
Guiding Architectural SRAM Models
Banit Agrawal Timothy Sherwood

Department of Computer Science, University of California, Santa Barbara
Email: {banit,sherwood}@cs.ucsb.edu

Abstract— Caches, block memories, predictors, state tables,
and other forms of on-chip memory are continuing to consume
a greater portion of processor designs with each passing year.
Making good architectural decisions early in the design pro-
cess requires a reasonably accurate model for these important
structures. Dealing with continuously changing SRAM design
practices and VLSI technologies make this a very difficult
problem. Most hand-built memory models capture only a single
parameterized design and fail to account for changes in design
practice for different size memories or problems with wire scal-
ing. Instead, in this paper we present a high level model that can
be used to make simple analytical estimates. Our model is built
using the characterization of almost 60 real memory designs from
the past 15 years. Our model and the presented methodology
can be used to calibrate even more detailed memory models for
better accuracy. Despite all of the things that could have gone
wrong over the past 15 years, we show that the memory density
and delay can be estimated with simple and intuitive functions
and we present a technique to automatically extract important
scaling trends that can be used to make accurate estimates across
a variety of technology and architectural parameters.

I. INTRODUCTION

The amount of the chip real estate devoted to memory has
continued to grow at an astounding rate and consequently there
is a continuous effort to develop faster, smaller, and lower
power memory tiles. Because of the importance of on-chip
memory in both modern processor and ASIC designs, making
an accurate characterization of those memory technologies
available to the designer at an early stage is critical in making
good design decisions. While this is already a problem in
cache design, many new architectures are built around the idea
of many small tiles, and may be especially susceptible to these
issues.

New designs are continuously being developed to trade
off performance, power consumption, complexity, area, and
a host of other design parameters. The best trade-off points
shift and change over the years due, in part, to the fact that
the underlying VLSI technology itself is a moving target.
New problems such as poor wire scaling and leaky transistors
make traditional designs sub-optimal and so new circuits are
designed to compensate for these limitations. The breadth of
these interacting issues makes a very complex environment
for design exploration. Even understanding the different trends
independently requires specialized knowledge across a wide
range of disciplines. For example, if a detailed memory model
is built for a particular design and technology, it cannot adapt
well with changing technology and optimized designs. To
attack this problem efficiently, the first thing that is needed is
a careful and thorough evaluation of a large number of past

designs that cover a wide range of design methods and tech-
nologies. Therefore, in this paper we present the methods nec-
essary to perform such a study, and describe the scaling trends
that we extracted from almost 60 reference designs taken over
a period of 15 years. To the best of our knowledge, we are the
first to put together a memory data set comprehensive enough
to allow automatic extraction of analytical models that capture
aspects of shifting design-methods and technology. We show
how our model accurately captures the most important design
scaling factors and how important ”rules-of-thumb” can be
extracted from our methods.

One of the issues in dealing with real data is that there
are outliers that hide the important trends. In Section IV
we describe how important ”rules-of-thumb” can be extracted
from our data in a way that is robust in the face of these out-
liers, and in Section V we show the actual scaling parameters
that describe the last 15 years of SRAM designs. While this
approach is by no means a replacement for more detailed hand
built models that capture the tradeoffs at a level that requires
a deep circuit-level understanding, our model can be used to
verify and recalibrate these more detailed models as various
design practices and scaling factors evolve over time. For
example, we find that our model exhibits similar scaling trends
for area with size, when compared against a detailed model
(Cacti [1]). Although Cacti provides better relative results, it
overestimates the area by 20% in past CMOS technolgy, and
40% in current CMOS technology. We recalibrate Cacti to get
more accurate results by incorporating the trends in technology
scaling and evolving design practices.

II. RELATED WORK

We are clearly not the first to consider the problem of
modeling and forecasting SRAM characteristics. Over the last
decade there has been many proposed models aimed primarily
at addressing the impact of the memory wall. Most of this re-
search has been focused on low-level circuit characterizations
to model the on-chip memory either through reference designs
[2], [3], [4], [1], [5], [6] or regression techniques [7], [8], but
thus far we have seen no large scale studies/models based on
a wide range of published designs and their scaling trends.
While there is a wide variety of papers in the area, due to
space constraints we concentrate on those that consider delay
and area, especially those that consider the effects of scaling.

