
Implicit Search-Space Aware Cofactor Expansion:
A Novel Preimage Computation Technique

Kameshwar Chandrasekar
Intel Corporation

Santa Clara, CA 95054
Email: kameshwar.chandrasekar@intel.com

Michael S. Hsiao
Virginia Tech

Blacksburg, VA 24061
Email: mhsiao@vt.edu

Abstract— In this paper, we introduce a novel preimage com-
putation technique that directly computes the circuit cofactors
without an explicit search for any satisfiable solution. We use
an implicit search on the primary inputs of a sequential circuit
to compute all the circuit cofactors for the target preimage. In
order to alleviate the computational cost, aggressive learning
techniques are introduced that reason on the search-states by
analyzing the relations among circuit cofactors. Such analysis
generates search-state induced clauses that directly help to prune
the cofactor space during preimage computation and to perform
non-chronological backtracking. Experimental results show that
a significant improvement can be achieved in both performance
and capacity as compared to the existing techniques.

I. INTRODUCTION

Symbolic methods have been widely used for Model Check-
ing finite transition systems. The representation and manipu-
lation of Boolean expressions are critical for the scalability
and robustness of Symbolic Model Checking. Traditionally,
Reduced Ordered Binary Decision Diagrams (ROBDDs) have
been used for this purpose, since they are canonical and
can be efficiently manipulated. However, they suffer from
potential memory explosion for large designs. On the other
hand, Boolean Satisfiability (SAT) has received significant
attention in recent years, and it offers a promising alternative to
BDD-based methods. One of the important research problems
in Symbolic Model Checking is to see if we can reach a given
target state (could be a buggy state), from an initial state, in
a sequential design. In general, SAT -based Model Checking
can be classified into Bounded Model Checking (BMC) and
Unbounded Model Checking (UMC).

In BMC [1], we look for traces/paths of a bounded length,
say k, that violate the property. On the other hand, in UMC, we
explore the entire reachable state space to prove the correctness
of a property. The core computation step in UMC is im-
age/preimage computation that performs state space traversal.
In essence, image (preimage) computation requires that the set
of all next (previous) states that can be reached from a given
set of states, in one cycle, be computed. In SAT -based UMC
[2] [3] [4], the preimage needs to be computed iteratively until
either the desired state or a fixed point is reached. In order
to handle large circuits, abstraction offers a feasible solution
using the abstract-verify-refine loop [5] [6] [7]. We propose a
novel circuit based preimage computation technique with the
following features:

1) We propose a decision tree search technique that directly
computes the circuit cofactors for preimage by quanti-
fying the input variables.

2) We derive relations among the circuit cofactors based
on the search states reached during the search.

3) We introduce search-state induced learning, based on
the relations derived, to prune the cofactor space and to
perform non-chronological backtracking.

We implemented the proposed technique and compared
against three preimage computation techniques: (1) McMil-
lan’s blocking clause approach [2], (2) Sheng and Hsiao’s
ATPG (Automatic Test Pattern Generation) based approach
[8], and (3) Ganai et al.’s cofactor blocking approach [4]. We
implemented all the four techniques on top of a publicly avail-
able verification tool called ABC [9]. Our experimental results
on publicly available ISCAS ’85 and VIS-ITC ’99 benchmark
circuits, show that direct circuit cofactoring with search-state
induced learning is competitive with the existing techniques
and can lead to several orders of magnitude improvement in
both run-time and memory.

