
Reliability Support for On-Chip Memories
Using Networks-on-Chip

Federico Angiolini†, David Atienza‡#, Srinivasan Murali‡?, Luca Benini†, Giovanni De Micheli‡
† DEIS, University of Bologna, Bologna, Italy. ‡ LSI/EPFL, Lausanne, Switzerland.

? Stanford University, Palo Alto, USA. # DACYA/UCM, Madrid, Spain.

Abstract— As the geometries of the transistors reach the
physical limits of operation, one of the main design challenges of
Systems-on-Chips (SoCs) will be to provide dynamic (run-time)
support against permanent and intermittent faults that can occur
in the system. One of the most critical elements that affect the
correct behavior of the system is the unreliable operation of on-
chip memories. In this paper we present a novel solution to enable
fault tolerant on-chip memory design at the system level for
multimedia applications, based on the Network-on-Chip (NoC)
interconnection paradigm. We transparently keep backup copies
of critical data on a reliable memory; upon a fault event, data is
fetched from the backup copy in hardware, without any software
intervention. The use of a NoC backbone enables an efficient
design which is modular, scalable and efficient. We proceed to
demonstrating its effectiveness with two real-life application case
studies, and explore the performance under varying architectural
configurations. The overhead to support the proposed approach
is very small compared to non-fault tolerant systems, i.e. no
negative performance impact and an area increase dominated
by that of just the backup storage itself.

I. INTRODUCTION

Thanks to advances in process technology, an ever in-
creasing amount of functionality can be integrated onto
a single silicon die, leading to complex heterogeneous
MULTI-PROCESSOR SYSTEM-ON-CHIP (MPSOC) architec-
tures. However, as the geometries of the transistors reach the
physical limits of operation, it becomes increasingly difficult
for the hardware components to achieve reliable operation.
The variability in process technology, the issue of thermal
hotspots and the effect of various noise sources, such as power
supply fluctuations, pose major challenges for the reliable
operation of current and future MPSoCs [33], [1]. Failures
may be temporary (for example if due to thermal effects)
or permanent. Key MPSoC components that are affected by
sub-micron technology issues are the on-chip memories [33],
where errors can flip the stored bits, possibly resulting in a
complete system failure. Current memories already include
extensive mechanisms to tolerate single-bit errors, e.g. error-
correcting codes such as Hamming codes [34], [13]. However
these mechanisms are expensive and the overhead in area,
power and delay to recover from multi-bit errors would be very
high [33]. Hence, with the increasing uncertainty of device
operation, an effective system-level support to memory fault
tolerance will be mandatory to ensure proper functionality at
a reasonable cost.

Simultaneously, market trends envisage consumer devices
containing several integrated Intellectual Property (IP) cores,
which communicate with each other at very high speed
rates [20]. Efficient, scalable interconnection mechanisms
among the components will be needed. NETWORKS-ON-CHIP
(NOCS) have been proposed as a promising replacement for

traditional interconnections [6]. This technology extrapolates
concepts from computer networks to provide scalable on-chip
communication backbones. The use of NoCs helps designers
to overcome the reliability issues of future technologies, for
example because their high flexibility allows for the addition
of redundant cores in the same chip (e.g. backup memories)
without largely increasing the design complexity. The fault
tolerance of NoCs themselves has been tackled by several
previous papers. For example, noise and coupling phenomena
on the links are faced in [9] and [10], where mechanisms for
tolerating such interference issues are thoroughly presented.
Soft errors can happen, but can be fixed by retransmission of
corrupted packets; to this effect, error detection circuits can
be coupled to schemes such as [7]. We assume these works as
complementary to the present paper, and leverage upon them.

To understand how to cope with increasing physical-level
unreliability, the characteristics of the target MPSoC software
applications need of course to be studied in detail. Key drivers
in this respect will be various multimedia services, such
as scalable video rendering, videogames, etc. We will show
that, for large classes of these applications, many types of
data corruptions can be tolerated without perceivable service
degradation, while only some small parts of the memory
storage (which include the code segments) are really critical
enough to require additional safeguards. We will validate
this assumption by presenting case studies on two real-life
multimedia applications.

As a major contribution of this work, we address the design
of a reliable integrated memory subsystem for a NoC-based
chip. The key idea is to automatically keep backup copies of
critical data on a reliable memory; upon a fault event, data
is transparently fetched from the backup copy in hardware,
without any software intervention. To achieve this, we present
a novel hardware solution that utilizes NoCs as the back-end.
At the software level, we characterize the application data into
two different types (critical and non-critical) and focus on the
first category. We handle intermittent and permanent memory
faults in the main memory; upon any occurrence of them,
the NoC is dynamically reconfigured to switch all critical
transactions to the backup memory. For transient failures,
when the main memory recovers, the NoC switches back to
the default mode of operation.

