
Seqver : A Sequential Equivalence
Verifier for Hardware Designs

Daher Kaiss
Formal Technologies Group

Intel Corporation
daher.kaiss@intel.com

Silvian Goldenberg
Digital Enterprise Group

Intel Corporation
silvian.goldenberg@intel.com

Ziyad Hanna
Formal Technologies Group

Intel Corporation
ziyad.hanna@intel.com

Zurab Khasidashvili
Formal Technologies Group

Intel Corporation
zurab.khasidashvili@intel.com

Abstract— This paper addresses the problem of formal equiv-
alence verification of hardware designs. Traditional methods and
tools which perform equivalence verification are commonly based
on combinational equivalence verification (CEV) methods. We
however present a novel method and tool (Seqver) for performing
sequential equivalence verification (SEV). The theory behind
Seqver is based on the alignability theory, however in this
paper we present a refinement to that theory: strong alignability,
which introduces a concept of automatic model synchronization
to the verification process. Automatic synchronization (reset)
of sequential synchronous circuits is considered as one of the
most challenging tasks in the domain of sequential equivalence
verification. Earlier attempts were based on BDDs or classical
reachability analysis, which by nature suffer from capacity
limitations. Seqver is empowered with hybrid verification engines
which combine state of the art SAT and BDD based engines for
performing synchronization and verification. Seqver is widely
used today in Intel for formally verifying leading next generation
CPU designs.

I. INTRODUCTION

Formal Equivalence Verification (FEV) is an essential CAD
capability used to ensure correct implementation of VLSI
designs, by verifying the equivalence between the implemen-
tation (for example schematics) and the specification (for
example RTL) of the designs. This capability is also widely
used when logical changes are done on a design, and the
functional equivalence between the original and modified
circuits must be guaranteed. We refer to the original circuit
as the specification (spec) model and to the modified circuit
as the implementation (imp) model. CEV technique requires
complete correspondence between the storage elements of
the models under comparison. Once this is guaranteed, a
tautology-checking procedure (e.g. BDD [1] or SAT [2] based
solver), can be employed to detect functional equivalence. In
this case, the two compared designs are normally decomposed
into combinational sub-circuits.

While most of the FEV tools that are available today in
the EDA market are based on CEV, performing combinational
verification has its drawbacks, which causes a vast impact on
the CPU design process. First, the requirement to map every
sequential in the spec model to a corresponding one in the
imp model forces the designers to write detailed specifications.
This low level of abstraction in the specification model has
a negative impact on the quality of the specification: more
lines of code traditionally form a trigger to error-prone design.

In addition, detailed specification normally takes longer to
validate since more simulation cycles are needed. Second, and
not less important, designing a chip with the state matching
requirement in mind has major impact on design convergence.
It should be clear that during the chip design, RTL design
involves a validation process, which ensures the correct func-
tionality of the RTL. It is a time consuming process and thus
designers try to reduce reiterating this process as much as
possible. It is a fact that once a functional change in the
implementation involves a sequential replacement, the RTL
must be changed as well in order to meet the state matching
requirement. Every change in the RTL triggers the validation
process on the modified RTL. This process is found to be
time consuming and may sometimes impact the schedule of
the project. Third, state matching designs require mapping
between the sequentials in both designs. Despite the fact
that some methods for automatic mapping exit, most of this
effort in custom designs is manual and thus time consuming.
With the advent of Seqver, there is no need to map all the
sequentials. The requirement now is to map as many signals
as possible (not necessarily sequential elements). Sequential
verification has drastically reduced the effort of mapping
during FEV.

SEV overcomes the above limitations by enabling verifica-
tion of two hardware designs which are at different or same
abstraction levels, e.g. it enables verification of two designs
with a different number or different placement of sequentials.
This enables the RTL designers to write a smaller, more
readable and easier to validate RTL, without compromising
formal equivalence verification with the implementation. An
example of an abstract implementation of a memory design
vs. a detailed implementation is illustrated in Figure 1. In
this design, the specification represents the memory with a
flop based modeling, however to satisfy design restrictions,
the circuit is implemented using a latch based model. In
addition, notice that due to design restrictions, the designer
had to stage the pre-decoding logic. In state matching designs,
the specification should have matched the implementation
in terms of sequentials, i.e., the same latches that appear
in the implementation should appear in the specification. In
this case, modifying the specification to mimic the schematic
implementation has negative consequences in terms of RTL
abstraction.