A. Previous Work

Initially, certain variants to Binary Decision Diagrams were
proposed for image/preimage computation. In [10] [11] [12],
non-canonical structures such as Reduced Boolean Circuit
(RBC), Boolean Expression Diagrams (BED) and AND-
inverter graphs are used to represent the transition relation, and
quantification rules are proposed for specific sub-structures.
However, in the general case, the length of formulas may grow
exponentially due to the quantification. In [13], SAT solvers
are used to provide a disjunctive decomposition of clauses
and BDDs are used subsequently to solve the disjunctions. In
[2], a seminal preimage computation technique is proposed
for unbounded model checking using a pure SAT solver. The
transition relation and negation of the property are represented
as a set of clauses, and variable quantification is performed
during solution enumeration. After each solution is found,
an enlarged cube is identified by re-building the implication
graph. The negation of this cube is added as a blocking clause
to the clause database. The set of all blocking clauses repre-
sent the preimage and they are stored in a Zero-suppressed
Binary Decision Diagram (ZBDD) to perform light weight
optimization. In [3], the authors use a simple circuit-based

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

justification procedure to identify enlarged solution cubes (and
thus avoid re-building the implication graph). In [14], the
authors improved the ZBDD-to-clause conversion step for
preimage iteration, by generating clauses for each node in the
ZBDD rather than direct clause representation for the state-
set. Recently, in [15] Jin et al. proposed to perform conflict
analysis on the blocking clause and prune both the solution and
conflict space efficiently. They further improvised the blocking
clause approach by targeting only the prime clauses in [16]
and showed that we can apply powerful pruning techniques,
if we allow overlap of solution spaces across different SAT
enumerations.

In [8], an ATPG engine is used for circuit based preim-
age computation. The transition relation is represented as a
Boolean circuit and an ATPG engine is invoked to enumerate
all the solutions that represent the complete preimage. Success-
driven learning is proposed to avoid re-searching overlap-
ping solution sub-spaces, thereby accelerating the search.
The preimage is stored as a free BDD which shares all
the common subgraphs and is generally more compact than
ROBDD. Success-driven learning was further augmented in
[17] to prune larger search-spaces. Success-driven learning
was also integrated into a hybrid SAT -solver to take advantage
of both circuit-based success-driven learning and clause-based
conflict-driven learning in [18].

In [4], the transition relation is represented by an OR-
inverter graph and efficient solution enumeration is performed
using a specialized hybrid SAT solver. After obtaining each
solution, the authors use the circuit cofactors, with respect to
the input assignment, as the enlarged state space. Overall, their
experiments show a run-time improvement over the technique
in [2], since they are able to capture a larger state space at
each enumeration.

II. PRELIMINARIES

Let us consider a completely specified, deterministic Finite
State Machine (FSM) of Mealy type that is represented by the
6-tuple: < I,O,S,δ,λ,S0 >

I/O represents the primary inputs/outputs
S/S0 represents the state set / initial state set
δ/λ represents the next state/output function
For a synchronous sequential circuit, the transition relation

T (X , I,X ′) is defined by:

T (X , I,X ′) =
i=n∧

i=1

(x′i ≡ δi(X , I))

X/X ′ is the set of present/next state variables
δi is the next state function for x′i
Symbolically, the preimage for a given set of target states,

S(X ′), is given by: Preimage(X) = ∃I,X ′ T (X , I,X ′) ∧ S(X ′)
Please note that T (X , I,X ′)∧S(X ′) can be represented as a

single output Boolean circuit as shown in Figure 1, which is
our model for preimage computation. We refer the model as
a circuit and the circuit gates as Boolean variables when the
meaning is clear from the context. Further, the Boolean value
assignment to a variable or a gate is referred as a literal.

Flip

(X’)

S(X’)
(I)

Next
state

Objective
== 1

Primary

Present

Flip−flops
state

Inputs

(X)

flops
δ(X , I,X ′)

Fig. 1. Preimage computation model

A. Motivation

SAT -based approaches existentially quantify all the vari-
ables in the given CNF to find a solution. In preimage
computation, we need to quantify the primary input variables
alone. It is sufficient to branch on primary input variables
alone and compute the generalized cofactors obtained with
respect to each input assignment to the circuit. If we branch
on the primary input variables only in a decision tree like
fashion, then each terminal of the decision tree is a generalized
cofactor w.r.t an input assignment (instead of a solution or a
conflict). We can thus reduce the number of decision variables
and directly compute the generalized cofactors. However, the
practical limitations of this approach are the (1) lack of
cofactor-driven learning techniques and (2) potentially huge
cofactor sizes that might be computed at each terminal.

