
Simulation-based functional test justification
using a Boolean data miner

Charles H.-P. Wen, Onur Guzey and Li-C. Wang
Dept. of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106
Email: {opwen,oguzey,licwang}@ece.ucsb.edu

Jin Yang
Strategic CAD Lab,

Intel Corporation
Email: jin.yang@intel.com

Abstract— In simulation-based functional verification, com-
posing and debugging testbenches can be tedious and time-
consuming. A simulation data-mining approach, called TTPG[3],
was proposed as an alternative for functional test pattern gen-
eration. However, the core of simulation data-mining approach
is Boolean learning, which tries to extract the simplified view of
the design functionality according to the given bit-level simulation
data. In this work1, an efficient data-mining engine is presented
based on decision-diagram(DD)-based learning approaches. We
compare the DD-based learning approaches to other known meth-
ods, such as the Nearest Neighbor method and Support Vector
Machine. We demonstrate that the proposed Boolean data miner
is efficient for practical use. Finally, that the TTPG methodology
incorporated with the Boolean data miner can achieve a high
fault coverage (95.36%) on the OpenRISC 1200 microprocessor
concludes the effectiveness of the proposed approach.

I. INTRODUCTION

In practice, functional verification of large and complex
designs relies on extensive testbench simulation. Testbench
development can be tedious and time-consuming. To alleviate
this burden, constrained random verification paradigm ex-
tended from the Random Test Program Generation (RTPG) [1]
methodology has become a popular approach. In constrained
random verification, designers develop test templates to re-
place specific tests. A template consists of manually imposed
input constraints and biases, which can be instantiated into
many tests.

To guide test templates towards given verification targets,
the work in [3] suggests a Target Test Pattern Generation
(TTPG) methodology where (sequential) ATPG is first applied
locally on the design block containing the target, to produce
test patterns at the boundary of the design block. Then, further
justification of these local patterns is guided by the so-called
learned models.

Simulation data can be collected based on instantiated tests
from test templates and is minded to develop learned models.
The learned models help to guide the modification of the test
templates by assigning more specific values to certain inputs so
that future instantiated tests could have a higher possibility to
cover the verification target. This methodology is useful when
the pattern justification must conform to local logic constraints
hard to satisfy manually in designer-composed test templates.

1This project is sponsored by SRC under Task ID 1360.001

However, the effectiveness of the methodology depends on the
effectiveness of the learned models.

easy-for-
manual

mapping

learned
models from
simulation

data mining

ATPG

learning patterns local ATPG patterns

... ...

fu
n

ct
io

n
al

 p
at

te
rn

s

target

...

targeted blocklearned block

Fig. 1. Combining local ATPG and simulation data learning to guide
functional test pattern justification – The motivating application

Figure 1 illustrates the TTPG methodology on a sequential
design. Note that on one hand the targeted design block can
be complex and far away from the chip boundary as long as
ATPG process can finish efficiently. On the other hand, the
learned block is prior logic to the targeted block, and starts
from the boundary where designers can easily map the learning
patterns back to the functional patterns.

When learning bit-level data, it becomes a Boolean learning
problem. The objective of Boolean learning is to develop
a learned model which provides a simplified view of the
functionality of the learned block and allow us to find a
potential short-cut to translate the local ATPG patterns to the
inputs of the learned block. In addition, it is required that the
inverse of the learned model can be computed efficiently so
that the learning patterns can be generated easily.

0

20

40

60

80

100

0 10 20 30 40 50

patterns for the learned model (K)

su
cc

es
s

ra
te

 (
%

)

c432

(a) c432

0

20

40

60

80

100

0 20 40 60 80 100

of patterns for the learned model (K)

su
cc

es
s

ra
te

 (
%

) c880
c499

(b) c499 and c880

Fig. 2. Examples of Boolean learnability

For better understanding how difficult the Boolean learning
problem is, a learning algorithm based on logic optimization
was first proposed to be applied on Boolean circuits in [3].
Authors use three ISCAS85 example circuits, c432, c499 and
c880, to illustrate different levels of difficulty on Boolean
learnability in Figure 2. X-axis represents the number of used

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

patterns in the learning models while Y-axis represents the
learning accuracy based on another set of randomly-generated
patterns. Figure 2(a) shows that c432 is easy to learn while
Figure 2(b) shows that learning c499 is not effective and the
effectiveness of learning c880 lies in between. Note that how
effective the Boolean learning is will decide the success of the
TTPG methodology.

From the literature in Computational Learning Theory
[4], Boolean learning algorithms can be classified into two
categories: non-query(NQ)-based mining and query(Q)-based
learning. In query-based learning, a learning algorithm is
allowed to generate any input pattern �x and obtain the
value f(�x) by querying a simulator on the target Boolean
function. In NQ-based mining, a set of n training samples
D = ((�x1, f(�x1)), . . . , (�xn, f(�xn))) are given in advance. A
learning algorithm relies solely on the information provided in
D to derive a learned model. No queries are allowed during
the learning.

Practically speaking, query-based learning requires a learn-
ing algorithm to have full control of the simulator, which
may limit its applicability in certain situations. However,
non-query data mining has no such constraint [3]. Thus, we
are more interested in non-query based mining than query-
based learning. In this paper, we describe an efficient non-
query based data mining engine for the Boolean domain.
This engine is built on a novel decision-diagram (DD) based
learning approach. We abandoned the use of existing learning
approaches such as Fourier based analysis method [12] or
SVM [15] for building the learning engine because those
popular learning methods usually do not support the efficient
computation of the inverse learned models, which is a crucial
requirement for our engine to be used in practice.