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

A[0]
A[1]
A[2]

A[n]

CLK

D[0..m]

A[0]
A[1]
A[2]

A[n]

D[0..m]

CLK

Latch

DEC

PRE

Latch

POST

DEC

DEC

Latch based memory implementation

Out

Out

FlipFlop based memory implementation

Latch

Specification

Implementation

Fig. 1. Example of abstract vs. detailed memory implementation

The rest of this paper is organized as follows. In the next
section, we present a framework for a precise, and at the same
time flexible, representation of the circuit network. Section III
gives a theoretical background to sequential verification and
alignability verification. Section IV describes briefly and in
high level the way we perform strong alignability verification.
In section V, we describe why sequential verification is a step
function over combinational verification in terms of accuracy
and improvement of design productivity. Experimental results
are reported in Section VI. Future work is discussed in
section VII. We conclude in section VIII.

II. PRELIMINARIES

A circuit design is modeled at the gate level in terms of
combinational elements and storage elements. For simplicity
we will assume that the storage element that we have is a
device which transports its input to its output when the clock
signal is high, and holds the output value when the clock
signal is low. A state � of a circuit

�
is any one of the���

possible assignments of boolean values to the � storage
elements of

�
. It should be assumed that the power-up, or

starting state of a machine representing a circuit design cannot
be predicted. Without restricting generality, we will assume
that any circuit

�
has exactly one output, � , and a set of �

storage elements �	��
�

�� � . We denote by
�	�

and
���

our
specification and implementation circuits with outputs � � , � � ,
and with � and � storage elements (or latches) � � �
�
�
�� �� and� � �

�
�� �� , respectively. We assume that both circuits have the
same set of inputs. We denote by

�	�
the combined circuit of� �

and
� �

(the product machine [11]) with shared inputs and

equivalence of ������� ��� � ��� as the output.

We consider ternary modeling of circuit node values. A
value could be one of the binary values, T or F, or an undefined
value, � (elsewhere also denoted by X). Given a binary input
vector sequence � , � � �"! � � will denote the value of node �
in a circuit

�
after # -valued simulation of

�
with � , starting

at state � . Similarly,
� � �"! � � denotes the (ternary) state into

which � brings
�

, from state � . The unknown state of
�

is the
state in which all storage elements have the undefined value
X. A binary state of a circuit

�
is a state in which all state

elements have binary values.

A circuit
�

can be represented by a collection of next-
state functions (NSFs) of the latches as well as of the output,
where a NSF is a function of current and next-state values of
inputs and latches. For example, consider the circuit

�
which

is illustrated in figure 2. It consists of four inputs $!&%'!�(and(*),+ , one latch) , and and -/. gate (�) which is the output of the
circuit. We annotate the current state value of a variable 0�120
using 1 and the next state value of the same variable using 143 .
This way, the next state function of the output � is) 365 (3 , while
the NSF of the latch) is � (*),+ 3&7 $ 387 % 3 � 59��: (*),+ 387) � . Available
convenient representations for next state functions can be
BDDs or boolean expressions (simple graph data structures
for representing propositional logic, where nodes of the graph
represent binary operation 7 ! 5 , with an annotation whether a
variable is negated or not, and variables appear as leafs). We
adopted boolean expressions in our work since uniqueness of
BDDs in not needed.

a

b

clk

c

l

o

Fig. 2. Example of latch and output functions

III. SEV AND ALIGNABILITY THEORY

Moving from combinational to sequential verification re-
quired major theoretical and methodological changes in the
FEV tools. Combinational verification was considered an
easier task. The two compared designs were decomposed
into slices via cutting the designs on the outputs of the se-
quentials which were mapped (traditionally by the designers).
Equivalence verification was performed separately on each
of the slices by assuming that the mapped sequentials are
equivalent in the current state, and verifying that they are
also equivalent in the next state. The task of performing
sequential verification is much more complex, since it is
not obvious from which states the verification should start.
This problem of sequential hardware synchronization (reset) is
considered as one of the most challenging tasks in the domain
of formal sequential equivalence verification. To read more
about comparison between CEV and SEV, please refer to [15].