The use of NoCs to provide fault tolerance is key for several
reasons. First, it guarantees modular and scalable designs.
Backup devices can be added with minimal increases in
design complexity; bandwidth can be added as needed to avoid
performance bottlenecks due to the replication traffic. Second,
dynamic fault tolerance can be supported in a way which is
transparent to the software. Processors are unaware of any
memory failures, thus only a limited effort by the application

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

designer is required. Third, the NoC paradigm makes it very
easy to place the main and backup memories far away in
the chip floorplan; this is a key point to counter failures due
to phenomena such as thermal hot-spots. Finally, our NoC
architecture natively enables the decoupling of the frequency
of the interconnect from those of the attached cores, allowing
for clocking backup memories at a lower frequency. Therefore,
the reliability of backup memories can be increased without
the need for additional clock conversion logic.

We implement the proposed fault tolerance mechanism on
top of our existing NoC platform [7], modeled in cycle-
accurate SystemC, and integrate it within a NoC mapping
flow [8]. We perform experiments on realistic multimedia
applications, which show a negligible performance penalty.
We present several experiments to explore various parame-
ters that impact the performance and area overhead of the
proposed mechanism. We synthesize the additional hardware
components that are added to the NoC to provide the fault
tolerance support. The silicon overhead is less than 10% the
area of an extra backup memory bank itself (assuming a 32
kB size), which represents the baseline requirement for any
replication-based fault tolerance strategy.

II. CASE STUDY: MPEG4 VIDEO TEXTURE CODER

New multimedia applications cover a wide range of func-
tionality (video processing, video conferencing, games, etc.);
one of their main common features is that they process large
amounts of incoming data in a streaming-based way (e.g. a
continuous flow of frames). We can observe that certain parts
of these streams are essential to produce a correct output,
while others are not so critical and only partially affect the
user-perceived quality. In many multimedia applications, it is
possible to distinguish critical from non-critical data because
each type is stored in different data structures within the
applications. Let us briefly illustrate these characteristics in
the implementation of a real-life multimedia application that
is used as one of our case studies in Section VI, i.e. an MPEG-
4 Video Texture Coder (VTC). VTC is the part of the MPEG4
standard that deals with still texture object decoding. It is a
wavelet transform coder, which can be seen as a set of filter-
banks [16] sent in a stream of packets. Each packet represents
a portion of an image in different sub-bands, i.e. at different
resolutions. The first packet of the stream includes the basic
elements of the image, but at low resolution. This part is called
the DC SUB-BAND of the wavelet. If the data that represents
the DC sub-band is lost, the image cannot be reconstructed.
As typical of critical data in streaming applications, it is very
small in size (few kBytes for 800x640 images) and is stored
in a dedicated variable and class within the VTC code. The
following packets of the stream are called AC OR SPATIAL
LEVELS and contain additional details about the image. They
have a much larger size than the DC sub-band, but they only
refine the image represented by the DC sub-band. If data
representing these levels is lost, the user still sees an image,
just at a lower resolution. Moreover, whenever a new frame
arrives, the previous (faulty) picture is to be updated with the
newly received information. Hence, any low resolution output
only lasts a very limited amount of time.

From this example, we can derive fault tolerance require-
ments for typical multimedia applications. Only a small part
of the data set is critical to the quality of output as perceived
by the user, while most of the data to be processed is actually

of little importance in this respect. Therefore, it is essential
to preserve correct copies only of the former structures, while
faults in the latter may be safely accepted.

III. RELATED WORK

A large body of research exists on building MPSoCs that
satisfy different performance and energy requirements for dif-
ferent applications [20]. Proposed solutions range from selec-
tion and customization of processing cores [5] to application-
specific management techniques for on-chip memory hierar-
chies [21], [26]. One key issue for MPSoCs that has been
addressed recently is the use of NoCs [6] to solve possible
scalability problems with existing bus-based designs, such as
AMBA [4] and CoreConnect [19]. Several NoC architectures
have been presented [17], [7]. NoC fault tolerance has been
tackled by several previous papers. For example, the authors
of [9] describe a way of designing reliable NoC links by
comparing them to radio channels, while link architectures
can be tuned [10] to tolerate timing errors of up to 50% of the
reference clock period. Data retransmission schemes are well
known in wide area networks and have been applied to NoCs,
for example in [7]; coupled with error detection circuitry, they
allow for soft error recovery upon NoC links.

Regarding fault tolerance mechanisms at the micro-
architectural level, reliability work on soft errors is presented
in [1]. Redundant components can be used to increase pro-
cessor lifetime and system reliability [28]. At the system
level, dynamic fault-tolerance management [30] is shown to
improve system reliability in embedded systems. Different
metrics are proposed to estimate the effect of soft failures
with particular attention to energy efficiency, computation
performance and battery lifetime trade-offs. An interesting
approach to simultaneously achieving SoC reliability and high
efficiency is explored by [11] and [12]. There, the SoC is
aggressively configured to comply with “typical case” con-
straints, thus delivering high performance and low power; in
worst case conditions, which rarely occur, errors appear, but
are transparently corrected either by a built-in checker or by
timing error-tolerant circuitry.