Our DD-based learning approach stores the learned model
of an output function in terms of a Binary Decision Diagram
that can be easily converted into an Ordered Binary Decision
Diagrams (OBDDs) [5]. This feature greatly simplifies the
computation of inverse learned model. To evaluate the effec-
tiveness of our learning engine, we compare the performance
of our NQ-based mining algorithm to those of two exist-
ing methods: the simplest method implementing the Nearest
Neighbor (NN) principle and the most advanced method
employing the Support Vector Machine (SVM) [16][15]. We
show that our engine is much more efficient than NN and
SVM, and is comparable in accuracy to SVM.

The rest of the paper is organized as: Section II discusses
the background and formulates the learning problem in this
work. Section III proposes and analyzes the NQ based mining
algorithms. Section IV summarizes the experimental results
to show the effectiveness of our Boolean data miner. We also
apply the TTPG methodology incorporated with our Boolean
data miner to a microprocessor design. Section V concludes
the paper.

II. BACKGROUND

The problem of learning Boolean functions has been studied
extensively since the pioneer work of L. Valiant [6]. Valiant

defined a learning model called Probably Approximately Cor-
rect (PAC) model. Given a target function f(x) on n inputs,
i.e. ||x|| = n, and two small numbers, ε and δ, f is PAC
learnable if there exists an algorithm that runs in polynomial
time in terms of 1

ε , 1
δ and n, and with a probability at least

1 − δ produces a learned model LM(x) such that LM can
approximate f with an error probability at most ε, where ε
is arbitrarily small, i.e. ε → 0. The number, δ, is used for
quantifying the success rate of learning algorithms because
learning algorithms are randomized algorithms that rely on
random samples to get their answers.

Most algorithms in previous studies [6]-[13] were for facili-
tating the proofs of some theoretical results on the complexity
of the problem. Little effort has been devoted to investigating
the possibility of developing an efficient Boolean learning
engine for practical use in EDA applications. Therefore, in
this work we pursue such an investigation.
Our problem formulation:

The Boolean learning problem in our work is different from
the theoretical studies mentioned above. From one perspective,
our problem is harder than the classical Boolean learning
problem formulation because (1) for a learned model LM , we
require that LM−1 can be computed efficiently , and (2) given
an output pattern z, we demand accurate learning on ||z|| = m
outputs so that pattern justification can be effectively guided by
LM−1(z). Note that a learning algorithm usually handle one
output at a time. Hence, pattern justification requires learned
results on individual outputs to be combined together.

From another perspective, our Boolean learning problem
could be easier due to two reasons: (1) in practice, the error ε
of learning can be relaxed to a small percentage number, like
2%, instead of an arbitrarily small number ε → 0. Notice that
this means that our learning algorithm is still allowed to make
mistakes on an exponential number of inputs because 0.02∗2n

is still on the order of O(2n). (2) for pattern justification,
we are allowed to generate k input vectors x1, . . . , xk from
LM−1(z) (typically LM−1(z) is not unique). This is because
we can simulate f(x1), . . . , f(xk) and then verify if any xi

actually satisfies f(xi) = z. If one of them does, then we have
successfully found a justified pattern. Hence, by increasing k,
we can reduce the need for high learning accuracy.

III. NON-QUERY BASED DATA MINING

NQ Boolean learning can be transformed into a binary
classification problem [14]. For binary classification, SVM
[16][15] is one of the most popular approaches in recent years.
It is a supervised learning technique which non-linearly maps
the input space onto a high dimensional feature space and then
finds the separation function for the classification purpose. Due
to the space constraints, we omit the detailed discussion of the
SVM algorithm. Interesting readers can refer to [16][15]. If we
treat SVM as one of the most advanced learning approaches,
then the most naive and straightforward approach may be the
implementation of the Nearest Neighbor (NN) principle.

Suppose that there are four input variables x1x2x3x4.
Suppose that the simulation gives a data set based on five

�v1 �v2 �v3 �v4 �v5
x1 1 0 1 0 1
x2 0 1 1 1 0
x3 1 1 0 0 1
x4 1 0 1 1 0
f() 0 0 1 1 0

(a) original data

�v5 �v2 �v4 �v3 �v1
x̂1(x4) 0 0 1 1 1
x̂2(x3) 1 1 0 0 1
x̂3(x2) 0 1 1 1 0
x̂4(x1) 1 0 0 1 1

f() 0 0 1 1 0
(b) sorted by ordering

�v4 �v3 �v5 �v1 �v2
x̂1 X
x̂2 0 1
x̂3 1 0 1
x̂4 0 1 1 0
f() 1 1 0 0

(c) regularized model

TABLE I

AN EXAMPLE OF ORDERED NEAREST NEIGHBOR

input vectors f(�v1 = 1011) = 0, f(�v2 = 0110) = 0, f(�v3 =
1101) = 1, f(�v4 = 0101) = 1, and f(�v5 = 1010) = 0.
Suppose we are given two input vectors, �v6 = 1100 and
�v7 = 1111, which do not appear in the simulation data.

Nearest neighbor (NN): Given an input x, the NN algo-
rithm finds a vi in the simulation data set, whose (Hamming)
distance to x is the smallest and uses the value f(vi) as the
answer to f(x). Taking 1100 as example, this vector differs
from v3 only by the last bit at x4 position and differs from
others by at least two positions. Since f(v3) = 1, the NN
algorithm reports f(1100) = 1. For input 1111, this vector
differs from v1 and v3 by one bit. Because f(v1) = 0 and
f(v3) = 1, the algorithm may choose either one of them, or
may take the average of values from all the nearest neighbors.

A. Ordered nearest neighbor (ONN)

Given an ordering, Π, of n inputs and the simulation data,
D, we store the data into a matrix form, M , according to Π.
Then, we re-arrange the columns by sorting the input vectors
where each column vector is viewed as a binary word and the
top/bottom input variable is the most/least significant bit.