Some methods for hardware equivalence verification are
based on the theory of finite state machines [5], where two
finite automata are defined to be equivalent if, starting from a
pre-defined initial state, they accept the same input sequence,
i.e. the sequence leads to a set of predefined final accepting
states. In this case, the two compared designs are modeled
using two automata or two FSMs and the equivalence of the
designs is shown by proving equivalence of the corresponding
FSMs achieved via the equivalence of their corresponding
automata. Classic BDD-based model checking and verification
algorithms require a reset state [6]. The same is true for
well known SAT-based model checking algorithms such as
BMC [7], [8] or the induction method [9]. However, in
practice, the starting state of the compared circuits is not
always available as the power-up state of a hardware design
cannot be predicted or controlled. Therefore, a technique for
automatically computing the reset state is needed in order
to perform equivalence verification. Alignability equivalence
[10] is a convenient concept of hardware equivalence verifi-
cation. In this section, we recall concepts related to it.

Definition 3.1: An initializing sequence of
�

is a sequence
of binary inputs which, when applied to the unknown state of�

, brings
�

into a binary state.
Definition 3.2: State � � � !&�<; � of the combined circuit

�	�
is an equal (similarly differ) state if � � �=� ; (respectively� �?>�@� ;) at � � � !&�<; � .

Definition 3.3: State � � � !&� ; � of the combined circuit
� �

is an equivalent state (denoted by � �BA �<;) if for any input
sequence � , � � � � � ! � � ��� ; � �<;C! � � . States � � and �<; are then

called equivalent states of
� � and

� ; . 1

Definition 3.4: ([10])
1) A binary input sequence � is an aligning sequence for

a combined state � � � !&� ; � of
� �

if it brings
� �

from
state � � � !D� ; � into an equivalent state.

2) Circuits
� � and

� ; are alignable, written
� ��E�/FDG � � ; , if

every state of
�H�

has an aligning sequence
It is shown in [10] that

� � E� FDG � � ; iff there is a sequence,
called a universal aligning sequence, that aligns any state
of
���

. When the two circuits coincide
� � � � ; � �

, then
following [4] we speak of self-alignability of

�
. It is easy to

see that
�

is self-alignable iff it is weakly synchronizable, as
defined in [13]:

Definition 3.5: A weak synchronizing sequence (ws-
sequence for short) of a circuit

�
is an input vector sequence

that brings
�

from any binary state to a subset of equivalent
states I � � !
�
�
 !&� �KJ , called ws-states of

�
.

Theorem 3.6: Alignment Theorem: [10] Circuits
� � and� ; are alignable if and only if each circuit is weakly synchro-

nizable and there is an equivalent pair � � A � ; of states in
� �

and
� ; . The concatenation of ws-sequences of

� � and
� ; is

a ws-sequence for both of them and it weakly synchronizes� � and
� ; into equivalent ws-states (when

� � and
� ; are

alignable).
We are now going to define a more restrictive version of
alignability, which is called strong-alignability. In this defi-
nition, we are restricting the weakly-synchronizing sequence
to be a synchronization sequence [12]:

Definition 3.7: A reset or synchronization sequence �ML
brings

�
from any binary state to a unique state � L , called

a reset or synchronization state. A circuit
�

is synchronizable
if it has a synchronization sequence.
Note that the set of ws-states and the set of synchronization
states are closed under state transition. It is clear that every
synchronization sequence is also a weak synchronization se-
quence. Therefore we can define strong-alignability as follows:

Definition 3.8: Strong-Alignability: Circuits
� � and

� ; are
strongly alignable if each circuit is synchronizable and there
is an equivalent pair � � � !&� ; � of states in

� � and
� ; .