The test and repair of SoCs, and more specifically of their
memories, has been extensively explored [2], [35]. To provide
reliable operation, the use of SINGLE-ERROR-CORRECTING-
MULTIPLE-ERROR-DETECTING (SEC-MED) codes is al-
ready integrated in many on-chip memories [13]. Recent
studies show that different program behavior patterns can be
identified, and can be used to generate various custom error
correction mechanisms for different memory portions [14]. A
very important research area is represented by the development
of memory cores with built-in self-test logic and spare storage
resources [24], [18], [15]. While all these approaches have
been demonstrated to be robust, they necessarily come at an
area cost. In this paper, we propose to first split the application
data traffic into logically distinct flows; subsequently, only the
critical portion of data, which is expected to be comparatively
small, may be backed up onto one of the above mentioned
robust memories. Therefore, we believe our approach to be
synergistic with those mentioned above.

Separate units (such as for example pre-existing microcon-
trollers [31]) have also been deployed in SoCs to supervise the
status of on-chip memories. With respect to these techniques,
we choose to leverage a built-in support in the underlying
SoC communication infrastructure to minimize the silicon

Fig. 1. General view of a NoC

overhead. Additional advantages of this choice are complete
transparency to the software designer and the avoidance of any
performance disruption upon fault occurrences. By leveraging
NoCs as the communication backbone, the approach also
guarantees maximum scalability.

IV. BASELINE SOC ARCHITECTURE AND EXTENSIONS

A. SoC Template Architecture

The reference SoC that we consider is composed of com-
putation cores, a communication backbone implemented by
means of the ×pipes NoC, and a set of system memories.

A typical NoC is built around three main conceptual blocks:
NETWORK INTERFACE (NI), SWITCH (also called router) and
LINK (Figure 1). NIs perform protocol conversion from the
native pin-out of IP cores to NoC packets; routers deliver
packets to their recipients; and finally, links connect the
previous blocks to each other, handling propagation delay
issues. For the present paper, we illustrate our approach within
the ×pipes NoC [7], by extending its building blocks to support
reliability-aware features.

For our reference system, we assume the availability of
two classes of memories: “error-detecting” and “reliable”.
Error-detecting memories, which can be commonly found
today, are not capable of error correction but are at least
capable of detecting faults, for example by Cyclic Redundancy
Check (CRC) codes. We also postulate the availability of
memories with much higher reliability for backing up critical
data. This assumption is motivated by ad-hoc circuit level
solutions and strengthened by three design choices we enable
for these memories: (i) small capacity, (ii) lower-than-usual
clock frequency (in this paper, we assume one half that
of regular memories), (iii) during typical system operation,
smaller workload than regular memories. We assume the
existence of main memories having error detection capability;
normal SoC operation leverages upon them, including storage
of critical and non-critical data. We add smaller spare backup
memories, featuring higher reliability, to hold shadow copies
of critical data only. Each main memory requires the existence
of one such backup, although a single storage device can hold
backups for multiple main memories.

To identify the critical data set, we assume that the pro-
grammer defines the set of variables to be backed up, and
maps them to a specific memory address range. This address
range is then used to configure our NoC, either at design time
or at runtime during the boot of the system. The accesses
to this particular memory region are thereafter handled with
our proposed schemes, improving the fault tolerance of the
MPSoC design. Application code is assumed to be a vital

resource too. Therefore, instructions are always treated in the
same way as the critical data; in the remainder of the paper,
we will not mention this distinction for the sake of simplicity.
Note that the classification of data into critical and non-critical
can also be done using efficient compiler support. In this
case, the user can mark critical data using special macros and
the compiler can map the data to a specific address range.
The size of the critical set will depend on the application at
hand, and is impossible to predict in general. We aim this
work at streaming applications, mostly in the multimedia field,
for which the amount of critical information can be safely
assumed to be small in percentage. These applications do
represent a significant slice of the embedded device market.

B. Proposed Hardware Extensions
To implement our approach, we perform changes to the NoC

building blocks. The flexible packet-switching design of NoCs
ensures that these changes are transparent to the transport
layer (switches and links), but NIs need to be made aware of
fault events. Two NIs exist natively: initiator NI (attached to
a system master, such as a processor) and target NI (attached
to a system slave, such as a memory). Both follow the OCP
2.0 [23] connection protocol specification at the IP core side
and perform source routing by checking the target of the
transaction against a routing LookUp Table (LUT).

(a)

(b)

Fig. 2. (a) Plain target NI architecture, (b) Extended target NI architecture

The changes to the target NI can be seen in Figure 2.
The original target NI is still plugged to backup memories,
while the extended version is used for main memories. A
plain target NI features a request channel, where requests from
system masters are conveyed, and a response channel, through
which memory responses are packeted and pushed towards
the NoC. A third channel (redundancy channel) is now added
to the extended target NI; this channel is an output, and re-
injects some of the request packets back again into the NoC.