Mulder et al. [2] proposed a simple area model for on-
chip memory such as register files and caches. Their model
is based on the area of a single register bit cell known as
register bit equivalent (rbe). The area of the SRAM cell and
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DRAM cell is expressed in terms of rbe and a simple analytical
formula is provided to calculate the area of direct-mapped
cache and set associative caches again in terms of rbe. While
this model is analytic, it does not incorporate the current
design practices such as partitioning and sub-banking. Wada
et al. [3] provide an analytical access time model for on-
chip cache memories which is dependent on various cache
parameters. This model is derived from a reference design
almost 13 years ago, and provides no easy method of scaling
and optimizing as technology changes.

Cacti [1], a widely used and powerful cache modeling tool,
helps architects evaluate various on-chip cache designs. It can
be easily extended to model on-chip SRAM as well. The
initial version of this tool [4] only supported the access time
of set-associative caches. Subsequent versions have extended
this model to support access time, dynamic power, and area
of set-associative and fully-associative caches. Cacti has been
proven to be a very useful modeling tool for architects wishing
to study various architectural trade-offs, optimize designs,
evaluate the relative merits, and estimate the hardware over-
head. Although Cacti provides high accuracy in comparing
different designs of on-chip memory, the accuracy is not good
in absolute terms compared to the state of the art SRAM circuit
design methods. Cacti was designed for 0.80 µm CMOS
technology and it used “fudge factor” to approximate the effect
of changing technology. This is an incredibly important feature
for architects and has most certainly added to Cacti’s longevity.
However, if the technology scaling factor does not reflect
reality, this can lead to error in the estimates. In the later
sections we will describe how to perform these comparisons
and we will use our analytic model to help recalibrate the
Cacti model with current design practices.

Cacti tool was further extended by Mamidipaka et al. [5] to
support the modeling of write operation power, static power,
and transistor width variation. It also uses fudge factor ap-
proximation to model delay and area for newer technology.
Mamidipaka et al. also provide a high level power estimation
tool (IDAP) [6] for SRAM data array that accounts for differ-
ent circuit styles by feeding all low-level circuit parameters
(cell area, sense amplifier design, etc) as input.

Amrutur et al. [9] provide an analytical model for calcu-
lating delay, power, and area of on-chip SRAM at a very
low level using circuit level parameters. Then, they simplify
the formula and also show the scaling trends with size and
technology. While our work is parallel, it has several signifi-
cant differences, the most important one being that instead of
bottom-up it is top-down. By capturing the parameters from
almost 60 different designs, we can identify trends not only
in technology, but also in the way that circuit designers adjust
and react to changing technology parameters [10]. Our model
can be used to validate and calibrate more detailed models
that tradeoff internal parameters, and can adapt to changes in
any number of changing trends automatically.

Some optimization and regression techniques [7], [8] have
been proposed to model on-chip memory. Coumeri et al. [7]
uses stepwise linear regression based techniques to model on-

chip memory. This approach mainly focuses on power and uses
SPICE results, which demonstrates a slight bias towards the
particular on-chip memory design. According to our finding,
we also show that linear regression will not be able to truly
capture the best fit to the model for a set of current best
reference designs. In an another approach by Schmidt et al.
[8], a black box modeling approach has been used to model
only the power of on-chip memory. Although their approach
uses non-linear regression, they only provide low-level circuit
model for only one design constraint and the model is biased
towards a particular SRAM design and a particular CMOS
technology.

Unlike the past memory models, our model is built from
almost 60 reference designs which represent the best design
practices in academia and industries. Our model can accurately
predict the scaling trends with architectural parameters and
CMOS technology and provides a simple analytical equation
for mathematical optimization. Moreover, our model and mod-
eling methodology can be further used to recalibrate Cacti to
achieve better accuracy. As shown later in the paper, recali-
brated Cacti can reduce the overestimation error in area from
20-60% to less than 10%.

III. SRAM SCALING

Before we discuss our generic model, we briefly discuss the
internal structure of an SRAM array, and the various param-
eters and constraints as it relates to our modeling problem.