The concatenation of synchronizing sequences of
� � and

� ; is
a synchronizing sequence for both of them and it synchronizes� � and

� ; into equivalent states when
� � and

� ; are strongly
alignable. Let circuit

�H�
be with output � , and assume thatN

is the set of states of
�H�

; then:� � E�/FDG � � ; �PO �RQ S �KT N Q U � L � ��� � �"! � � 7SWVXQ �Y� � L ! V � � T Z (1)

Due to the fact that most successful SAT solvers are
propositional logic solvers, there is a need to separate the
computation of the initial state(s) from the equivalence ver-
ification. Equivalence verification of two circuits is done in
two stages: first we compute a sequence which guarantees that
when applied to a circuit

�H�
, it brings the circuit to an equal

1The concepts of equal-states and differ-states should not be mixed with
equivalent and inequivalent states. In this definition, all states are binary.

state (to differentiate from an equivalent state since at this
stage we don’t know whether the equal state is an equivalent
one or not). Second, we perform equivalence verification from
the state(s) of the first stage. If the verification passes, then
the models are declared alignable. The reasons for choosing
strong alignability instead of the regular alignability theory for
performing equivalence verification were driven by practical
reasons. Assume that the second stage fails with a counter
example. This failure can stem from two possible reasons: (1)
there is no sequence that aligns the two circuits, (2) this is
a real counter example that needs to be debugged. Since it
is not practical to require from designers to debug counter
examples which later on will be root caused to a problematic
initialization, we decided to be consistent in the outputs of
our verification tool. This method requires the designs to be
resettable and in case they are not, we do not proceed to the
second stage. However, when the method succeeds in the first
stage, it is guaranteed that any counter example which is found
in the second stage (equivalence verification) is a real one.

IV. PERFORMING STRONG ALIGNABILITY

It goes without saying that without decomposition, perform-
ing alignability verification on full-chip designs is beyond the
capacity of current verification tools. In [14], a compositional
alignability verification framework was proposed. The main
idea is that provided the circuits

� � ! � � are both weakly
synchronizable, their alignability can be proved by decompos-
ing them into a stable decomposition with small subcircuits,
and proving alignability of each corresponding sub-circuit
pair of

� �
. For this work, it is enough to know that input

constraints are imposed on each corresponding subcircuit pair,
say ��[� ! [�,� ; these constraints model the environments of [�
and [� in

�H�
and

���
, respectively; and for compositional

equivalence verification of
�\�

and
���

, it is necessary that
the synchronizing sequence of [� and [� must satisfy these
constraints. In practice, these are normally constraints relating
circuit signal values in the same time frame.

Given two circuits
� �

and
� �

, SAT-based strong alignability
verification is performed in two stages: (1) computation of
reset sequence for both circuits (which by itself produces
the reset state) and (2) performing SAT-based equivalence
verification from the computed reset state.

During the synchronization stage, we assume that all state
elements � are uninitialized (with X value), and using a SAT
solver we look for a sequence that brings the circuit to a state
where all state elements have binary values. More formally,
for every circuit, we try to find a sequence that satisfies the
following:]

^`_Ca �6�cb +2d �fe � 5g���hb +id �@j � (2)

where + is the length of the sequence, and �hb +id represents
that value of the sequential element � after simulating the
sequence. Seqver’s synchronization algorithm is in the process
of patent filing [16].

O

0

C2C1
O

0

Specification Implementation

Fig. 3. Non resettable designs

Once the reset state is computed, we mainly use commonly
used model checking algorithms (SAT [9] or BDDs) in order
to perform the equivalence verification.

V. SEQVER AS A STEP FUNCTION OVER CEV

In this section, we give an overview of major advantages in
terms of improving design productivity that sequential verifica-
tion provides. We will discuss the following aspects: (1) impact
of introducing the reset sequence as part of the verification,
(2) impact on the number of needed FEV properties and (3)
impact on property verification.