By this arrangement, critical-data accesses to the memory
(i.e. within a predefined address range) can be forwarded to
the backup storage element. Not all packets are forwarded;
during normal operation, that is until a fault is detected, only
writes to critical address regions follow this path. This ensures
that the backup memory is kept up to date with changes in
critical data, but minimizes the network traffic overhead and
increases the reliability of the backup memory, which faces
a smaller workload. Since the backup memory only receives
write commands, it remains silent, i.e. it does not send packets
onto the NoC. This prevents conflicts such as two memories
responding to the same processor request. The resulting flow
of packets is depicted in Figure 3(a). The forwarding behavior
is controlled by a DISPATCHER NI block, which supervises
input and output packet flows. An extra routing LUT directs
forwarded packets; the LUT consists of just a single entry,
since there is only one backup memory per each main memory.

The extended target NI also features an extra interrupt
interface by the memory side. Whenever a fault is detected,
the memory can issue an interrupt. This triggers a reaction
by the dispatcher, which responds by beginning to forward
critical read packets to the backup memory according to the
extra routing table entry. In this way, reads that would fail due
to data corruption are instead transparently forwarded to the
backup memory and safely handled (see Section V for more
details). Critical writes continue to be forwarded as before.

The initiator NI is also extended. First, it checks all outgoing
requests for their target address. If the address falls in the
specific range provided by the application designer as storage
of critical data, then a flag bit is set in the packet header. This
allows the dispatcher in the extended target NI to very easily
decide whether to forward packets or not. A second change
in this NI involves an extra entry in its routing LUT, and a
very small amount of extra logic that checks the SourceID
field in the header of response packets. The initiator NI can
thus detect whether a read request it sent got a response from
the intended slave or from a different one. As we will show,
in our approach, upon a fault, critical reads receive responses
from the backup memory instead of the main one. Therefore,
noticing a mismatch is an indirect indicator of whether there
was a fault in the main memory. This can trigger different
actions depending on the type of error that needs to be handled,
as described in Section V.

V. RUN-TIME FAULT TOLERANT NOC-BASED SCHEMES

Two types of errors can occur in on-chip memories of MP-
SoC designs, namely, transient or permanent. We assume that
the system is able to recognize transient errors by detecting
some known combination of parameters, either upon the error
event itself or even before any error appears. For example,
a thermal sensor detecting that a threshold overheating tem-
perature has been surpassed may signal a “transient error”
condition before any real fault is observed. The “transient
error” condition would be deasserted once the temperature
returns to acceptable levels. The same prevention or detection
principle could be applied to other electrical or functional
parameters that may indicate that a critical point of operation
is being approached. In highly fault tolerant systems, the
main memory is itself equipped with error correction (not
only detection) logic; any internal correction event could
then be pessimistically assumed as a hint of an imminent
failure. This hypothesis could be reversed after a configurable

period of time, once the isolated correction event can be
safely assumed to be an occasional glitch, or maybe after a
(self-)testing routine. Any known-critical or unexpected events
should however be treated by the system as permanent faults,
and accordingly handled.

In the following subsections we describe how the proposed
extensions can be used to design schemes capable of handling
both transient and permanent failures. In both cases, the
backup memories do not contain any data upon boot, but are
kept synchronized with the main memory at runtime.

(a) (b)

(c) (d)

Fig. 3. Handling of packet flow in the system. (a) Normal operation with
backup, (b) First phase of recovery for permanent and transient failures: read
transaction handling upon fault occurrence, (c) Final operation mode after
recovery from permanent failure, (d) Operation mode while a transient failure
is pending

A. Permanent Error Recovery Support
As soon as a permanent error is identified, the recovery

process begins. First, critical-region operations continue to be
issued by the processors to the main memory as normal (see
Section IV-B), but the extended target NI starts diverting both
read and write requests to the backup memory. Therefore, the
backup memory, which had been silent, begins to generate
responses as a reaction to the read requests, while the main
memory becomes silent for accesses into the critical address
range. The SourceID field of request packets is kept un-
changed, so that the backup memory automatically sends its
reply to the system master that had originally asked for it
without any lookup conversion. Figure 3(b) shows the handling
mechanism of critical reads upon a fault.

Since going through the main memory and then the backup
memory to fetch data is time consuming, the second phase of
our recovery process for permanent faults tries to minimize
the performance impact of this three-way handling of critical
reads. The extended initiator NI (Section IV-B) is able to
identify whether the source of read responses is the main
or the backup memory. The first critical read after the fault
occurrence triggers a mismatch detection, which in turn forces
the initiator NI to access a different entry within its routing
lookup table. Hence, all following memory reads within the
critical address range are directly sent to the backup mem-
ory after the fault. This clearly improves latencies for the
remaining operations. The resulting flow of packets is shown
in Figure 3(c).

