeed key
in our framework, we additionally may leverage a variety
of synergistic transformation and verification engines to
attempt to discharge the miters. Our TBV framework can
thus be seen as a robust and flexibleextensionof induction-
based frameworks. In practice, we have found that this
flexibility is critical to the solution of the most complex
SEC problems.

Some of the engines that we have found particularly
powerful in SEC proofs include the following.� COM: a redundancy removal engine which uses

combinational techniques such as structural hashing
and resource-bounded BDD- and SAT-based analysis
to identify gates which are functionally redundant
across all states [13], as well as a variety of rewriting

techniques such as [14] to reduce netlist size.� RET: a min-area retiming engine, which reduces the
number of registers by shifting them across combina-
tional gates [10].� CUT: a reparameterization engine, which replaces the
fanin-side of acut of the netlist graph with a trace-
equivalent, yet simpler, piece of logic [15].� LOC: a localization engine, which isolates a cut of
the netlist local to the targets by replacing gates by
primary inputs.LOC is an overapproximate transfor-
mation, and uses a SAT-based refinement scheme to
prevent spurious counterexamples [15].� ISO: a structural isomorphism detection engine,
which equivalence-classes isomorphic targets, such
that only one representative target per equivalence
class needs to be solved by a child engine flow [16].� MOD: a structural state-folding engine used to ab-
stract certain clocking and latching schemes, general-
izing the techniques presented in [17], [18].� SAT: a hybrid-algorithm SAT solver based upon [13],
which interleaves redundancy removal and structural
rewriting with BDD- and SAT-based analysis.� RCH: a BDD-based reachability engine.� IND: a SAT-based induction engine which uses
unique-state constraints.� BIG: a structural target-enlargement engine, which re-
places a target by the simplified characteristic function
of the set of states which may hit that target withink
time-steps [19].� SCH: a semi-formal search engine, which inter-
leaves random simulation (to identifydeep, inter-
esting states) and symbolic simulation (using either
BDDs [20] or theSAT engine) to branch out from
states explored during random simulation.� EQV: a sequential redundancy removal engine based
upon the algorithm described in Section IV-A [8].

Note that, rather than relying solely upon the flow of
Figure 1 as our core SEC process (with a multi-algorithmic
“prove” step), we have encapsulated this sequential redun-
dancy elimination flow as theEQV engine. This enables
us to apply an arbitrary sequence of enginesbeforeEQV,
to exploit characteristics of the problem which may enable
alternate algorithms such asISO to more quickly reduce
its domain – as well asafter EQV, to leverage the se-
quential redundancy removal as a synergistic preprocessing
to subsequent engines. This flexibility is often critical for
leveragingEQV in property checking, wherein redundancy
removal alone may be inadequate to solve the problem.

Encapsulating the sequential redundancy elimination
flow as theEQV engine has non-obvious benefits even
within the “prove” step. For example, on very large designs
with millions of gates, the cost of computing an optimal
set of equivalence classes may become prohibitive. It may

thus be advantageous to arrive at that optimal grouping
in phases. E.g., we may first instantiate anEQV that
attempts only an accurate (yet incomplete) 1:1 register
pairing. We may then leverage a more aggressiveEQV
instance on the suboptimal speculatively-reduced model,
attempting to find 1:1gatepairings. This may be followed
by yet anotherEQV instance attempting to find general
N:M gate pairings, possibly leveraging a variety of other
transformations in this flow to further reduce the domain
of the problem. For the largest designs, often the most
efficient strategy is that of finding efficient transformations
that safely chip away at size, until more exhaustive, albeit
expensive, algorithms become applicable. In this example,
we may defer the need for heavy-weight proof analysis
until the most deeply-nestedEQV instance when the
problem domain is at its smallest, vs. suffer suboptimal
merging or prohibitive proof resources directly in the first
EQV instance.