A. A Simplistic Model of SRAM

A typical SRAM cell usually consists of six transistors,
where four transistors are used as pair of inverters to store
the bit. Reading/writing to this bit is controlled by two more
transistors with wordline and bitline. For a two ported SRAM
cell, the number of bitlines and wordlines doubles compared
to a single ported SRAM cell. The length of the wordline
and bitline wires and the height and width of a cell have the
largest impact on the overall delay, power, and area. A SRAM
array is usually divided into sub-arrays to reduce the length
of the wordline and the bitline, which in effect reduces the
delay and power. More description on various organization of
SRAMs can be found in [4], [3], [9].

To understand our results, we need to compare with how
we might expect technology scaling to impact area and delay.
With each new technology the feature size is reduced, which
effectively decreases the length and width of each component.
In fact, with a decrease in feature size of a factor of 2 we
should expect a factor of 4 decrease in area (n2). Delay is a
little more challenging. Because delay is strongly dependent on
the capacitance of the wordlines and bitlines, and because the
capacitance is approximately a linear function of the length of
those lines, we might expect the delay to decrease as a function
of the length of the wordlines and bitlines. If the feature size
drops by a factor of 2, the area is now 1/4 of what it was, and
the bit lines are now approximately

√
1/4 = 1/2 the length

making the design 2 times faster.



TABLE I

AREA COMPARISON FOR ON-CHIP SRAM

Estimated area Published area

SRAM Configuration by Cacti in mm2 in mm2

0.18µm 64Kb 1-port 0.68 0.38 [12]
0.15µm 64Kb 2-ports 1.15 0.70 [12]
0.09µm 144Kb 1-port 0.675 0.41 [13]
0.5µm 1 Mb 1-port 95.47 78.8 [14]

We can also consider a simplistic model of how the area
and delay scale with the size of SRAM. If we double the
number of bits in the SRAM, we would expect the area to
grow by a factor of two as well. Again assuming that delay
is a direct function of line size, this should increase the delay
by a factor of

√
2.

Clearly these models of memory area and delay are overly
simplistic (there are many internal knobs designers turn), but
the main idea behind these models drives the development of
more complex ones. Our goal is to capture these set of best
design practices in an adaptive way to evaluate scaling trends,
and provide a high-level architectural model.

B. Recalibrating Models

Many of the prior approaches were designed with the goal
of performing relative studies, for example answering such
questions as, what are the best number of sub-banks to use in
a design. While there are many studies in which the accuracy
between different SRAM design options is important, many
designers and researchers attempt to use these tools to answer
absolute questions of design such as, is this space better used
for a cache or some custom piece of logic. By far, the favorite
tool for architects to use for answering such questions is
Cacti [1]. The SRAM model internal to Cacti is an important
part of overall tool as it is used to estimate the area and
delay of the tag and the data. Even though Cacti was built for
modeling caches, it has been used to estimate a wide range
of memory aspects [11].

In table I, the area of several SRAM configurations are
given. As we see from the table that Cacti overestimates
the area by 20-60%. Hence, we need to recalibrate Cacti
models based on the best known design practices of today.
Plotting similar data as a function of the technology can further
illustrate this point. Figure 1 shows the Cacti results and pub-
lished results for 64kb SRAM configuration as the technology
decreases from 0.18 µm to 0.13 µm. While these few points
may not be representative of the entire spectrum of designs,
it does show that the technology may not scale squarely in
case of published results and the absolute results need to be
recalibrated. While we will later show that Cacti does a good
job of estimating the scaling trends and is excellent for relative
studies, it can overestimate the absolute value of area by some
fraction.

IV. MODELING APPROACH

Extracting a model from real designs that vary in technol-
ogy, design method, organization, and size is a challenging
problem and we must make some assumptions. First, we
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Fig. 1. Effect of technology variation on area for 64kb 1-port SRAM.

need to find the trends that govern the majority of, but not
necessarily all, past published results. If a highly experimental
memory is developed and published, and we extract that data,
our model should be robust enough to handle that gracefully.
If that design point later turns out to have serious concerns,
such as problems with reliability or manufacturability, it will
surely be an outlier from the rest of the designs and should
be given little weight by our fitting methods. If on the other
hand, the technique is useful and implementable, many related
papers and design points will soon follow. That cluster of
points should be recognized as important to the model. The
second assumption that we need to make is that these devices
are capable of being modeled in a way that makes intuitive
sense to a designer and that the parameters we have chosen,
CMOS feature size, size of the memory in bits, and the
number of ports, actually determine the area and delay of a
modern SRAM to a high degree. If we are to make sense
of the important trends discovered by our model, we need to
understand them in comparison to the simple models from
Section III. For example, while we could fit our data to some
polynomial of high degree, yet it is not likely that this will
yield any fruitful understanding of the underlying trends.