The approach does not introduce any data coherency issue.
During normal operation, the forwarding of write transactions
guarantees that critical data is always consistent among the
main and backup memories. Writes are forwarded just before
hitting the main memory bank, not after having been per-
formed; in this way, a faulty main memory has no chance
of polluting the backup copy of the data. The contents of the
backup memory are updated after a slight delay, but this causes
no issue as the sequence of packets is strictly maintained.
Upon a fault occurrence, transactions are initially directed
to the main memory, and only afterwards, when needed, are
routed to the backup device; this arrangement avoids skipping
transactions and guarantees that all pending transactions (reads
and/or writes) are completed on the correct copy of the data.
Therefore, proper functionality is strictly maintained when
introducing the extra storage bank.

Similarly, when adding the backup memory to the NoC,
deadlock issues do not arise given a proper design of the
NoC routing scheme. In this respect, the NoC designer must
accommodate for one extra IP core and some extra routing
paths during the deadlock-free NoC mapping stage. We pro-
vide a streamlined way of handling the issue by integrating
the discussed reliability enhancements within a complete NoC
mapping flow called SUNMAP [8]. Briefly summarizing the
flow, given an application task graph as an input, SUNMAP
can map it onto an optimal NoC topology. Libraries which
model the area and power consumption of NoC components
are used to drive the optimization functions. An important
property of our mapping tool is that its exploration algorithm
automatically generates deadlock-free NoCs, removing the
complexity of manually handling extra system components.

B. Intermittent Error Recovery Support
In the case of transient errors (e.g. due to overheating detec-

tion), the first phase of the recovery process is as seen above;
critical-region read transactions are automatically forwarded
to the backup memory, which automatically responds to the
initiator. However, the second phase differs due to the nature
of transient failures, where the main memory is supposed to
recover complete functionality at a certain moment in time. All
traffic, including the critical one, continues to be sent from
the processor to the main memory. The extended target NI,
being aware that a fault condition is pending, diverts all critical
reads towards the backup memory, but lets critical writes be
performed towards both the main and backup locations. When
the main memory detects that it is able to return to normal
operation (e.g. after a temperature decrease), it is allowed to
issue a different interrupt to indicate so. The extended target
NI then resumes normal operation.

The main assumption is that updates to the critical data set in
main memory can be successfully performed even during the
“transient fault” state. This might be allowed, e.g. by choosing
conservative temperature thresholds to assert the fault warning.
If this solution is not acceptable and the designer does not want
to consider the fault permanent, we assume that a higher-level
protocol will transfer the safe backup copies of critical data
back to the main memory after its return to full functionality.

VI. EXPERIMENTAL RESULTS

To assess the validity of our approach, we employ two
different benchmarks from the multimedia domain. The first
one is the MPEG-4 VTC application already described in
Section II. As a second test, we use one of the sub-algorithms
of a 3D Image Reconstruction algorithm [27], 3DR for short
(see [32] for the full code of the algorithm, 1.75 million
lines of C++ code), where the relative displacement between
every two frames is used to reconstruct the third dimension.
Similarly to the VTC benchmark, the amount of critical data
that stores control information about the matching process (e.g.
160 kB for images of 640x480 pixels) is much smaller than the
overall input data per each 2-frame matching process (2 MB
at the same resolution), and is stored in two data structures
which are easily identifiable by the application designer.

In our experiments, we run the 3DR and the VTC bench-
marks on top of three reliability-enhanced topologies, as
shown in Figure 4. Both benchmarks are implemented using 10
processing cores and a single main memory. The first topology
is a NoC crossbar, the second is a star, and the third is a
mesh. The topologies and benchmarks are chosen to illustrate
different situations of performance penalty for adding reliabil-
ity support, since the applications demand different features.
In fact, 3DR tends to saturate the main memory bandwidth,
while VTC is less demanding. The NoC is simulated within a
cycle-true simulation environment. We clock the NoCs at 900
MHz, twice the frequency of the cores and memories [3].

A. Performance Studies
We run the benchmarks in five different setups. The first

two are reference baselines, the remaining ones represent our
proposed scheme.

• Reference-Unreliable: our reference run is a system with-
out reliability support at all, where accesses are to a fast
(450 MHz) main memory. No faults are injected.

• Reference-Robust: we model the same system with a reli-
able main memory running at a lower frequency, therefore
minimizing error occurrences [12] and accounting for
the overhead of extra circuitry. System performance is
obviously impacted, but robust operation can be assumed.

• Proposed-Replication: we create a system with a fast
main memory and deploy a slow backup memory, but we
do not yet inject any fault in the system. As a result, the
overhead for the backup of critical data can be observed.
We assume the backup memory to be clocked at half the
clock speed of regular memories, for the same reasons
outlined in the previous setup.