Suppose Π gives the ordering of inputs as x̂1x̂2 · · · x̂n.
Given two bit vectors, (p1, . . . , pn), (q1, . . . , qn), conceptually
at each level k, we utilizes a weighted distance function,
ω(k) = Σn

i=1(pi ⊕ qi)2n−i to determine the nearest neighbor.
The weighted scheme ensures that (pk ⊕ qk) weights more
than (pi ⊕ qi)|i=(k+1)..n.

We note that applying weighted nearest neighbor with ω(k)
may expand our learning model into the complete binary
decision tree in the worst case. From the statistical learning
[16] point of view, this may be seen as the over-fitting problem,
which briefly states that the complexity of the learned model
is too high to allow induction to be made on the data. The
result is that, the learned model, although fits the training
data well, has a poor generalization accuracy, i.e. perform
poorly on another data set during validation. To avoid the over-
fitting problem, the answer from statistical learning theory is
regularization that controls the capacity of a learning machine.
Therefore, one may see ONN as a result of regularized NN.

Let’s illustrate ONN onto the simulation data D shown
as Table I(a) in the beginning of this section. Suppose Π
gives the order of 〈x̂1, x̂2, x̂3, x̂4〉 = 〈x4, x3, x2, x1〉. We sort
the simulation data D into the matrix form M shown in
Table I(b). At the 1st level, �v5 under x̂1 = 0 and �v1 under
x̂1 = 1 share a common sub-vector (x̂2x̂3x̂4 = 101) and
result in the same answer. We say that such pair of sub-vectors

witnesses the redundancy of x̂1, and thus x̂1 can be removed
and marked as X in Table I(c). From the 2nd level on, we keep
sorting the matrix when fixing one input variable x̂i, and then
splitting nodes into 0-branch and 1-branch. Since no other pair
of witnessing sub-vectors can be found, the final regularized
model is constructed as shown in Table I(c).

Now given �v6 = 1100 (x̂1x̂2x̂3x̂4 = 0011). Since x̂1 is
marked as X , we skip the comparison at this level. The next
step is to match x̂2 = 0, and this gives the subset {�v4, �v3} as its
nearest neighbors. Similarly, {�v4} stays when matching x̂3 =
1 and x̂4 = 1. Therefore, �v6 takes �v4 as its nearest neighbor
and output the answer f(�v6) as 1. By the same manner, for
�v7 = 1111, we can identify �v2 as the nearest neighbor and give
the answer f(�v7) = 0. Note that, in NN, we may find multiple
nearest neighbors which have conflicting output values for a
given vector. However, the ONN algorithm always finds an
unique answer from nearest neighbor set.

B. Implementing ONN with decision diagrams

X1

X2

1 0 0

X3X3

X4X4

0 1

X4

0 1

0 1

0 1 0 1 0 1

0 1

(a) DD

X2

1 0

0 1

(b) OBDD

Fig. 3. Example of DD and OBDD views in ONN

It is natural to use a (binary) decision diagram to implement
the ONN algorithm just described. For example, Figure 3(a)
shows the decision diagram representation of the learning
model in Table I(c). The dotted lines denote the missing
branches not seen in the matrix. If we remove each node whose
0-branch and 1-branch point to the same child, the result is a
reduced decision diagram shown in Figure 3(b).

Let Tλ be the sub-tree rooted at the node given by following
the path λ in the decision diagram. For example, T10 in the
example decision diagram leads to the sub-tree rooted at the
left x3 node. Similarly, we define Mλ to be the sub-matrix
that consists of all columns whose first ||λ|| inputs match the
prefix λ. For example M10 = { �v4, �v3} in the example. Then,
Tλ is the decision diagram representation of Mλ.

In ONN, merging Tλ0 and Tλ1 is based on two rules: (1)
(Mλ0 = φ)∪ (Mλ1 = φ) is true, or (2) � any sub-vector s1 ∈
Mλ0 ∩ Mλ1 where f(λ0s1) 	= f(λ1s1) and ∃ one sub-vector
s2 ∈ Mλ0 ∩ Mλ1 where f(λ0s2) = f(λ1s2). We call this
ONN compatibility check. In other words, when implementing
ONN with a decision diagram, we can check, for each prefix
λ if Mλ0 and Mλ1 are ONN-compatible, and decide to merge
Tλ0 and Tλ1 or not. The algorithm is illustrated below.

Algorithm 1 describes the conversion of a data matrix into a
decision diagram. The resulting decision diagram has not been

Algorithm 1 ONN learning algorithm: ONN(Mλ)

1: if Mλ �= constant then
2: x ← the 1st variable in Mλ;
3: create node Tx;
4: if compatible(Mλ0, Mλ1) then
5: Mλx = merge(Mλ0, Mλ1);
6: return ONN(Mλx);
7: else
8: Tx.lefttree← ONN(Mλ0);
9: Tx.righttree← ONN(Mλ1);

10: end if
11: return Tx;
12: else
13: return constant(Mλ);
14: end if

�u1 �u2
x̂3 0 1
x̂4 0 1
x̂5 1 1
f() 1 1
(a) MΛ1={00}

�u5 �u4 �u6
x̂3 0 0 1
x̂4 0 1 1
x̂5 0 1 1
f() 0 0 1
(b) MΛ3={10,11}

�u5 �u1 �u4 �u2 �u6
x̂3 0 0 0 1 1
x̂4 0 0 1 1 1
x̂5 0 1 1 1 1
f() 0 1 0 1 1

(c) MΛ={00,10,11}

TABLE II

AN EXAMPLE OF MERGING NODES IN OIR

an OBDD yet. However, converting such a decision diagram
into an OBDD can be easily done with an existing OBDD
package [17]. Note that among the compatibility checks in
ONN, nodes merged due to rule (1) occur more frequently at
upper levels while nodes merged due to rule (2) only happen
at lower levels since it is more likely to see the common sub-
vector at lower levels.