A. Synchronization as a contributor to FEV accuracy

As mentioned earlier, combinational verification was all
about verifying whether the combinational slices outputs are
equal in the next state, assuming they are equal in the current
state. One drawback of this method is that combinational
verification doesn’t check whether the combinational cones
are synchronizable at all. If such a problem exists, revealing
it is pushed to full chip validation which is not a complete
method, and traditionally happens only at late stages of the
project. Consider figure 3 for an example.

Assume that the combinational clouds
�9k

and
� �

are not
equivalent. In combinational verification, FEV would confirm
that these designs are equivalent, as the assumption is that
they are equivalent in the current state and since the clock
in both designs is constant 0, the value of the latches in the
next state will be the retained value. In the above example,
SEV would detect the unresettability of these designs before
proceeding to the equivalence verification. For such designs,
stuck-at-false phenomena are detected early in the design.

In figure 4 we show another example where sequential
verification gives accurate results compared to combinational
verification. Again, assume that the combinational clouds

�9k
and

� �
are not equivalent, and none of them is equivalent tol

. In the combinational case, the verification would fail as the
counter example would be that the values of the sequentials
in the current state are

l
’s while in the next state,

�9k
and

� �
will be inverse. This enables the

k
at the data entry of the

sequential to pass in one model, while in the other model, thel
will be retained . This counter example is not really correct

as designers would assume that some reset is happening in the
design that will propagate the data (

k
in both designs). Notice

that sequential verification would confirm that the designs are
equivalent.

OO

C2C1

11

Specification Implementation

Fig. 4. Equivalent models with different clock scheme designs

B. Impact on the number of needed FEV properties

Designing state matching designs is not that easy also in
terms of handling properties. Recall that in combinational
verification, one needs to map all the sequentials in both
designs. This mapping introduces a one-to-one correspondence
between the sequentials in both designs. These map points
define boundaries of the verification slices as every sequential
turns to be a ’cut point’. These cut points may have negative
impact on the accuracy of FEV as they can generate many false
negatives. To clarify this, consider the circuit in figure 5. If one
would compare this design to another state matching design,
mapping of the sequentials � k ! � � ! �m# ! � n is needed. This
mapping will introduce 5 verification slices at � k ! � � ! �m# ! � n
and -porq . Consider the verification of the output -poWq . Its
slice is bounded by the sequentials �m# and � n , however
notice that during the verification of -poWq , there is no way
to know that �m# and � n are inverse. This information is
available only from the logic that drives � k and � � . In
this case, equivalence verification requires adding an inverse
property (or an assumption) in the RTL between �m# and� n . For completeness, such properties should be validated
in order to avoid any possible verification holes. Notice that
in combinational verification, the inverse property might be
needed on � k and � � in order to verify �m# and � n as well.

Seqver helps reduce this overhead by reducing the number
of needed properties. With the advent of sequential verifica-
tion, the cone of -porq can be expanded up to the inputs (s), and
thus, there is no need to add properties at all in this example.
However, in case a complexity issue is encountered (e.g., due
to a complex logic at cloud

�
, or a deep sequential cone up

to the primary inputs), properties could be added, but this is
always much less than the needed number of properties in
state matching designs. For example, one of the functional
blocks that was with state matching encoding and included
hundreds of properties was rewritten in an abstract way, while
the number of the needed FEV properties that were added was
reduced from hundreds to only 50!

C. Impact on the completeness of the property verification
process

Recall that FEV properties are added to the design in order
to ’compensate’ for missing information that was lost as part
of the mapping process. Seqver helps reduce the need to map
all the sequentials, and thus reduces the number of added
properties. This does not mean we do not need FEV properties
anymore, however.