Our data points are taken from the published results for on-
chip SRAM over the last 15 years by extensively scanning
through all well known conferences proceedings and journals
in solid state circuits, VLSI, memory design and architecture
fields. Table II shows the references1, memory configurations
(technology, size in bits, port), and published results (area in
mm2, cell area in µm2, and access time in ns). In addition to
the academic papers, we included several points from Virtual
silicon’s memory compiler for UMC foundry. There are also
some very recent results included, such as the 70 Mb SRAM
memory in 0.065 µm technology by Intel Corporation.

Starting with design points extracted from memory compiler
datasheets and published results we begin with a quick GRG
search [15] to narrow in on the most likely range of param-
eters. Using this, along with the intuitive models for scaling
discussed in Section III, we build a set of models which is
generic enough to capture the scaling trends. These models

1Most of the references are in the form of publication-startpage-year to
save space in the references list. For example, jssc-p1047-90 reference means
that the sram data is from Journal of solid state circuits (JSSC) in the year
1990 with 1047 as the starting page number in the proceeding. Similarly, isscc
stands for International symposium on solid state circuits and virtual-silicon
datas are from the datasheets [12].



TABLE II

ON-CHIP SRAM DATASET FROM PAST PUBLISHED RESULTS AND DATASHEETS

References tech in um size in bits ports cell-area in um2 area in mm2 delay in ns

virtual-silicon 0.13 65536 1 - 0.21 1.8
virtual-silicon 0.13 65536 2 - 0.43 2
virtual-silicon 0.13 18432 2 - 0.16 1.43
virtual-silicon 0.15 65536 1 - 0.29 1.5
virtual-silicon 0.15 6536 2 - 0.7 1.67
virtual-silicon 0.15 18432 2 - 0.25 1.46
virtual-silicon 0.18 65536 1 - 0.38 1.81
virtual-silicon 0.18 65536 2 - 0.91 2.2
virtual-silicon 0.18 18432 2 - 0.33 1.78
jssc-p564-00 0.25 1048576 1 12 72.03 0.55
jssc-p1631-00 0.18 16777216 1 1.93 54.08 2.5
jssc-p684-04 0.09 262144 1 1.25 0.52 2.8
isscc-p354-98 0.25 32768 1 21.6 2 -
isscc-p352-98 0.4 262144 1 12.5 - 60
isscc-p266-00 0.18 18874368 1 4.23 114.4 2.73
isscc-p190-99 0.18 294912 1 4.8 2.19 1.4
isscc-p460-03 0.09 147456 1 1.16 0.41 0.33
jssc-p1047-90 1 262144 1 82.08 47.557 8
jssc-p1057-90 0.8 1048576 1 45.05 112.56 5
jssc-p1063-90 0.55 4194304 1 19.04 143.22 15
jssc-p439-91 0.8 262144 1 - 42.5 6
jssc-p167-92 0.5 65536 1 17.5 77.88 -
jssc-p649-92 0.8 589824 1 95 97.7 3.5
jssc-p1490-92 0.4 16777216 1 8 228.63 12
jssc-p1504-92 0.55 4194304 1 18.56 165.48 6
jssc-p1511-92 0.3 1048576 1 6.6 29.304 7
jssc-p478-93 0.5 1048576 1 27.36 78.804 6
jssc-p484-93 0.8 73728 2 - 45.5 -
jssc-p1119-93 0.35 16777216 1 8.307 212.67 9
jssc-p1125-93 0.25 16777216 1 2.3 110.24 15
jssc-p1362-93 0.8 262144 1 67.562 47.294 5.8
jssc-p411-94 0.4 6291456 1 7.1552 215.27 12.5
jssc-p1317-94 0.4 16777216 1 8.52 258.57 4.5
jssc-p1344-94 0.5 262144 1 58 121 1.5
jssc-p480-95 0.25 4194304 1 3.84 46.56 6
jssc-p487-95 0.25 16384 1 - 13.53 2.6
jssc-p491-95 0.3 73728 1 30.24 5.25 0.8
jssc-p1189-95 0.25 4194304 1 8.19 112.8 3.3
jssc-p1196-95 0.4 32768 1 31.05 4.06 1
jssc-p1286-95 0.35 1048576 1 34.32 63.456 3.9
jssc-p1443-96 0.3 1205862 1 30.24 210.25 0.9
jssc-p1610-96 0.3 4194304 1 9.2 84.75 6
jssc-p870-05 0.13 16777216 1 0.78 - -
jssc-p895-05 0.065 73400320 1 0.5704 - -
jssc-p793-98 0.35 32768 1 31.46 2.184 -
jssc-p1650-98 0.25 4718592 1 9.84 128.15 1.8
jssc-p1659-98 0.25 32768 1 21.6 2 -
jssc-p1571-99 0.25 2359296 1 6.156 30.77 2
isscc-p50-91 0.8 524288 1 85.5 111.36 4
isscc-p54-91 0.6 4194304 1 20.72 156.98 7
isscc-p128-90 0.5 4194304 1 20.3 135.87 23
isscc-p136-90 0.8 1024 1 41 90.48 6.5
isscc-p146-96 0.3 4718592 1 7.82 124.2 1.8
isscc-p148-96 0.5 1048576 1 34.56 88.453 5.4
isscc-p156-96 0.25 294912 1 9.9 5.4481 2
isscc-p206-92 0.4 4096 1 10.2 - -
isscc-p210-92 0.5 4194304 1 19.95 163.56 9