C. Ordered input removal (OIR)

In Algorithm 1, compatibility check only applies between
two sibling nodes, Mλ0 and Mλ1, and requires at least one
common sub-vector to merge Mλ0 and Mλ1. We can further
relax the rule of the compatibility check across sibling nodes.
For example, we can say that two sub-matrices MΛ′ and
MΛ′′ are compatible if � any sub-vector s ∈ MΛ′ ∩ MΛ′′ ,
where f(Λ′s) 	= f(Λ′′s). Note that Λ′ and Λ′′ in the OIR
compatibility check represent the set of all prefix paths λ′s
from the root. This rule is also valid on the case that even the
two sub-matrices do not share any input sub-vector. We call
this OIR compatibility check.

For example, assume that the inputs consist of five variables
ordered by < x̂1, x̂2, x̂3, x̂4, x̂5 >=< x1, x2, x3, x4, x5 >.
Simulation data contains six input vectors and their results,
f(�u1 = 00001) = 1, f(�u2 = 00111) = 1, f(�u3 = 01111) =
0, f(�u4 = 10011) = 0, f(�u5 = 11000) = 0, and f(�u6 =
11111) = 1. At the 2nd level x̂2, the compatibility check
merges the sibling nodes, and we first obtain three nodes,
MΛ1={00}, MΛ2={01} and MΛ3={10,11}.

When checking across sibling nodes, we can further observe
that MΛ1 is OIR-compatible to MΛ3 because there does
not exist one sub-vector conflicting under MΛ1 and MΛ3 .
Therefore, we can merge MΛ1 and MΛ3 into MΛ shown as
the Table II.

X1

X2X2

0 0 1

X3X3

X4X4

X5X5

0 1

0 10

00

0 0

0 0

1

1

1 1

11

1

(a) DD

X1

X2

0 1

X3

X4

X5

0

0

0

1

1

1

1

0

0

1

(b) OBDD

Fig. 4. Example of DD and OBDD views in OIR

Figure 4(a) illustrates the decision diagram after applying
OIR onto the simulation matrix. Figure 4(b) is the final OBDD
after removing the redundancy. We can observe that the across-
sibling compatibility check in OIR is very aggressive and
tries to minimize the width of decision diagram while, in
contrast, ONN is relatively conservative to check compatibility
on sibling nodes only.

D. Analysis of ONN and OIR

The compatibility check determines the behavior of NQ-
based mining algorithms, and further plays the important
role to regularize the complexity of the learning model. We
summarize below some interesting properties of the ONN and
OIR compatibility checks.

Property 3.1: Let n be the number of input variables. Let
d be the number of simulation vectors in the data matrix M
(Typically, d >> n). Then, in the resulting decision diagram
given by ONN and OIR, the number of nodes at every level
should be ≤ d. As a result, the upper bound of total number
of nodes is 2�log2 d�+1 + d × (n − �log2 d
) − 1.
Proof: For both ONN and OIR, in the worst case, we can have
the complete binary tree from the 1st level to the �log2 d
th

level. Therefore, the number of nodes from the 1st level to the
�log2 d
th level is Nu = 1+2+· · ·+2�log2 d� = 2�log2 d�+1−1.
From the (�log2 d
 + 1)th level on, at most d nodes corre-
sponding to the d output values can be generated at one level.
Therefore, the number of nodes from the (�log2 d
 + 1)th

level to the nth level is Nl = d × (n − �log2 d
). To sum
up, the maximum number of nodes for ONN and OIR is
N = Nu + Nl = 2�log2 d�+1 + d × (n − �log2 d
) − 1 �

Property 3.2: Let DD be the decision diagram resulting
from applying ONN or OIR on data matrix M . For any input
vector �v ∈ M , the evaluation of f(�v) on DD always gives
the correct answer.
Proof: This is straightforward. �

Property 3.3: If Mα0 and Mα1 are ONN-compatible, then
Mα0 and Mα1 are also OIR-compatible.
Proof: (Case 1) if Mα0 and Mα1 are ONN-compatible because
of rule (1) of the ONN compatibility check in Section 3.2,
then either Mα0 or Mα1 is empty, and Mα0 and Mα1 cannot

share any sub-vector. Hence, Mα0 and Mα1 are also OIR-
compatible. (Case 2) if it is due to rule (2) in ONN, then the
condition that �s1 ∈ Mλ0 ∩ Mλ1 where f(λ0s1) 	= f(λ1s1)
must hold from ONN. Let Λ′ = {λ0} and Λ′′ = {λ1}. Assume
that Mα0 and Mα1 are not OIR-compatible. That is, ∃ one
sub-vector s ∈ MΛ′ ∩ MΛ′′ such that f(Λ′s) 	= f(Λ′′s) in
OIR. Obviously, it contradicts the above condition in ONN.
Therefore, such sub-vector does not exist, and Mα0 and Mα1

are OIR-compatible. �
In statistical learning, if a learning model satisfies Prop-

erty 3.2, we say that this model is over-fitting. Therefore, to
prevent the over-fitting problem, a modern statistical learning
algorithms SV like SVM typically allows existing some �v ∈
training data set M where SV (�v) 	= f(�v).

However, the notion of over-fitting and the related treat-
ments in statistical learning are usually defined on the infinite
continuous space (such as �n). In the Boolean domain where
the space (Boolean functions) is finite and discrete (enumer-
able), such notion cannot be applied directly. Therefore, what
condition(s) to Property 3.2 would make the result over-fitting
is not clear at this point. Whether the treatments in statistical
learning still work in Boolean learning is under investigation.