• Proposed-Permanent: we create a system with a fast main
memory and deploy a slow backup memory, then inject a
permanent fault right at the beginning of the simulation.
This enables the evaluation of the impact of accessing the
backup copy of critical data.

(a) (b)

(c)

Fig. 4. The three topologies under test: (a) crossbar, (b) star, (c) mesh

• Proposed-Transient: we create a system with a fast main
memory and deploy a slow backup memory, then inject a
transient fault right at the beginning of the simulation, and
never recover from it. This analysis helps to understand
what happens to system performance during the period
where the main memory is accessed first, but critical
traffic needs to be rerouted to the backup memory.

Figure 5 reports performance, measured in completed trans-
actions per second, for our test setups. The system throughput
of most of the scenarios is close, with Reference-Robust being
much worse than average and Proposed-Permanent performing
much better, at least in the 3DR case, than even Reference-
Unreliable. We explain these major effects by observing that
both benchmarks, like most multimedia applications, place
heavy demands in terms of memory bandwidth; this is a
logical consequence of parallel computing on a 10-core sys-
tem. In Reference-Robust the available memory bandwidth is
decreased to provide more reliability, which causes perfor-
mance to worsen dramatically: throughput drops by about
24% in VTC and by as much as 43% in 3DR, which is
even more demanding. For the same reasons, the Proposed-
Permanent scenario, where critical data is stored in a separate
device, actually guarantees a performance boost related to
load balancing among the two memories; the boost is up to
40% for 3DR. Under less demanding applications, we expect
both scenarios to perform more similarly to the baseline.
The Proposed-Replication scenario exhibits a minimal penalty
compared to the unreliable case, since the traffic overhead is
well handled by the NoC. VTC rarely accesses critical regions,
so no penalty is noticeable; in 3DR the throughput decreases
1% to 9%. Finally, the Proposed-Transient case exhibits a
performance level close to Reference-Unreliable, because non-
critical traffic behaves exactly as in the base scenario, but

several effects related to critical traffic have to be accounted
for. On the one side, critical traffic creates NoC congestion and
incurs a latency overhead. On the other hand, the main memory
does not have to process critical reads, therefore the non-
critical transactions can be executed with less delay. In VTC,
the overall balance is roughly even. In 3DR, where a larger
amount of critical reads (e.g. instruction cache refills) takes
place, the main memory benefits from large latency gains.

Experimental results show that, in order to improve system
reliability, deploying a single highly fault tolerant main mem-
ory (Reference-Robust) may not be a wise choice in terms
of performance within complex multimedia systems. In our
proposed architecture, the main memory is left running at a
high frequency, and a slower secondary memory bank is added.
This choice incurs minor throughput overheads both during
normal operation and after fault occurrences. These results
justify the feasibility of deploying our architecture even in
throughput-constrained environments.

The gains we outline for the Proposed-Permanent scenario
suggest that always mapping critical information to a separate
reliable memory, without inter-memory transactions, may be a
simpler yet efficient approach, due to load balancing. However,
such a choice does not improve reliability as much as our
backup mechanism. First, having two copies of critical data
is certainly more reliable than having a single one. Second,
using the main memory as the default resource permits a lower
workload for the backup memory during normal operation
(only write transactions need to be processed), which further
increases its reliability. Since the focus of this paper is high
fault tolerance, we feel that a redundant data mapping is
justified, and our aim is simply to verify that performance is
not seriously impacted as a result. Performance optimizations
through reduction of local congestion can always be achieved
by the system designer by tuning the memory hierarchy, which
includes deploying multiple storage elements; these steps can
be taken in combination with our proposed approach.

B. Architectural Exploration of NoC Features
We extend our analysis to different NoC-based hardware

architectures using the same NoC backbone. We vary some
parameters of our baseline topologies. First, we modify the
star topology of Figure 4(b) by attaching the backup memory
beyond a further dedicated switch. The total distance from the
central hub is therefore of two hops instead of one. In this way
we model backup memories further apart from main memories
in the chip floorplan, which improves the tolerance to local
overheating. Performance is unchanged under the Reference
scenarios, where the backup memory is never accessed. In Pro-
posed scenarios, where the backup storage is in fact accessed,
throughput worsens by less than 0.3%. This is because the
latency to go through an extra hop in the NoC is very small,
provided there is limited congestion. If the latency to reach
the backup memory becomes too large, the topology designer
may want to add dedicated NoC links.

To test the dependency of performance on the buffer depth
of the redundancy channel, we try a sweep by setting this
parameter within the extended target NI from 3 to 6 stages. Our
results indicate that, both in VTC and 3DR, deep FIFOs only
improve system performance by less than 2%, which indicates
that large buffering is not mandatory in the extended target NI.