map the input variables, through a set of equations and scaling
constants, to the output parameters. We then apply model
fitting techniques to find the optimal setting of the scaling
constants. Then, using robust estimation, we filter suspicious
data points (outliers) and perform error analysis. The block
diagram for our modeling approach is shown in Figure 2.

A. Exponent-product model

Building on the intuition from Section III, we use an
exponent-product model to study the scaling of delay and area.
This model assumes that area and access time are proportional
to product of tech, bits, and port, each taken to some fixed
exponent. The analytical equation for this model is given in
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Fig. 2. Block diagram of our modeling approach. Model fitting using
constrained optimization along with robust estimation method ensures best
fitted results. The output of the best fitted model can also be used to tune
Cacti to get accurate absolute results.

equations 1 and 2.

area = parea ∗ (tech)aarea ∗ (bits)barea ∗
(port)carea + karea

(1)

delay = pdelay ∗ (tech)adelay ∗ (bits)bdelay ∗
(port)cdelay + kdelay

(2)

If the intuitive idea of scaling laid out in Section III was
found to be true, we would expect aarea to be exactly 2
and barea would converge exactly to 1. The coefficient adelay

would be 1, and bdelay should be sqrt, or exactly 0.5.
By fitting these models to real data we can find out

whether after all the fabrication variations, all the circuit de-
sign improvements, and all the memory layout optimizations,
if SRAM is really scaling at the rate at which we would expect.
The coefficients we find for (p, a, b, c and k) will decide the
fit to our dataset of the past published results. Furthermore
we can fit this model to Cacti, and see how Cacti estimates
these same scaling factors. Then, this information can be used
to calibrate Cacti to get better accuracy.

B. Model fitting

We use constrained minimization techniques to find the
values of the coefficients that fits best to our dataset of best ref-
erence designs. The minimization function for our constrained
optimization problem is the sum of absolute percentage error,
which is shown in equation 3 for delay. We use an equivalent
minimization function for area.

error sumdelay =
∑

all points errordelay

errordelay = abs(delaydataset − delaycalc)
max(delaydataset,delaycalc)

(3)