It is also interesting to observe that Property 3.1 implies
that the DD-based algorithm performs some compression on
the data set. Superficially, ONN and OIR algorithms behave
similarly to logic optimization algorithms. It is because the
compatibility check also reduces the decision diagram size as
other logic optimization algorithms do but fundamentally their
goals are different.

The Boolean data mining is concerned more about the
information complexity of the training data set, i.e. how
much useful information is contained in the set of data.
More specifically, given the simulation data and a selection
of learning algorithms, Boolean data mining problem can be
viewed as the problem of finding the best model that encodes
all information presented in the data set while utilizing limited
number of samples (not all) in the data set. Because the
number of care samples used to construct the learned model
is smaller than the total number of samples, a certain degree
of induction can be carried out. Essentially, both ONN and
OIR try to follow this principle.

IV. COMPARISON OF NQ LEARNING METHODS

In this section, we conduct experiments to assess the per-
formance of NN, ONN, OIR, and SVM. We use the SVM
package Torch3 [18] and assign Gaussian kernels [15] in the
learning. Note that we did try using Polynomial kernels [15] in
SVM and discovered that their performances were in general
worse than using Gaussian kernels.

Performance was evaluated from two aspects: (1) learning
accuracy, and (2) run-time efficiency in training a learned
model and in evaluating the learned model. For all methods,
learning accuracy depends on the input vectors used to gen-
erate the data matrix. In all experiments, we fix the number
of input vectors in the data matrix to 100K for simplicity. For
SVM, this number is reduced to 10K because otherwise, most

NN ONN OIR SVM
min avg max min avg max min avg max min avg max

c499 61.4 62.2 63.7 49.9 80.8 99.3 57.1 84.6 98.7 99.5 99.6 99.7
c880 49.9 56.8 60.4 49.8 71.2 100 49.7 56.6 100 50.4 91.9 100
c1908 52.2 59.5 63.1 49.7 85.2 99.7 59.7 89.8 100 58.7 86.9 99.9
c3540 50.1 54.5 54.5 50.0 67.0 100 50.0 55.0 100 49.5 70.9 100
c6288 49.8 52.8 52.9 49.8 57.1 100 49.6 55.3 95.9 48.5 59.7 100
c7552 49.8 52.5 56.6 49.6 56.0 100 49.6 56.0 100 49.3 75.6 100
total train evaluate train evaluate train evaluate train evaluate

runtime 0.18 hr > 10 days 3.86 hr 0.04 hr 3.37 hr 0.04 hr > 1 day 32.8 hr

TABLE III

LEARNING ACCURACY AND RUN-TIME BASED ON 100K RANDOM INPUT

VECTORS FOR FOUR NQ LEARNING METHODS

runs would not finish after days. In addition, we use training
vectors produced by uniformly random selection between 0
and 1 on each bit. Fixing the number of vectors and the
way to generate these vectors ensures a fair comparison of
all methods. We did try with other variations but found that
they did not change the conclusions to be drawn later. Hence,
we omit the discussion of these issues in detail.

Experimental results: In the initial experiments, we use
some combinational benchmark examples from [17]. These
examples are good at evaluating the performance because they
represent general Boolean functions. However, we emphasize,
as shown in Figure 1, that our algorithm is not only intended
for learning combinational circuits. Moreover, a learning al-
gorithm treats the circuit as a black box. The circuit size is
relatively un-important as long as the simulation is efficient.
What impacts the performance of a learning algorithm the
most is the complexity of the input-output behavior. Hence, a
learning algorithm may perform very well on a large design
but very badly on a small circuit block.

Table III summarizes the accuracy comparison (in %) be-
tween the four methods. In each case, we show the minimum,
the average, and the maximum learning accuracy over all out-
puts. Total runtime is also provided to compare the efficiency.

Accuracy is evaluated based on a set of newly-generated
100K random vectors, by comparing their output values re-
ported from each learned model, to the true answers reported
by the simulator. Let R1 be the percentage of the vectors such
that the true answer is 1 and for those vectors, the learned
model’s answer is also 1, and R0 be defined similarly. Then,
we calculate the learning accuracy as R1+R0

2 . For example,
suppose the output values of the 10K patterns have 9999 1’s
and only one 0. If a model answers 1 with 100% accuracy
but answers 0 with 0%, then the learning accuracy would be
counted as 50%.

The average learning accuracy among four methods is
particularly shown in Fig 5. In general, we can observe that
SVM performs consistently better with respect to the learning
accuracy but is considerably slower than ONN and OIR. NN
is extremely slow in model evaluation and the accuracy is
the worst. Note that the ”training” time for NN is only the
simulation time because an NN learned model is nothing but
the original data matrix.

It is interesting to observe that although ONN also employs

50

60

70

80

90

100

c499 c880 c1908 c3540 c6288 c7552

name of circuit

av
er

ag
e

le
ar

n
in

g
 a

cc
u

ra
cy

 (
%

)

NN ONN

OIR SVM

Fig. 5. Average learning accuracy of NQ learning methods

c499 c880 c1908 c3540 c6288 c7552
upper bound (K) 84194 117808 45777 77684 55394 2076956

ONN DD size (K) 63716 113104 19904 73701 34956 1982320
comp. ratio 1.3 1.0 2.3 1.1 1.6 1.0

OIR DD size (K) 124 207 74 228 364 2603
comp. ratio 679.1 570.0 622.8 340.5 152.4 798.0

ONN OBDD size(K) 258 327 209 352 709 6975
OIR OBDD size(K) 117 199 70 221 343 2491

ONN BDD/OIR BDD 2.2 1.6 3.0 1.6 2.1 2.8

TABLE IV

TOTAL NUMBER OF DD NODES, COMPRESSION RATIOS AND OBDD

NODES OVER ALL OUTPUTS

the Nearest Neighbor principle, by fixing an input variable or-
dering, ONN substantially outperforms NN. This is somewhat
surprising because it indicates that the ordering of learning
can be a significant factor in Boolean learning. We emphasize
that both NN and SVM are not suitable for use in pattern
justification, because it is not clear how to obtain inverse NN
and SVM learned models (to efficiently compute LM−1).