In order to overcome the aforementioned limitations, we
propose search-state driven learning techniques that can de-
duce clauses from different search-states of the circuit. In
order to block each cofactor, we deduce a single clause that
can account for that cofactor space. Based on these clauses,
we show that it is possible to perform non-chronological
backtracking in the decision tree. Further, in order to contain
the size of the preimage, we use the well-known AND-inverter
graphs for the circuit and incorporate elegant DAG-aware
rewriting rules [19] while constructing the preimage.

III. BASIC COFACTOR EXPANSION

Consider a circuit with m inputs, say I = {i1, i2, ...im},
n latches, say X = {x1,x2, ...,xn} and p outputs, say O =
{o1,o2, ...,op}. Suppose we wish to compute the preimage for
a target state-set S(X ′). We first construct the single output
circuit C(I,X), as in Figure 1. The preimage on C is:

Preim(X)=∃I C(I,X)
=∃I\i1 [C(i1=0) ∨C(i1=1)]
=∃I\{i1,i2} [C(i1=0,i2=0) ∨C(i1=0,i2=1)

∨C(i1=1,i2=0) ∨C(i1=1,i2=1)]
...

=∃im [C(i1=0,i2=0,...,im−1=0) ∨ ...

∨C(i1=1,i2=1,...,im−1=1)]
=C(i1=0,i2=0,...,im−1=0,im=0) ∨ ...

∨C(i1=1,i2=1,...,im−1=1,im=1)

It may be noted that all the generalized cofactors that are de-
rived in the above equations are circuit cofactors. Specifically,

each term in the last equation of Preim(X) is a generalized
cofactor of C(I,X) w.r.t. an input assignment. We refer to each
term or a disjunction of such terms as the preimage cofactor.
A brute-force approach to compute Preim(X) is to simulate
the circuit with all the 2m input patterns one by one. Each
simulation leads to a preimage cofactor and the disjunction of
all these circuit cofactors is the preimage.

A systematic way of exploring all the 2m input enumerations
is to use a decision tree search. We branch only on the primary
input variables in I and a cofactor can be computed at the
terminal node of the decision tree (also called as terminal
cofactor). Each terminal of the decision tree will be a preimage
cofactor that represents exactly one term in above equation for
Preim(X). In the decision tree search, the disjunction of all the
terminal cofactors is the preimage.

In order to reduce the number of cofactor enumerations, we
choose to branch on a primary input variable (as a decision)
only if it has an X-path (a chain of unspecified/unassigned
gates) to the objective of the model in Figure 1. Therefore, we
no longer have to compute all the 2m preimage cofactors, as
we may skip many of the redundant cofactors. Each terminal
cofactor represents at least one term (or a disjunction of terms)
in the aforementioned equation for Preim(X). It may be noted
that the disjunction of all terminal cofactors is the complete
preimage.

A. Circuit Search-State Relations

In order to prune the cofactor space during preimage com-
putation, it is possible to learn from the search-state relations
that exist at different scenarios during preimage computation.
We first review a few terms that are demonstrated in Figure
2, to explain the following discussion.

{g, f, b}

(B) Decision Tree

d
{g}

b

1

0

(A)Search−state

a

b

c

d

g

f

X

1

1

X
h

z

obj: z=1

X

X

0

X

1

e

Fig. 2. Cut-sets in the Search Space.

For the circuit, C(a,b,c,d), shown in Figure 2(A), a partial
decision tree is shown in Figure 2(B).

• Search-State SS: the internal state of the circuit at each
branch in the decision tree. It simply captures the set of all
implied gate assignments at each branch in the decision
tree. Ex: Figure 2(A) is the search-state for branch b = 0
in the decision tree (in Figure 2(B)).

• Cut-set for search-state CS(SS): the set of specified
gates in a search-state that has at least one X-path (a chain
of unspecified/unassigned gates) to the circuit output. Ex:

the dashed line in Figure 2(A) is the cut-set for the current
search state.