One pronounced benefit we have noted lies in the
use ofLOC on the speculatively-reduced model. This is
particularly useful when a redesigned portion of the design
relies upon satisfiability don’t-cares (SDCs) from its fanin
cone to ensure equivalence, and when the sequential depth
of logic in that cone precludes inductivity. By using a
localization-refinement scheme to discharge the miters in
the speculatively-reduced model, only the subset of the
cone of influence necessary to ensure those SDCs will
be included for proof analysis. In contrast, applyingLOC
without speculative merging is often highly inefficient for
SEC problems, since it tends to degrade into including
the entire cone of influence of the miter to ensure that no
mismatches can occur, vs. including only the speculatively-
merged subset of that cone needed to ensure the SDCs.
Additionally, the localized cone may become quite large
in cases, precluding an efficient proof. The cutpointing
inherent in LOC opens up great reduction potential for
transformations such asRET or CUT, possibly followed
by additionalLOC instances and other engines, until the
size becomes amenable forRCH or optimal N:M gate
pairing in EQV[15].

Due to the complexities of SEC for dissimilar designs,
numerous dedicated SEC algorithms have been proposed
for specific types of transformations. For example, in [21]
a technique is proposed to derive aretiming invariantthat
may be inductively discharged more simply than could di-
rect equivalence candidates. Such algorithms are somewhat
complementary to ours, in that they could be incorporated
as engines within our TBV framework, and our richer set
of algorithms could in cases be used to discharge their
resulting proof obligations. While such dedicated solutions
are powerful and well-motivated, we have nonetheless
found our flexible TBV approach to practically superset
such dedicated techniques. For example, we have found

that iterations between ourEQV andRET engine tend to
capture redundancies arising from gates that are equivalent
modulo a time skew [22], even in cyclic designs where
retiming and resynthesis are performed in conjunction
with other transformations such as FSM re-encoding. This
strategy also heuristically capturesk-th invariants [23],
which are redundancies that hold only after timek. The
state re-encoding performed by engines such asRET and
MOD is often effective in enhancing the inductiveness
of properties of designs [24], as isBIG [25]. SEC of
loop-free circuits may be efficiently reduced to CEC in
our framework using techniques such asRET, COM, and
CUT, or structural diameter bounding [19], without a need
for dedicated algorithms to achieve scalability [26], [7].

For the most difficult problems, we have found that we
may need dozens of nested engines to enable a solution.
To automate the intricate problem of finding the best-
tuned algorithm flow for a given problem, our system
utilizes an expert systemengine configured with a set
of rules about commonly useful engine sequences, which
orchestrates the scheduling of the engines whilelearning
by trial and error about the effectiveness of the various
engines on the problem at hand [27]. While for the largest
and most complex problems there are still cases where
an expert user can find a tuned configuration that eludes
effective solution by the expert system engine, this engine
has demonstrated to be much more powerful as a default
TBV configuration than any pre-packaged set of engine
sequences we have found. We estimate that the use of the
expert system engine reduced the need for manual tuning
of configurations by approximately an order of magnitude.
Though like all aspects of SixthSense, the expert system
engine continues to evolve in strength and capability.

V. Case Studies

Over the years, SixthSense has been used for many
thousands of SEC runs, and has exposed far too many
design flaws to count. Example SEC applications include:� Verification that synthesis tuning, e.g., retiming or

addition of sequential redundancy to enhance timing,
does not alter functionality.� Verification that atechnology remapto a new latching
and clocking schemes does not alter functionality.� Verification that the modification of debug, test, and
initialization logic does not alter functional behavior.� Verification that abackward-compatibleoperational
mode of a manually-redesigned component truly
brings the redesigned component back to its prior be-
havior. Similarly, verification that a redesign affecting
only specific types of input stimulus (e.g., a certain
instruction type) preserves equivalence if those input
stimuli are disallowed.

� Verification that clock gating functionality (which
disables clocks to certain state elements when those
elements are not required to update) does not alter
design behavior duringcare time-frames.� Verification that RTL implementations match the be-
havior of abstract reference models [28].

The design component sizes at which SixthSense is
run typically range from several hundred state elements to
well over 100,000. Table I illustrates the results of several
sequential equivalence checks, where we detail the set of
engines that solved the particular problems, the size of
the resulting problem at various stages of the proof, and
the total resources required to complete these equivalence
proofs. Refer also to [8] for more examples.