From the discussion in Section III-D, we know that both
ONN and OIR perform the information compression on their
learned models. Property 3.1 gives the upper bound of number
of nodes that a DD-based model can have. Therefore, the com-
pression ratio can be computed as the upper bound divided by
the number of DD nodes by ONN and OIR, respectively. More
interestingly, how about their final OBDD sizes? Table IV
shows the DD sizes, compression ratios, and OBDD size for
ONN and OIR. Our result shows that although OIR have much
higher compression ratio then ONN on DD sizes, their OBDD
sizes have no more than 2 times difference.

A. Boosting accuracy by changing ordering

The data above were obtained by following the netlist input
ordering on each case. For ONN and OIR, we suspected that
the learning accuracy could be sensitive to the input variable
ordering in use. Hence, it might be possible to alter the input
orderings in the experiments and improve the accuracy results.
Suppose we were given with a data matrix and an output
y to be learned. To find a good input ordering, we applied
association rule mining (ARM) [19] on the matrix. For each
input x, we calculated its correlation to the output based on the
Support-Confidence Framework [19] in ARM. This correlation
aimed to quantify the likelihood that a change of value on x
may cause a change of value on y. If this correlation is high,
we would rank x high.

c499 c880 c1908 c3540 c6288 c7552
From Table 1: O (min) 49.9 49.8 49.7 50.0 49.8 49.6

New orderings: O′ (min) 99.2 49.9 59.9 50.0 49.8 49.7
From Table 1: O (avg) 80.8 71.2 85.2 67.0 57.1 56.0

New orderings: O′ (avg) 99.2 86.3 87.7 70.1 59.9 78.9

TABLE V

BOOSTING ACCURACY IN ONN BY USING O′

output# 1 2 20* 3 6* 7* 8* 9 12 17 13 18 19 14 16
SVM 100 100 90.1 87.6 82.8 82.6 81.6 78.4 71.1 68.4 65.3 65.0 64.9 64.8 64.6
ONN 100.0 99.6 51.6 76.0 52.8 58.5 60.8 73.4 79.7 67.3 62.8 64.6 56.6 60.0 63.4
OIR 99.9 88.0 51.6 75.5 52.9 58.3 58.0 70.7 76.5 67.2 62.5 64.7 56.6 60.0 63.4

TABLE VI

BASED ON SVM’S TOP-15 MOST ACCURATE OUTPUTS ON C3540

Table V shows the improved learning accuracy results based
on ONN using the ARM-based orderings (results on OIR
were similar and hence are not shown). We observe that
using the new orderings (i.e. the rows denoted by ”O′”) could
substantially boost the accuracy results. The average learning
accuracy results becomes more comparable to those given by
SVM in Table III.
Results on selected outputs: It is interesting to examine the
results on a few selected outputs in more detail. Take c3540
as an example. Table VI summarizes the accuracy results on
15 selected outputs. These outputs were selected because they
were the 15 most accurate outputs based on SVM. We observe
that for outputs # 20, 6, 7, 8, SVM performs significantly better
than ONN and OIR. In addition, we observe that ONN and
OIR performs similarly on almost all outputs.

In addition, Table VII shows the comparison results on
selected outputs from various circuits. We notice that for the
four outputs of c3450, # 20, #6, #7, #8 mentioned above, using
the new orderings could boost the accuracy on outputs #20,
#6, #7 to similar levels as those achieved by SVM (shown in
Table VI) but could not do so on output #8.

To sum up, from Figure 5, ONN performs slightly better
than OIR in general and hence, for most cases it suffices
to try just ONN. This is surprising because from Table IV
OIR always has much higher compression ratio on DD sizes,
which seems to be a better solution for the overfitting problem
(but actually not necessarily). On the other hand, the ordering
of learning can significantly impact the performance of ONN
(and OIR), i.e. using the ARM-based orderings can substan-
tially boost the accuracy results (Table VI and Table VII).

B. Potential of the engine

We demonstrate the potential of our learning engine by
showing:

circuit c3540 c499 c880 c6288 c7552
output# 20* 6* 7* 8* 22 23 26 26 28 29 30 27 53

O 51.1 52.8 58.5 60.8 50.4 49.5 50.2 50.7 50.3 50.8 52.4 50.1 50.2
O′ 88.9 83.8 81.2 67.3 99.3 99.2 99.2 67.5 76.9 79.1 98.9 80.9 75.1

TABLE VII

COMPARISON OF USING ORDERINGS O AND O′ BASED ON ONN

out bit 1 4 8 12 16 20 24 28 32
True OBDD 4773 4773 4773 4773 4773 4773 4773 4773 4773

ONN’s OBDD 1213 1131 1184 1256 1232 1272 1249 1277 1199
min-terms difference % 1.49 1.38 1.47 1.49 1.49 1.43 1.58 1.39 1.45

TABLE VIII

RESULTS ON C499 USING ONN WITH ARM-BASED ORDERINGS

output bit 13 14 15 16 25 26 27 28 29 30 31 32
ONN’s OBDD 25K 25K 25K 25K 24K 23K 21K 12K 11K 16 7 3

accuracy % 49.4 51.0 50.8 48.4 51.6 55.0 57.8 80.0 81.2 98 99 99
True OBDDs 216K 596K 1631K 4554K - - - - - - - -

TABLE IX

1-BIT JUSTIFICATION ACCURACY AND LEARNED OBDD SIZES FOR

SELECTED OUTPUTS ON C6288

1) A learned OBDD can be much smaller than the true
OBDD while the functions represented by the two are
still very similar.