In order to facilitate the discussion on search-states, we
use the following abbreviations that correspond to a particular
search-state, SS (examples from Figure 2(A)):

• Gate Value Assignment GVA(SS): set of gate value pairs
for all gates in C. Ex: {(a = X),(b = 0),(c = X),(d =
1),(e = X), ...,(z = X)}.

• Cutset Assignment CSA(SS): set of gate value pairs
for all gates in the cut-set for a search-state. Ex: {(b =
0),(f = 1),(g = 1)}.

• Cutset Conjunction CSC(SS): Boolean formula that
represents the conjunction of literals that are obtained
from all the gates in CSA(SS). Ex: ¬b∧ f ∧g.

• Input Value Assignment IVA(SS): set of gate value
pairs for all the input gates in GVA(SS). Ex: {(a =
X),(b = 0),(c = X),(d = 1)}. We also say that SS is
the search-state induced by the input value assignment
{(a = X),(b = 0),(c = X),(d = 1)}.

• Specified Input Value Assignment SIVA(SS): set of all
specified gate value pairs in IVA(SS). Ex:{(b = 0),(d =
1)}.

• Input Value Conjunction IVC(SS): Boolean formula
that represents the conjunction of literals that are obtained
from all the gates in SIVA(SS). Ex: ¬b∧d.

• Logic decomposition / Circuit Cofactor for search-
state Co f (SS): reduced circuit obtained by projecting the
input value conjunction IVC(SS) on the circuit, C. Ex:
C(a,0,c,1) ≡ a. This can also be referred as C ↓IVC(SS)
or C ↓CSC(SS).

• Preimage Circuit Cofactors PreimCo f (SS): disjunction
of all terminal circuit cofactors that can be obtained for
the circuit Co f (SS).

• Preimage Cofactor Space PreimCo f Space(SS):
Boolean space that refers to PreimCo f (SS).

In order to perform learning on the search-states, we define
the following relations among search-states:

• Conformable Search states: A search-state A is said to
be conformable with search-state B, if CSA(A)⊆GVA(B).

• Extendable Search states: A search-state A is said to be
extendable to search-state B, if we can induce a search
state D, such that SIVA(D) ⊇ SIVA(A) and CSA(D) =
CSA(B).

Lemma 1: If search-states A and B are such that
CSA(A) = CSA(B), then PreimCo f Space(A) is equivalent to
PreimCo f Space(B).
Proof: We know that IVC(A) → CSC(A) and IVC(B) →
CSC(B) due to logic simulation. Since a cut-set disconnects
its fanin-cone from the remaining portion of the circuit,
C ↓IVC(A)= C ↓CSC(A) and C ↓IVC(B)= C ↓CSC(B). Although, the
assignment to the gates in the fanin-cone of CSA(A) and
CSA(B) may be different, CSA(A) = CSA(B) and all gates
in the remaining portion of the circuit are unspecified in
both A and B. Therefore, the logic decomposition: C ↓CSC(A)=
C ↓CSC(B). Since C ↓IVC(A)= C ↓CSC(A)= C ↓CSC(B)= C ↓IVC(B),

terminal cofactors computed after A and B will be equivalent.

Lemma 2: If search-state A is conformable with search-state
B, then A is extendable to B.
Proof: We will construct a search-state D such that SIVA(D)⊇
SIVA(A) and CSA(D) = CSA(B).

First, let us construct an implication graph IG(A,B) as fol-
lows: Start from the literals in CSC(B) and find its antecedents
in the search-state of B. Recursively, find the antecedents until,
we reach the gates in CSA(A) or IVA(B), whichever is earlier.
The root nodes of IG(A,B) will be the gates in CSA(A) or
IVA(B) (see Figure 3).