To validate the effectiveness of the routing shortcut that is
enabled in the initiator NI after permanent faults, we measure

(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparative performance of adding reliability support for (a, b, c) the VTC benchmark on crossbar, star and mesh topologies respectively, (d, e, f)
the 3DR benchmark on crossbar, star and mesh topologies respectively

the latency of two different transactions on the star topology:
(1) a critical read going from the core to a faulty main memory,
bouncing towards the backup memory, and from there to the
processor again and (2) a read directly towards the backup
memory after the processor has updated its internal lookup
tables. The minimum latency is cut from 78 to 68 (-13%)
clock cycles, and the average one goes down from 103 to
95 (-8%). This metric, while topology-dependent, shows the
advantage of updating the routing decisions of the initiator
upon permanent faults.

C. Effects of Varying Percentages of Critical Data
It is important to explore different reliability/performance

trade-offs according to the amount of variables that are con-
sidered critical: the more data needs to be backed up, the
larger the safe backup memories need to be. Since backup
memories are supposed to be reliable also thanks to being
smaller, slower and relatively little accessed, the effect of
having large backups upon reliability is unclear. To shed some
light onto the performance side of the issue, we analyze the
behavior under different rates of possible critical vs. non-
critical data in Figure 6. The star topology is taken as an
example. In the plots, the Reference-Unreliable bar can be
assumed to represent an ideal case where no data is critical.
For the Proposed cases we protect against faults two different
memory area: the actual critical set of the benchmark (the
same of the studies in Figure 5, labeled “critical set”), and
as an extreme bound, the whole address space (“all set”).
The first interesting remark is that the Proposed-Replication
performance, i.e. the system throughput before any fault, but in
presence of the backup overhead, is only moderately impacted
by the size of the critical data set. In the worst case of
3DR, which is severely bandwidth-limited, even backing up
the whole address space incurs a penalty of just 18%. On the

other hand, in case of a fault, the size of the protected memory
space is a key performance parameter. While choosing a small
critical set allows for very good throughput, extending the
fault tolerance to the whole main memory content incurs a
large penalty. This is in agreement with expectations; in both
the Proposed-Permanent and the Proposed-Transient cases, all
traffic is ultimately redirected to the backup memory, which is
running at a lower frequency: therefore, throughput becomes
similar to the Reference-Robust baseline.

This bracket of results frames the applicability of our
approach. If the critical set of the application can be kept
small, throughput penalties are minimal and advantages are
clear. Otherwise, performance degrades up to a worst case
equivalent to a system with a single reliable memory.

D. Synthesis Results
Regarding the modifications in the NoC to support a backup

memory, four changes are needed: (i) the NI associated to the
main memory must be augmented, (ii) the backup memory
needs an extra (plain) target NI device, (iii) the initiator NI
becomes a bit more complex, (iv) extra links and switch ports
may be needed for routing data to the backup memory.

To assess the silicon cost of the proposed extensions, we
synthesize the original and extended NIs with a 0.13 µm

UMC technology library. Initiator NIs experience no operating
frequency penalty to support the extra functionality, while area
increases by about 7% (0.031 mm

2 against 0.029 mm
2).

We also study extended target NIs, having 4-slot buffers in
the response channel and 3- to 9-slot buffers in the extra
redundancy channel. The impact on maximum achievable
frequency is just of 2% to 6%, negligible in a NoC where the
clock frequency is limited by the switches [3]. By adopting
a 4-slot buffer identical to that of the response channel, area
increases from 0.032 mm

2 to 0.039 mm
2.

(a)

(b)
Fig. 6. Impact of adding reliability support on the star, with different sizes
of the critical data set, for (a) VTC, (b) 3DR

As a result, the area cost due to NI changes is 0.041 mm
2.

Overall, even including other possible overheads in the NoC
(i.e. extra ports in switches and extra links), the final overhead
is still small in comparison to the area of the extra backup
memory bank itself, which can take on average 1 mm

2 of
area for a 32 kB on-die SRAM in 0.13 µm technology.

VII. CONCLUSIONS

With the growing complexity in consumer products, a gen-
eration of System-On-Chip (SoC) architectures with extreme
interconnection fabric demands is being envisioned. One of
the main challenges for designers will be the deployment of
fault tolerant architectures. In this paper, we have presented
a complete approach to countering transient and permanent
failures in on-chip memories, by taking advantage of the
communication infrastructure provided by reliable Network-
on-Chip (NoC) backbones. Our design is based on modular
extensions of the network interfaces of the cores, and is
transparent to the software designer. The only activity required
by the programmer is minimal code annotation to tell the
compiler which parts of the data set are critical. The extensions
are integrated within a NoC mapping flow, which transparently
handles instantiation issues. Our experimental results show
that the proposed approach has a very limited area overhead
compared to non-reliable designs, while being scalable for any
number of cores.

VIII. ACKNOWLEDGMENTS

This work has been supported by STMicroelectronics, the
Swiss FNS (Research Grant 20021-109450/1), the Spanish
Government (Research Grant TIN2005-5619), the US NSF

(contract CCR-0305718), the Semiconductor Research Cor-
poration (SRC) (contract 1188).