2) A good approximate learned OBDD can still be de-
veloped even when computing the true OBDD is not
feasible because of the exponential size blow-up.

3) When combining multiple outputs’ learned OBDDs into
one, a reasonable accuracy can be maintained.

4) Pattern justification can be effectively guided by com-
bining learned OBDDs.

(1) Consider a function f(x) = xi ⊕ h(x) where h(x) is a
complex function with a small percentage of inputs making
h(x) = 1. Then, xi = 1 ⇒ f(x) = 1 with a high probability,
and g(x) = xi is actually a good approximation of f(x). Table
8 shows results of this type of approximation on c499. Given
the good orderings from association rule mining, the learned
OBDDs from ONN are much smaller and have a min-term
difference less than 1.6% when comparing the true OBDDs.

(2) It is well known that OBDD representation is not efficient
for multipliers [5]. Table IX shows that for the most significant
bits of a 16×16 multiplier, c6288, learning could obtain very
good approximate OBDDs while the true OBDDs could not be
computed due to OBDD blow-up in the middle of the circuit.
The accuracy is measured by randomly justifying 0/1 using a
learned OBDD 10K times, and simulating the 10K justified
vectors on the circuit to verify their accuracy.

(3) Suppose we have m outputs with learned OBDDs
B1, . . . , Bm that achieve accuracy ρ1 ≥ . . . ≥ ρm. Suppose
we are given a random and justifiable pattern Am = [a1, . . .,
am] to be justified. Note that it is crucial to assume that Am is
justifiable. Otherwise, there is no chance for a learned model
to produce an input vector to justify the pattern. Further note
that to answer the question if a given pattern is justifiable or
not, requires the use of a deterministic search method such as
a SAT solver. A Boolean learning engine cannot answer that
question. In our experiments, we only used justifiable output
patterns because our purpose was to evaluate the effectiveness
of learning, not the effectiveness of our learning algorithms to
decide justifiability.

c499 c880 c1908 c3540 c6288 c7552
of selected outputs 32 19 25 8 7 68

k=10 95.6 93.7 93.4 94.6 97.1 44.9
k=100 96.6 100 95.2 100 100 68.9

TABLE X

LEARNING RATE COMPARISON WITH DIFFERENT K’S

For guiding the pattern justification, we need to combine
the m learned OBDDs as Jm = (B1⊕a1)∧· · ·∧ (Bm ⊕am).
If we justify k patterns from Jm (as discussed in our problem
formulation in Section II) , let δm(k) be the (justification
success) rate that at least one of the k patterns achieves
Am in the simulation. Then, we expect that δm(k) increases
as k increases, and decreases as m increases. Let Pm =
(ρ1) ∗ · · · ∗ (ρm). We see that Pm decreases as m increases.
Figure 6 plots Pm and δm(k) for various m and k based on
the learned OBDDs obtained using ONN with ARM-based
orderings on c1908.

number of justified outputs (m)

P
ju

st
if

ic
at

io
n

 s
u

cc
es

s
ra

te

(%)

k=100
k=10

k=1000

k=1

m

 0
 10 15 20 25 0

 100

 80

 60

 40

 20

 5

Fig. 6. Justification success rates for m = 1 . . . 25 and k = 1, 10, 100, 1000
based on circuit c1908

Figure 6 demonstrates that for a large enough k (ex. k =
100), a random pattern consisting of 25 outputs can almost
surely be justified based on combined result of individual
learned OBDDs. Notice that for m = 25, Pm < 10% already.
Hence, we see that by using a large k, the justification success
rate can be much higher than simply multiplying the individual
learning accuracies together (i.e Pm).

(4) For the remaining circuit examples, we continued to
use ONN with ARM-based orderings. We conducted pattern
justification experiments as follows: We selected all outputs
whose learning accuracies were at least 70%. We produced 1K
justifiable patterns on these outputs. We report the justification
success rates in Table X. It is interesting to note that in
Figure 2(b), c499 is classified as low learnability in [3]. With
the help of ARM-based orderings, we can justify all outputs
of c499 with success rate of 96.6% as k = 100.

In Table XI, we applied the learning engine to some
ISCAS89 sequential circuits. We applied ONN with ARM-
based orderings to obtain the best learned OBDDs. For each
circuit, we assigned 0 to all flip-flops as the initial state. Then,
the learning was based on 3-timeframe expansion similar to
that illustrated in Figure 1. Note that we did not constrain any
input and hence, the learning was based on all inputs across
the 3 timeframes. 1K randomly generated justifiable output
patterns at the end of the 3rd timeframe were used to calculate
the success rates. We see that good results could be achieved

success rates success rates
Circuit PIs POs FFs k=10 k=100 Circuit PIs POs FFs k=10 k=100
s641 35 24 272 95.6 95.6 s712 35 23 254 96.4 96.4

s1423 17 5 74 100 100 s9234 36 39 211 94.6 100

TABLE XI

PATTERN JUSTIFICATION BASED ON 3-TIMEFRAME SIMULATION

TTPG method original DD-based data miner

detected faults 18966 19049
fault coverage 94.94% 95.36%
test coverage 97.40% 97.82%

TABLE XII

FAULT COVERAGE COMPARISON ON THE ALU MODULE

on these examples.