TheVSUis a vector / scalar unit, comprising a floating-
point unit plus a vector arithmetic unit. The manually-
performed design transformations were significant, includ-
ing substantial redesigns of trace, debug, and ABIST
(Array Built-In Self-Test) logic, timing optimizations, and
a remapping to new latch library cells. After black-boxing
certain memory arrays, which were independently verified
by SEC, the earlier design comprised 82,151 registers, and
the redesign comprised 82,165. Though this may appear to
be a nearly 1:1 state element correlation, there were 17,062
registers that could not be paired across the two versions
of the design even with sequential analysis.

The IU is a PowerPC instruction unit. Due to a hierar-
chy redesign that changed its interface, we performed this
check at its parent hierarchy level, black-boxing unneeded
child entities. The design changes in this unit were major,
including a redesign of debug and trace logic that reduced
an array and its datapath by one half, rearrangement
of several design hierarchy points, and the addition of
gating to certain clocks. After black boxing unchanged
memory arrays, the earlier design comprised 132,081 state
elements; the redesign comprised 109,493 state elements.

MUL is a 64-bit multiplier. Its redesign included a
retiming of the pipeline structure, and a new algorithmic
implementation of thesign processing of the carry-save
adder tree. The pre-optimized design comprised 1,623 state
elements; the optimized design comprised 2,145.

VI. Concluding Remarks

We have described our framework for sequential equiva-
lence checking (SEC) at IBM. Our solution has been driven
by a need for scalability and for applicability across arbi-
trary design transformations, including those that preserve
neither initialization sequences nor even strict functional
equivalence without the addition ofnormalization logicto
compensate for the inequivalences. We have thus adopted
a multi-algorithmic solution for performing SEC against
designated initial states. Our framework has proven to be

VSU Initial COM EQV1 RET COM MOD IND LOC2 EQV3 LOC CUT RCH
Inputs 2751 2427 2131 4271 3285 2402 2380 2348 2345 63 44
ANDs 157359 693362 459973 433095 419657 284621 280200 275000 252750 441 529
Registers 157359 125180 71121 63579 63575 32038 31546 31081 26390 94 94 5109 s
Targets 1666 1666 4852 4640 4640 2636 1211 615 1 1 1 2.5 GB

IU Initial COM EQV1 IND LOC2 COM MOD LOC4 CUT EQV3

Inputs 5548 3020 3018 1775 1775 1775 2905 605 370
ANDs 1154650 565513 299243 206756 202935 198512 127826 2356 1905
Registers 239898 141987 71788 50597 50404 50033 37022 593 582 2378 s
Targets 2234 2234 2371 552 304 304 42 1 1 2.9 GB

MUL Initial COM EQV5 EQV6 EQV3

Inputs 366 136 135 135
ANDs 34878 23386 14561 12422
Registers 3231 1935 1356 803 22068 s
Targets 68 67 65 65 600 MB

TABLE I: SEC Experiments.1Analysis of speculatively-reduced model shown; the proof of all targets on this model
implies the proof of the initial targets.2This LOC instance is used to eliminate some non-inductive targets; though not
shown, the configurationRET,COM,CUT,RCH was used to eliminate these targets.3This EQV performs fullN:M gate
merging.4This LOC performs a case split per target; the largest resulting localized cone is shown.5This EQV performs
1:1 register merging only.6This EQV attempts to prove constant gates only. Total resources (at 1.7GHz) across all targets
shown in final column.

very powerful, scaling up to designs with 10,000s of state
elements and beyond. Its efficiency in exposing intricate
design flaws is causing SEC to become a standard part
of design methodologies within IBM. While our system is
powerful, SEC is a PSPACE-complete problem, hence we
continuously are in the process of improving the capacity
and automation of our solution through research and devel-
opment. We strongly encourage the research community to
continue working along these lines as well.

References

[1] A. Kuehlmann and C. van Eijk,Combinational and Sequential
Equivalence Checking,in Logic Synthesis and Verification. Kluwer
Academic Publishers, 2004.