REFERENCES

[1] V. Agarwal, et al. The effect of technology scaling on microarchitectural
structures. Technical Report TR2000-02, University of Texas at Austin,
USA, 2002.

[2] R. Aitken, et al. Redundancy, repair, and test features of a 90nm
embedded SRAM generator. In Proc. ISDFT in VLSI Systems, 2003.

[3] F. Angiolini, et al. Contrasting a NoC and a traditional interconnect fabric
with layout awareness. In Proc. DATE, 2006.

[4] ARM Inc. AMBA Specification, May 1999.
[5] Kubilay Atasu, et al. Automatic application-specific instruction-set

extensions under microarchitectural constraints. In Proc. DAC, 2003.
[6] Luca Benini et al. NoC: a new SoC paradigm. IEEE Computer, 2002.
[7] Davide Bertozzi et al. ×pipes: A network-on-chip architecture for

gigascale systems-on-chip. IEEE Circuits Systems Mag., 2004.
[8] Davide Bertozzi et al. Error control schemes for on-chip communication

links: the energy-reliability trade-off. IEEE Trans. on CAD, 2005.
[9] Morgenshtein et al. Micro-modem - reliability solution for NoC commu-

nications In Proc. ICECS, 2004.
[10] Tamhankar et al. Performance driven reliable link design for networks

on chips In Proc. ASP-DAC, 2005.
[11] T. M. Austin DIVA: a reliable substrate for deep submicron microar-

chitecture design In Proc. MICRO-32, 1999.
[12] T. M. Austin et al. Opportunities and challenges for better than worst-

case design In Proc. ASP-DAC, 2005.
[13] M. Blaum, et al. The reliability of single-error protected computer

memories. IEEE Trans. Comput., 1988.
[14] Nicolas S. Bowen et al. The effect of program behavior on fault

observability. IEEE Trans. Comput., 1996.
[15] M. Choi, et al. Optimal spare utilization in repairable and reliable

memory cores. In Proc. Int. Workshop on Mem. Tech., Design and Testing,
2003.

[16] Irak Sodagar et al. Scalable wavelet coding for synthetic and natural
hybrid images. IEEE Trans. on Circ. and Syst. For Video Technologhy,
1999.

[17] Kees Goossens, et al. Aethereal NoC:concepts, architectures, and
implementations. IEEE Des. and Test of Computers, 2005.

[18] Chih-Tsun Huang, et al. Built-in redundancy analysis for memory yield
improvement. IEEE Trans. on Reliability, 2003.

[19] IBM. The CoreConnect Bus Architecture, Product Specification, July
1999.

[20] Ahmed Jerraya and Wayne Wolf. Multiprocessor Systems-on-Chips.
Morgan Kaufmann, Elsevier, 2005.

[21] M. Kandemir, et al. A compiler based approach for dynamically
managing scratch-pad memories in embedded systems. IEEE Trans. on
CAD, 2004.

[22] Sorin Manolache, et al. Fault and energy-aware communication mapping
with guaranteed latency for applications implemented on NoC. In Proc.
DAC, 2005.

[23] OCP International Partnership (OCP-IP). Open core protocol standard
2.0, 2003. http://www.ocpip.org/home.

[24] J. Ohtani, et al. A shared built-in self-repair analysis for multiple
embedded memories. In Proc. IEEE CICC), 2001.

[25] Jose Oliver et al. Fast and efficient spatial scalable image compression
using wavelet lower trees. In Proc. DCC, 2003.

[26] Preeti Ranjan Panda, et al. Data and memory optimizations for
embedded systems. ACM TODAES, April 2001.

[27] Marc Pollefeys, et al. Metric 3D surface reconstruction from uncali-
brated image sequences. In Proc. SMILE, 1998.

[28] P. Shivakumar, et al. Exploiting microarchitectural redundancy for defect
tolerance. In Proc. ICCD, 2003.

[29] Tajana Simunic et al. Managing power consumption in networks on
chips. In Proc. DATE, 2002.

[30] P. Stanley-Marbell et al. Dynamic fault-tolerance management in failure-
prone battery-powered systems. In Proc. IWLS, 2003.

[31] Chin-Lung Su, et al. A processor-based built-in self-repair design for
embedded memories. In Proc. of ATS, 2003.

[32] Target jr, 2002. http://computing.ee.ethz.ch/sepp/
targetjr-5.0b-mo.html.

[33] Hua Wang, et al. Systematic analysis of energy and delay impact of very
deep submicron process variability effects in embedded sram modules. In
DATE, 2005.

[34] Sihai Xiao, et al. A generalization of the single b-bit byte error correcting
and double bit error detecting codes for high-speed memory systems.
IEEE Trans. on Computer, 1996.

[35] Yervant Zorian, et al. SRAM design on 65-nm CMOS Technology with
dynamic sleep transistor for leakage reduction. IEEE Trans. on Computer,
1999.