A

L1

L2

L3

L4
B2

B1
Out

C

Fig. 5. Example for need of functions

Recall the same example of figure 5. Assume that the
combinational cloud

�
is too complex and we have to cut now

at signals t k and t � . Recall also that an inverse property
between t k and t � needs to be added to the design in
order to make the verification pass. We’ll call it u k . In
combinational verification, verifying the property u k was
limited to combinational logic only and thus the verification
of u k could not be performed without adding an extra inverse
property between �m# and � n . Assume that mistakenly, instead
of adding an inverse property between �m# and �mn , the designer
added an inverse property between t k and �mn . We’ll call itu � . In this case, combinational verification of u k and u �
passes as each property will pass depending on the other (as
the slice for both of them will be bounded by �m# and � n).
This behavior might lead to a verification hole when the logic
driving �m# and � n doesn’t satisfy the property. The above
problem is also known as the problem of ‘cyclic dependency‘
between properties when a closure of properties cause one
property to pass based on the other properties.

Methods for identifying cyclic dependencies between prop-
erties are time-consuming due to the fact that we have lots
of properties in the designs. The purpose of Seqver is to
solve the above issues. The fact that Seqver can perform
verification beyond the combinational cloud enables verifying
FEV properties while considering only relevant properties
specified on the first mapped layer of sequentials. In the above
example, the slice of u k will be bounded by � k and � � , in
case they are mapped, and by s if not. Notice that during
this verification, u � won’t be used as it is not specified on
the boundary of the slice (in both cases). This method enables
breaking the above cyclic dependency between the properties.

VI. RESULTS

Table I illustrates the difference between circuits in terms
of abstraction (measured by a different number of sequential
elements). It also shows an overall mapping effort that was
saved when moving to non state-matching designs. This table
should be read as follows: the second column represents the
number of the outputs in the compared circuits. Columns 3
and 6 represent the number of the sequential elements (Lats)
in the specification and implementation models. Columns 4
and 7 represent the number of mapped sequential elements in
the specification and implementation. Notice that if a state-
matching specification was written, the designers should have
mapped all the sequential elements which appear in column 6.
Column 7 comes to show exactly the mapping effort which is

Specification Implementation Abstra- CPU
Ckt. Outs Lats Mapped % Lats Mapped % ction (Sec.)vcw

29 125 59 47% 195 59 30% 64% 85v	x
58 635 634 100% 1212 642 53% 52% 62vHy
65 271 129 48% 438 133 30% 62% 642v�z
84 2635 2635 100% 4185 3507 84% 63% 817v	{
114 2902 2787 96% 5454 2813 52% 53% 1273vH|
151 232 232 100% 323 240 74% 72% 21v	}
196 235 235 100% 464 244 53% 51% 274vH~
205 1129 1105 98% 1354 1338 99% 83% 35vH�
208 820 698 85% 1020 429 42% 80% 739vcw8�
221 32 0 0% 64 0 0% 50% 31vcw<w
232 441 95 22% 554 95 17% 80% 1418vcw*x
259 675 669 99% 1167 689 59% 58% 263vcw8y
399 67 57 85% 126 57 45% 53% 54vcwDz
848 1370 1085 79% 1808 1085 60% 76% 4471vcw*{
1040 1627 964 59% 2055 963 47% 79% 600

TABLE I

ABSTRACTION AND MAPPING SAVINGS

saved. For example, for circuit
�9k

, only # l2� of the sequential
elements were mapped in the implementation (59 out of 195),
saving � li� of the mapping effort. Column 9 (Abstraction),
represents the ratio between the number of the sequential
elements in the specification compared to those in the imple-
mentation. For example, for circuit

� � , the number of the state
elements in the implementation is almost twice the number
in the specification. This idicates that the implementation is
much more detailed than the specification. Column 10 gives
quantitive numbers about the overall runtime of the tool on
these designs. Our experiments were performed on 64bit Intel
machines with 8G memory.

Table II represents data about the size of the compared
slices for most challenging instances of the verification. For
the instances that include more than 100 variables (inputs
+ latches), BDD based model checking techniques weren’t
successful.