[2] Z. Khasidashvili, M. Skaba, D. Kaiss, and Z. Hanna, “Theoretical
framework for compositional sequential hardware equivalence ver-
ification in presence of design constraints,” inICCAD, Nov. 2004.

[3] J. Ludden et al., “Functional verification of the POWER4 micro-
processor and POWER4 multiprocessor systems,”IBM Journal of
Research and Development, Jan. 2002.

[4] C. A. J. van Eijk, “Sequential equivalence checking without state
space traversal,” inDATE, March 1998.

[5] C. Pixley, “A theory and implementation of sequential hardware
equivalence,” inTCAD, Dec. 1992.

[6] V. Singhal, C. Pixley, A. Aziz, and R. Brayton, “Theory ofsafe
replacements for sequential circuits,” inTCAD, Feb. 2001.

[7] Z. Khasidashvili and Z. Hanna, “SAT-based methods for sequen-
tial hardware equivalence verification without synchronization,” in
ICCAD, 2003.

[8] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploit-
ing suspected redundancy without proving it,” inDAC, June 2005.
Extended version available.

[9] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton, “The validity
of retiming sequential circuits,” inDAC, 1995.

[10] A. Kuehlmann and J. Baumgartner, “Transformation-based verifi-
cation using generalized retiming,” inCAV, July 2001.

[11] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang, and F. Brewer,
“AQUILA: An equivalence checking system for large sequential
designs,”IEEE Trans. Computers, vol. 49, no. 5, May 2000.

[12] P. Bjesse and K. Claessen, “SAT-based verification without state
space traversal,” inFMCAD, November 2000.

[13] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust
Boolean reasoning for equivalence checking and functionalproperty
verification,” TCAD, Dec. 2002.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,”in DAC,
July 2006.

[15] J. Baumgartner and H. Mony, “Maximal input reduction ofse-
quential netlists via synergistic reparameterization andlocalization
strategies,” inCHARME, Oct. 2005.

[16] G. S. Manku, R. Hojati, and R. K. Brayton, “Structural symmetry
and model checking,” inCAV, July 1998.

[17] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction
for formal verification,” in ICCAD, Nov. 2005.

[18] J. Baumgartner, A. Tripp, A. Aziz, V. Singhal, and F. Andersen,
“An abstraction algorithm for the verification of generalized C-slow
designs,” inCAV, July 2000.

[19] J. Baumgartner, A. Kuehlmann, and J. Abraham, “Property checking
via structural analysis,” inCAV, July 2002.

[20] V. Paruthi, C. Jacobi, and K. Weber, “Efficient symbolicsimula-
tion via dynamic scheduling, don’t caring, and case splitting,” in
CHARME, Oct. 2005.

[21] M. Mneimneh and K. Sakallah, “REVERSE: Efficient sequential
verification for retiming,” inIWLS, 2003.

[22] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen, “On verifyingthe
correctness of retimed circuits,” inGLSVLSI, Mar. 1996.

[23] F. Lu and T. Cheng, “Sequential equivalence checking based on
K-th invariants and circuit SAT solving,” inHLDVT, Dec. 2005.

[24] M. Wedler, D. Stoffel, and W. Kunz, “Exploiting state encoding
for invariant generation in induction-based property checking,” in
ASP-DAC, Jan. 2004.

[25] M. Awedh and F. Somenzi, “Increasing the robustness of bounded
model checking by computing lower bounds on the reachable
states,” inFMCAD, Nov. 2004.

[26] Z. Khasidashvili, J. Moondanos, and Z. Hanna, “TRANS: Efficient
sequential verification of loop-free circuits,” inHLDVT, 2002.

[27] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and
A. Kuehlmann, “Scalable automated verification via expert-system
guided transformations,” inFMCAD, Nov. 2004.

[28] C. Jacobi, K. Weber, V. Paruthi, and J. Baumgartner, “Automatic
formal verification of fused-multiply-add FPUs,” inDATE, March
2005.