Let SIVA(IG) be the set of specified input value assignments
in the root nodes of the implication graph, which are not in
CSA(A) or its fanin cone (see Figure 3). Let IVC(IG) be the
conjunction of all the literals in SIVA(IG). Since IVC(IG)∧
CSC(A) is the conjunction of all literals in the root nodes of
IG(A,B), IVC(IG)∧CSC(A) →CSC(B).

Since none of the gates in SIVA(IG) are in CSA(A) or
its fanin cone and all the gates in SIVA(A) are in CSA(A)
or its fanin cone (see Figure 3), SIVA(IG)

⋂
SIVA(A) = Φ.

Therefore, SIVA(IG) and SIVA(A) are compatible without
any conflicting assignment. Let us induce the search-state D,
such that SIVA(D) = SIVA(IG)

⋃
SIVA(A). Then IVC(D) =

IVC(IG) ∧ IVC(A) → IVC(IG) ∧ CSC(A) → CSC(B), i.e.,
CSA(D) = CSA(B).

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

SIVA(B)
SIVA(A)

SIVA(IG)

SIVA(IG)

CSA(B)
Search state B

CSA(A)
Search state A

Fig. 3. Proof for Lemma 2

Theorem 1: If search-state A is conformable with search-state
B, then PreimCo f Space(B) implies PreimCo f Space(A).
Proof: From Lemma 2, we can induce a search-state D
such that SIVA(D) = SIVA(A)

⋃
SIVA(IG) and CSA(D) =

CSA(B). Since CSA(D) = CSA(B), PreimCo f Space(D) =
PreimCo f Space(B), from Lemma 1.

From search-state A, if we assign SIVA(IG) to the primary
inputs, we will reach search-state D and induce a cofactor
Co f (D). Other preimage cofactors are also present that can
be obtained by different input value assignments, starting from
A. A decision tree representation for the scenario is shown in
Figure 4. Since the preimage cofactor space for A is a disjunc-
tion of terminal preimage cofactors, PreimCo f Space(D) ⊆
PreimCo f Space(A).

IV. SEARCH-SPACE AWARE COFACTOR EXPANSION

The relations among search-states discussed in the above
section can be used to prune the redundant cofactor space that
is encountered during preimage computation. In the following

Pr
ei

m
C

o
f S

pa
ce

(D
)

Search State A

Search State D

Search State B

PreimCo f Space(A)

(A) Decision Tree Representation

PreimCo f Space(A)

PreimCo f Space(B)

(B) PreimCo f Space(B) → PreimCo f Space(A)

SIVA(IG)

PreimCo f Space(D) = PreimCo f Space(B)

Fig. 4. Proof for Theorem 1

discussion, we analyze the situations where we can perform
the search-state induced learning.

A. Search-state induced clauses

In the scenario shown in Figure 5(B), suppose we have
obtained a search-state, A, at a branch E1 in the decision
tree. Then, we explore the branches under A to obtain the
preimage cofactors for the logic decomposition CLA. After
backtracking from E1, suppose we reach a branch E2 and
obtain a search-state B, such that A is conformable with
B (CSA(A) ⊆ GVA(B)). Then, according to Theorem 1, the
preimage cofactors that will be obtained from the logic decom-
position, CLB, is already contained in the preimage cofactor
space under A. Therefore, we need not compute the preimage
cofactors under CLB and can immediately backtrack in the
decision tree.

∃CLA

∃CLB

B

A

E2

E1

d2

d1

Pruned Cofactor space

CSA(A)

(A) Search states in the model (B) Decision Tree

B

Fig. 5. Search-state induced learning

In order to take advantage of this kind of scenario, we
derive a search-state induced clause from the cut-set of A. Let
CSA(A) = {a1,a2, ...,ak} be the cut-set that induces the logic
decomposition CLA, i.e., (a1∧a2∧ ...∧ak)⇒CLA. We can add
the search-state induced clause (¬a1 ∨¬a2 ∨ ...¬ak) to block
the preimage cofactor space in CLA. Furthermore, when we
reach any cut-set B, such that A is conformable with B (i.e.