VII. FUTURE WORK

One of the big challenges that remains when performing
sequential verification is the question of how to handle com-
plex slices. For some designs, Seqver can easily handle the
verification from primary outputs to primary inputs, without
any need to decompose the designs. However, in most of the
cases, the slices are too big and they exceed the tool limits.
Some methodological solutions are proposed to the designers
in order to advise how to decompose the design. For this, more
automatic mapping tools are being developed. Another big
challenge is debugging the non-resettable designs. This turned
out to be a tough task as visualization tools need to be devel-
oped to help find the root-cause. Today, more methodological
solutions are given like initializing the sequential element with
constant

l
and checking which continue to retain the same

constant value. For most of the cases, initialization issues are
caused by an enable logic which is stuck at constant

l
. Another

Specification Implementation
Ckt. Gates Lats Inps Gates Lats Inps�pw

5877 27 246 194 28 246�\x
5281 533 195 4827 166 218�	y
553 129 148 1105 147 152�Hz
479 129 148 1062 140 148�\{
446 153 92 1006 152 152�	|
308 48 51 278 68 51�\}
317 55 46 292 45 50�	~
299 45 44 252 61 44�	�
215 11 116 215 13 115�pwD�
168 28 86 603 37 99

TABLE II

REPRESENTATIVE SLICE SIZES

challenge to research is the impact of sequential verification
on other design domains like power.

VIII. SUMMARY

We have introduced Seqver, an Intel formal equivalence
verification tool which enables formally verifying abstract
specification vs. a detailed implementation. Seqver is based
on a solid theoretical background based on the alignability
theory with slight modifications to meet practical design re-
quirements. Seqver also brings completeness to the traditional
combinational equivalence verification tools. Representative
results from leading next generation Intel CPU designs show
a great amount of abstraction between the specification and
the implementation with proven reduction of manual mapping
effort that shortens the CPU development life cycle.

REFERENCES

[1] R.E. Bryant Graph-based algorithms for Boolean function manipulation,
IEEE Trans.Computers, C-35(8), 1986.

[2] Davis,M., G.Logemann, D. Loveland, A machine program for theorem-
proving, CACM 5(7), 1962.

[3] C. Pixley, S.-W. Jeong, G.D. Hachtel. Exact calculation of synchronizing
sequences based on binary decision diagrams, IEEE transactions on
Computer-Aided Design, vol. 13, 1994.

[4] A. Rosenmnann and Z. Hanna. Alignability equivalence of synchronous
sequential circuits, HLDVT, 2002.

[5] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Reading, MA: Addison-Wesley, 1979.

[6] O. Coudert, C. Berthet, J.C. Madre. Verification of synchronous sequen-
tial machines based on symbolic execution, Workshop of Automatic
Verification Methods for Finite State Systems, 1989.

[7] A. Biere, A. Cimatti, E. Clarke. Symbolic model checking without BDDs,
Tools and Algorithms for the Construction and Analysis of Systems,
1999.

[8] A. Biere, A. Cimatti, E. Clarke, M. Fujita. Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs, DAC 1999.

[9] M. Sheeran, S. Singh, G. Stålmarck. Checking safety properties using
induction and a SAT-solver, FMCAD, 2000.

[10] C. Pixley. A theory and implementation of sequential hardware equiva-
lence, IEEE transactions on CAD, 1992.

[11] G.D. Hachtel, F. Somenzi. Logic Synthesis and Verification Algorithms,
Kluwer Academic Publishers, 1998.

[12] Z. Kohavi. Switching and Finite Automata Theory, McGraw-Hill, 1978.
[13] I. Pomerance, S. M. Reddy. On removing redundancies from syn-

chronous sequential circuits with synchronizing sequences, IEEE Trans.
Comput., pp.20-32, 1996.

[14] Z. Khasidashvili, M. Skaba, D. Kaiss and Z. Hanna. Theoretical Frame-
work for Compositional Sequential Hardware Equivalence Verification
in Presence of Design Constraints, Proceedings of the International
Conference on Computer Aided Design, IEEE, 2004.

[15] Z. Khasidashvili, M. Skaba, D. Kaiss and Z. Hanna. Post-reboot Equiva-
lence and Compositional Verification of Hardware, to appear in FMCAD
2006.

[16] D. Kaiss, M. Skaba, Z. Hanna and Z. Khasidashvili. SAT based
alignability method for sequential hardware verification, in preparation.