C. Application to OpenRISC 1200 processor

OpenRISC 1200 is a public microprocessor core, which
many industrial applications use, such as an SOC design from
Flextronics Semiconductor and a speech recognizer from Voxi
Inc. The current design is a 32-bit scalar RISC with Harvard
microarchitecture and a 5-stage integer pipeline supporting
52 core instructions. An implementation of the CPU core,
synthesized by Synopsys Design Compiler, contains 285218
collapsed stuck-at faults and 2349 state-holding elements.

We incorporate the proposed Boolean data miner into the
TTPG methodology, and mainly focus on control signals
in the ALU module. ALU contains 3608 gates performing
arithmetic, logic, comparison and shift/rotate operations. 30
core instructions can produce signal activities on the ALU. The
total number of stuck-at faults in the ALU is 19976 in which
19472 faults (structural fault coverage 97.47%) are reported
testable by Fastscan.

The overall fault coverage of DD-based data miner and
previous method[3] is compared and shown in Table XII. The
result shows that the TTPG methodology with DD-based data
miner can also achieve high test coverage as the original TTPG
methodology does. The minute difference can be reasonably
expected since the OpenRISC, in general, is still easy to
learn. The arithmetic learning engine (polynomial testing and
interpolation) in the TTPG methodology works very well on
this arithmetic-intensive block. DD-based data miner helps to
capture additional 83 detected faults only coming from the
signal associated with logic operations and control signals in
the ALU. In the future, we expect to find a more complex
logic-intensive design to see more difference.

V. CONCLUSION AND FUTURE WORK

Deterministic functional test pattern generation has been
a long-standing open problem, which is important for both
design verification and manufacturing testing. A simulation-
based data-mining methodology, called TTPG [2][3], was
proposed as an alternative approach for functional test jus-
tification. However, Boolean learning problem is the core of
simulation data mining.

In this work, several types of Boolean learning algorithms
are studied. The DD-based learning approach performs well in
terms of both efficiency and accuracy. Our study also shows
that ordering of learning is crucial and can boost learning
accuracy. Experimental results show its effectiveness in guid-
ing pattern justification. From the aspect of practicality, the
TTPG methodology incorporated with our DD-based Boolean
data miner can achieve a high fault coverage (95.36%) on
OpenRISC 1200 processor core and capture more faults when
comparing to the previous method in [3].

In the future, several interesting issues are worth explor-
ing, including sampling scheme, sampling size, optimal input
ordering, and etc. Moreover, practical research is required
to combine the Boolean learning engine with other search
engines such as SAT or ATPG to more efficiently solve the
justifiability problem mentioned before.

REFERENCES

[1] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C.
Metzger, M. Molcho, and G. Shurek, ”Test program generation for
functional verification of PowerPC processors in IBM,” Proc. Design
Automation Conf., pp. 279-285, 1995.

[2] C. Wen, L.-C. Wang, K.-T. Cheng, W.-T. Liu, and C.-C. Chen,
”Simulation-based target test generation techniques for improving the
robustness of a software-based self-test methodology,” Proc. Int’l Test
Conf., pp. 936-945, 2005.

[3] C. Wen, L.-C. Wang and K.-T. Cheng, ”Simulation-based functional test
generation for embedded processors,” to appear in IEEE Tran. Computers,
2006.

[4] M.J. Kearns, and U.V. Vazirani, ”An introduction to computational
learning theory,” The MIT Press, 1994.

[5] R.E. Brayant, ”Graph-based algorithms for Boolean function manipula-
tion,” IEEE Tran. Computers, vol. 35, no. 8, pp. 677-691, 1986.

[6] L. Valiant, ”A theory of the learnable,” Communications of the ACM,
vol. 27, no.11, pp.1134-1142, 1984.

[7] M. Kearns, M. Li, L. Pitt and L. Valiant, ”On the learnability of Boolean
formulae,” Proc. 19th Symp. on Theory of Computing, pp. 285-295, 1987.

[8] M. Kearns, M. Li, L. Pitt and L. Valiant, ”Recent results on Boolean
concept learning,” Proc. 4th Int. Workshop on Machine Learning, pp.
337-352, 1987.

[9] M. Kearns, and L. Valiant, ”Learning Boolean formulae or finite automata
is as hard as factoring,” Technical Report TR-14-88, Harvard University,
1988.

[10] D. Angluin, ”Queries and concept learning,” Machine Learning, vol. 2,
no. 4, pp.319-342, 1987.

[11] E. Kushilevitz and Y. Mansour, ”Learning decision trees using the fourier
spectrum,” SIAM Jour. Computing, vol. 22, no.6, pp.1331-1348, 1993.

[12] N. Linial, Y. Mansour, and N. Nisan, ”Constant depth circuits, Fourier
transform, and learnability,” Journal of ACM, vol. 40, no. 3, pp. 607-620,
1993.

[13] J. Jackson, ”An efficient membership-query algorithm for learning DNF
with respect to the uniform distribution,” Journal of Computer and System
Sciences, vol. 55, no. 3, pp. 414-440, 1997.

[14] T. Hastie, R. Tibshirani, and J. Friedman, ”The elements of statistical
learning - date mining, inference, and prediction,” Springer, 2001.

[15] N. Cristianini, and J. Shawe-Taylor, ”An introduction to support vector
machine and other kernel-induced-based learning methods,” Cambridge
University Press, 2002.

[16] V. N. Vapnik, ”The nature of statistical learning theory,” Springer-Verlag,
1999.

[17] http://www.bdd-portal.org/evaluation/evaluation.html
[18] R. Collobert, S. Bengio and J. Marithoz. ”Torch: a modular machine

learning software library,” Technical Report IDIAP-RR 02-46, IDIAP,
2002.

[19] C. Zhang and S. Zhang, ”Association Rule Mining,” Springer, 1998.
[20] http://www.opencores.org/projects.cgi/web/or1k/openrisc 1200,

OpenRISC 1200 Specification, Operncores.org.