CSA(A) ⊆ GVA(B)), this added search-state induced clause
will be violated and it will help to backtrack immediately.
However, it should be noted that this clause is not equivalent
to CLA. Therefore, it is only claimed that we will not reach
the same logic decomposition structurally in the circuit. This
is analogous to the fact that we can reach the conflict terminal
multiple times during SAT search and each conflict terminal
induces different conflict clauses.

We store the complement of cut-sets at each branch in
the decision tree as search-state induced clauses in a clause
database. We simply backtrack if any of these clauses are
unsatisfied during the logic simulation of input decisions in our
approach. We do not perform Boolean Constraint Propagation
(BCP) on these clauses, since the unit implications on the
internal variables in the circuit may violate the search-state
analysis discussed in the previous section.

B. Non-chronological backtracking

The fundamental idea for our non-chronological backtrack-
ing is as follows: Let LI ⊆ (α : I �→ {0,1}) be a set of literals
that is obtained by assigning Boolean values to a subset of the
primary input variables. Consider partial input assignments,
ω1 =

∧n1
k1=1 lk1 and ω2 =

∧n2
k2=1 lk2 such that lk1 , lk2 ∈ LI . Let

lz /∈ LI be a literal which is a Boolean assignment to a primary
input variable currently outside of LI . If (ω1 ∧ lz) ⇒ C1 and
(ω2 ∧¬lz) ⇒ C2, then by resolution, (ω1 ∧ω2) ⇒ (C1 ∨C2),
where C1,C2 are circuit cofactors for the corresponding search-
states.

a∧b∧¬e ⇒C2

Co f actorSpaceI ⊇Co f actorSpaceII
a∧b∧ c ⇒ (C1 ∨C2)

a∧ c∧ e ⇒C1a

b

c

d

e

Co f actorspaceI

C1

Co f actorspaceII
C2

Bypass

Fig. 6. Non-chronological backtracking

This scenario is shown in the decision tree in Figure
6. Suppose we make decisions a,b,c,d,e and compute the
cofactor C1. By implication analysis on the cutset, we find
that a ∧ c ∧ e ⇒ C1. Then we backtrack at e and compute
the cofactor C2. Again, by implication analysis, we find that
a ∧ b ∧¬e ⇒ C2. Then, by resolution, a ∧ b ∧ c ⇒ C1 ∨C2.
C1 ∨C2 is the complete cofactor space available under the
branch c. Therefore, after computing the circuit cofactors
for C1 and C2, we can bypass the other branch of d and
directly return to c because the cofactor space in the second

branch of d is already contained in C1 ∨C2. We can thus
avoid the redundant cofactor computation by backtracking
non-chronologically.

In our implementation, we use bit vectors to record the
decision levels that are responsible for each gate assignment,
similar to [20]. The length of the bit vector for a gate is gen-
erally equal to the decision level when it is assigned. The bit
positions correspond to the antecedent decisions responsible
for the gate assignment. For each decision, we assign a 1
to the bit in the position of the decision level. Then, during
logic simulation we propagate the bit vectors to reflect the
antecedents responsible for each gate assignment. The bits
in the antecedent decision levels are assigned a 1 and the
other bits are assigned a 0. The OR of all bit vectors of the
gate assignments in a cut-set corresponds to the decisions that
implied the cut-set. After computing each circuit cofactor, we
directly backtrack to the highest decision level in the cut-set
bit vector.