Given that our errors are highly non-gaussian, we found that
the sum of absolute error balanced our need to fit many points
without weighing outliers too heavily. We did not use the GRG
method [15] for our full optimization runs as it can get caught
in local minima depending on the starting points. Instead,

we use an iterative method where we vary each coefficient
with the required precision and we improve our minimization
whenever possible and update the best coefficient found so
far. At the end of all iterations, we have the best possible
values from the minimization function and the final values
of all the coefficients that fits best to our selected model.
To ensure that we do converge on a model for at least a
majority of the data, we also use a median analysis which
enforces a certain percentage of total design points to be fitted
within a designated acceptable percentage error. The resulting
hyperparameters [16] from this analysis can also be tuned to
get better estimates of the coefficients. We also run some cross-
validation experiments to provide guaranties for generalization
ability of our model to previously unseen data points [17].
While we use the exponent-product model for SRAM in our
modeling framework, this framework can also be used to build
even more complex models for different types of memory.

V. RESULTS

Using the modeling approach discussed in Section IV, and
the dataset off of which we base our results, we find the best
fitted coefficients for the area and delay model. To show the
robustness of our modeling coefficients, we tune hyperparam-
eters with cross-validation, which we describe in Section V-B.
We also feed the Cacti results to our model and find the fitted
coefficients. The difference between these two will tell us how
the models differ in their treatment of scaling, and will help
us recalibrate Cacti if needed.

A. Model coefficients for Area and Delay

Area - After fitting the equations using the methods
described in Section IV, we find analytical equation 4 (in
Figure 3) as our on-chip SRAM area model. Using our robust
estimation and optimization framework we find the values of
coefficients parea, aarea, barea, carea, and karea to be 0.001,
2.07, 0.9, 0.7, and 0.0048 respectively. By substituting the
coefficients into equation 1, it becomes equation 4. As we
will describe later, this equation is quite accurate across the
entire range of designs.

We can see that the relationship between CMOS technology
and area is nearly quadratic in nature as expected, but that the
relationship with number of bits is sub-linear. This actually
makes sense, as a larger SRAM is more capable of amortizing
the overheads from the decoders and sense amps. We find
similar results when extracting data from Cacti. For Cacti we
find the coefficients parea, aarea, barea, carea, and karea to
be 0.001179, 1.97, 0.92, 1.21, and 0.0012 respectively. As
we can see that there is a similar scaling trend in area with
size and CMOS technology. In terms of ports, we do not have
enough data points for our results to be statistically significant,
but a value of less than one seems to be intuitive.

While we see a similar scaling trend in both Cacti and
our modeled results, there is a noticeable difference in the
proportionality constant parea and aarea, which captures the
over-estimation of Cacti results. We can apply a new mul-
tiplication factor that can be multiplied with Cacti results



area (in mm2) = 0.001 ∗ (tech)2.07 ∗ (bits)0.9 ∗ (port)0.7 + 0.0048 (4)

delay (in ns ) = 0.27 ∗ (tech)1.38 ∗ (bits)0.25 ∗ (port)1.30 + 1.05 (5)

Fig. 3. Area and Delay models with scaling factors extracted from published circuits data

to get accurate absolute results. We call this factor as area-
recalibration-factor and its value is given in equation 6.

area-recalibration-factor = (0.001/0.001179) ∗
tech2.07−1.97 = 0.85 ∗ tech0.1 (6)

Delay - We use analytical equation 2 to model the delay
of on-chip SRAM, and again fit our coefficients for published
data. Equation 2 captures the best design practices well and is
found to be reasonably accurate. We use the published results
to find the best fitted coefficients for this analytical equation.
For the delay model, we find the values of coefficients pdelay ,
adelay , bdelay, cdelay, and kdelay to be 0.27, 1.38, 0.25, 1.30,
and 1.05 respectively. Hence, equation 2 becomes equation 5
(shown in Figure 3).

We find that the delay varies approximately as
4
√

SRAMsize. Furthermore the delay of the SRAM is
getting better with technology with a coefficient of 1.38
instead of 1. (recall that with each year tech gets smaller, and
hence a large exponent will mean a lower delay). We can
infer that SRAM designers are creating better delay-optimized
SRAM as technology progresses. Using Cacti results, we find
that delay varies with approximately the cube root of SRAM
size, which is closer to our modeled results. The reason that
these models are better than the

√
n model (described in

Section III) is that designers internally partition and sub-bank
their designs to keep bitlines and wordlines small.