V. EXPERIMENTAL EVALUATION

We implemented the proposed implicit cofactor expansion
technique in C on top of a publicly available verification tool
called ABC [9] to compute the preimage iteratively, until a
fixed point is reached. For each iteration, we construct the
preimage computation model shown in Figure 1 as an AND-
inverter graph. We use DAG-aware rewriting and other low-
cost structural optimization techniques to obtain a compact
model. The preimage that is computed is also stored as an
AND-inverter graph and used in the next iteration. On the
same common platform, we implemented three other preimage
computation techniques: all-solutions SAT solver on top of
MINISAT SAT solver [2], all-solutions ATPG with success
driven learning [8] and a hybrid SAT solver [4]. For the SAT -
solver, we use circuit justification [3] to deduce the blocking
clause and an efficient ZBDD-to-clause conversion technique
proposed in [14]. For this approach, we limit the number
of clauses to 1 million and the number of ZBDD nodes to
200K. For the all-solutions ATPG, we limit the number of the
gates in the preimage state-set to 125K and the size of the
hash table to 1 million. For hybrid SAT solver, we limit the
number of conflict clauses to 1 million and the number of
gates in the preimage state-set to 125K. For our approach, we
limit the number of search-state induced clauses to 1 million
and the number of gates in the preimage state-set to 125K.
We conducted a set of experiments on ITC’99 and ISCAS’85
benchmark circuits for some of the hard-to-reach states and
VIS invariant properties, on a Pentium IV, 3GHz machine
running the Redhat Linux Operating System. We ran each
technique for 20,000 seconds.

In Table I, it is seen that SAT times out for most of large cir-
cuits, with dense reachable states (many preimage state cubes
per iteration), since they have to compute a large number of
solutions and block them cube by cube. Furthermore, because
they consider the latches during solution enumeration (and
the number of latches generally is greater than the number of
primary inputs), they have to explore a larger space. Similarly,

TABLE I

PREIMAGE COMPUTATION UNTIL CONVERGENCE

Ckt # SAT [2] ATPG [8] Hybrid [4] Our approach
ltch dpth Time(s) dpth Time(s) dpth Time(s) dpth Time(s)

s3384 183 1* TO 1* 9(MO) 4 3.0 4 1.8
s1423 74 2 307.8 1* 11(MO) 2 0.20 2 0.09
s5378 164 1* TO 1* 154(MO) 4* 2K(MO) 8 69.7
s4863 104 1* TO 1* 94(MO) 1* 14K(MO) 2 1.7K
s1269 37 1* 19K(MO) 1* 302(MO) 8 229.7 8 272.3
s3271 116 1* TO 1* 473(MO) 6 15 6 723
s420.1 16 51 11 51 27.1 19* 2.7K 51 107.1
b07 45 2* TO 29 1160.4 10* 7K(MO) 29 8.7K
b08 21 19 4.2 19 6.3 19 990.3 19 173.3
b09 28 15* TO 21 4.7 11* TO 21 371.3

MO - Memory Out; TO - Time Out; * - incomplete;

the ATPG technique needs to store a huge number of search-
states to perform learning, since they also branch on both the
circuit’s input and latch variables. This can lead to memory
explosion in many of the larger circuits. On the other hand,
the hybrid solver and our approach block the cofactors and
prune a larger search space. However, the hybrid approach
also searches the solution space, even though it blocks the
cofactor space. Thus, such solution enumeration again leads
to memory out in s5378 and s4863 due to the huge number
of conflict clauses that were generated. On the other hand,
we were able to compute the cofactors quickly and backtrack
from that cofactor space due to search-state induced learning.
Although we computed a larger number of cofactors that were
overlapping in the solution space, we save the time required to
find a particular solution as compared to the hybrid SAT solver.
For circuits such as s5378, s4836, b07, and b09, our implicit
circuit cofactoring technique can lead to one to several orders
of magnitude improvement in both run-time and memory.

For the smaller circuits with sparse reachable states (few
preimage state cubes per iteration), the solution-based tech-
niques perform significantly better than the cofactor-based
approaches. In circuits such as s420.1 (counter) and b08
(finds inclusions in sequence of numbers), SAT performs
significantly better than our approach. This is mainly because
the SAT approach can find the smaller subset of satisfiable
solutions quickly. In general, the implicit cofactor expansion
technique is more suitable for circuits with dense reachable
states, since each cofactor may cover a huge number of
preimage states (i.e. a large number of solution cubes).