B. Scaling trends with technology

To analyze how our model adapts and scales with newer
technology, we formulate a cross validation experiment with
hyperparameter tuning. In this experiment, we remove all the
points for two latest CMOS technologies from the dataset
and fit the area and delay model with the remaining design
points. Then, we predict the area and delay for these design
points of newer CMOS technologies with the fitted model and
validate the predictability in our model using cross-validation
technique.

Area - To cross-validate the area scaling with technology
for our model, we cull two design points of 90nm and three
points of 130nm CMOS technology from the dataset. We
predict the area from the model fitted for the remaining dataset
and find that our model predicts the future design points with
an average error of less than 10%. We also show the Cacti
results and recalibrated Cacti results for these design points
in Figure 4. It is clear from the figure that while our model
and re-calibrated Cacti model predicts the area of 90nm and
130nm design points with high accuracy (less than 10% error),
Cacti overestimates the area of almost all design points by a
large amount (20-60%). Hence, our models and the modeling
approach helps Cacti to get closer to reality.
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Fig. 5. Predicting the delay for newer technology using our model.

Delay - Delay scaling with technology is analyzed by
picking three points of 130nm and three points of 150nm
CMOS technology and predicting the delay of these points
from the fitted model for the remaining dataset. We show
these predicted results along with Cacti results in Figure 5.
We find that our model can predict the delay for next two-
generation CMOS technology from older technologies with
an average error of just 9.4%. But Cacti provides much lower
delay compared to the published results and this may be due
to the optimum number of subbanks, or optimum number of
wordline and bitline divisions used inside Cacti. We find that
recalibrated Cacti’s results are very close to the published
results with an average error of less than 10%.

C. Model error analysis

In this subsection, we provide error analysis of our model
in the form of error histogram. This histogram also shows the
enforcement of our median analysis described in Section IV.
We also take the cross-validation error histogram into account
to compare the model fitting errors when some points are
removed from the dataset. We measure the difference between
these two histograms for both delay and area using χ2 distance
metric [18].

Area - The error histogram for area is shown in Figure 6 for
both the predictive and non-predictive cases. As we see that
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Fig. 6. Error distribution for our area model
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Fig. 7. Error distribution for our delay model

most of the design points (about 75%) are limited to 0-40%
percentage error. There are only few design points in 40-80%
error range. The error histogram is found to be very similar
in both the cases with slight differences and the value of χ2

distance between these two histograms is found to be 1.9.
Delay - We show the delay error histogram for both predic-

tive and non-predictive model in Figure 7. Although both the
histograms show similar characteristics, it is much different
than the error histogram for area. Here, we find that more than
50% of total points are found to be with in 0-20% percentage
error. The value of χ2 in this case is found to be 0.635, which
is very low.

This error analysis shows that our model is robust as it fits
the model gracefully for both area and delay even when some
of the points are taken away in the predictive analysis.

VI. CONCLUSION AND FUTURE WORK

Unlike past SRAM models, accurately accounting for the
impact of technology scaling across a wide range of design
sizes and styles requires that we start with a model grounded
with physical designs. We provide a set of methods, including
an useful SRAM delay and area model and the means to fit
it, that capture the design trends over a period of 15 years.
Using a constrained optimization formulation over a data set
of circuits papers, our model can automatically capture the
most important scaling trends with underlying technology and
size. These data can also be used to guide the design and
recalibration of more detailed implementation-specific models.
While our modeling framework is not restricted to a particular
model, further complex models can also be built.

According to our finding, although Cacti provides better
relative results, it overestimates the area by 20% in past
CMOS technolgy to 40% in current CMOS technology. Using
a recalibration method for Cacti and our model as a guide, the
internal parameters of Cacti could be adjusted to bring them

more in line with reality. Interestingly, we found that the delay
of SRAM increases proportional to 4

√
bits with increasing

number of SRAM bits, whereas in Cacti, delay increases
proportional to 3

√
bits with increasing SRAM bits. We also

demonstrated the forecasting ability of our model through a
cross-validation technique to predict the SRAM area and delay
for newer technology. While our methods are statistical and
computationally intensive, the result is a simple analytical
equation, which will serve as a useful tool for designers and
architects for early-stage design exploration.
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