VI. CONCLUSION

In this work, we presented a novel preimage computation
technique that directly quantifies the primary inputs in the
circuit and computes the cofactors required for preimage
computation. We used the relations between the search-states
and the circuit cofactors to prune the cofactor space and
perform non-chronological backtracking. Experimental results
show that the implicit cofactor expansion technique performs
significantly better than existing approaches for large circuits,
where a large number of preimage states needs to be computed
at each iteration.

REFERENCES

[1] Biere, A. et al.: Symbolic Model Checking using SAT procedures instead
of BDDs. Proc. Design Automation Conference, pp. 317–320, 1999

[2] McMillan, K.L.: Applying SAT methods in unbounded model checking.
Proc. of Computer Aided Verification, pp. 250–264, 2002

[3] Kang, H.-J. and Park, I.-C: SAT-based unbounded symbolic model
checking. Proc. of Design Automation Conference, pp. 840–843, 2003

[4] Ganai, M. et al.: Efficient SAT-based Unbounded Symbolic Model
Checking using Circuit Cofactoring. Proc. of International Conference
on Computer Aided Design, pp. 510–517, 2004

[5] Wang, D. et al.: Formal property verification by abstraction refinement
with formal, simulation and hybrid engines. Proc. of Design Automation
Conference, pp. 6, 2001

[6] Chauhan, P. et al.: Automated abstraction refinement for model checking
large state spaces using SAT based conflict analysis. Proc. of Formal
Methods in Computer Aided Design, pp. 33–51, 2002

[7] McMillan, K.L. and Amla, N.: Automatic abstraction without counter
examples. Proc. of TACAS, pp. 2–17, 2003

[8] Sheng, S. and Hsiao, M.S.: Efficient Preimage Computation using a novel
success-driven ATPG. Proc. of Design Automation and Test in Europe,
pp. 840–843, 2003

[9] Mischenko, A.: ABC: A System for Sequential Synthesis and Verification,
Release 50905. http://www.eecs.berkeley.edu/ alanmi/abc/

[10] Abdulla, P.A. et al.: Symbolic Reachability Analysis based on SAT
solvers. Proc. of TACAS, pp. 411–425, 2000

[11] Williams, P. et al.: Combining Decision Diagrams and SAT procedures
for efficient Symbolic Model Checking. Proc. of Computer Aided Veri-
fication, pp. 124–138, 2000

[12] Cabodi, G. et al.: Circuit Based Quantification: Back to State Set Ma-
nipulation within Unbounded Model Checking, Proc. Design Automation
and Test in Europe, pp. 688-689, 2005

[13] Gupta, A. et al.: SAT-based Image Computation with Application in
Reachability Analysis. Proc. of Formal Methods in Computer Aided
Design, pp. 354–371, 2000

[14] Chandrasekar, K. and Hsiao, M.S.: State set Management for SAT based
Preimage Computation. Proc. of International Conference on Computer
Design, pp. 585–590, 2005

[15] Jin, H. et al.: Efficient Conflict Analysis for Finding All Satisfying
Assignments of a Boolean Circuit. Proc. of TACAS, pp. 750–753, 2005

[16] Jin, H. and Somenzi, F.: Prime Clauses for Fast Enumeration of
Satisfying Assignments to Boolean Circuits.

[17] Chandrasekar, K. and Hsiao, M.S.: ATPG based Preimage: Efficient
search space pruning using ZBDDs. Proc. of High Level Design Vali-
dation and Test, pp. 117–122, 2003

[18] Li, B., Hsiao, M.S. and Sheng, S.: A Novel All-solutions SAT solver for
efficient Preimage Computation. Proc. of Design Automation and Test in
Europe, pp. 272–277, 2004

[19] Bjesse, P. and Borälv, A.: DAG-aware Circuit Compression for Formal
Verification. Proc. of International Conference on Computer Aided De-
sign, pp. 42–49, 2004

[20] Kuehlmann, A. et al.: Robust Boolean Reasoning for Equivalence
Checking and Functional Property Verification. IEEE Trans. CAD, vol.
21, no. 12, pp. 1377–1394, 2002

