
Adding Debug Enhancements to Assertion Checkers for
Hardware Emulation and Silicon Debug

Marc Boulé, Jean-Samuel Chenard and Zeljko Zilic
McGill University

marc.boule@elf.mcgill.ca, {jsamch,zeljko}@macs.ece.mcgill.ca

Abstract— This paper presents techniques that enhance auto-
matically generated hardware assertion checkers to facilitate de-
bugging within the assertion-based verification paradigm. Start-
ing with techniques based on dependency graphs, we construct
the algorithms for counting and monitoring the activity of check-
ers, monitoring assertion completion, as well as introduce the
concept of assertion threading. These debugging enhancements
offer increased traceability and observability within assertion
checkers, as well as the improved metrics relating to the cov-
erage of assertion checkers. The proposed techniques have been
successfully incorporated into the MBAC checker generator.

I. INTRODUCTION

Assertion-Based Verification (ABV) has recently gained
significant popularity in tackling an enormous task of verifying
and taping out a successful design. ABV leverages the expres-
sive power of temporal languages to insert checkers that moni-
tor any deviation from the specification’s intent. As design size
increases, so do the requirements for higher simulation speed
and faster regressions. Hardware emulation offers a significant
increase in speed, but often at the expense of a more limited
observability of the circuit nodes. A methodology based on
assertions in the source code must consider the potential use
of hardware emulation, therefore the assertions should be
amenable to hardware acceleration. Furthermore, when design
errors are found during emulation, additional information from
the assertion checkers should be used to point to the source
of the problem.

This paper enhances previous work on hardware assertion-
checker generation [1] to provide further debugging utility of
the assertion checkers. The primary context of this work is in
the pre-tapeout verification by emulation, however post-layout
silicon debug tasks can equally benefit from the proposed
methods. Assertion checkers (also called assertion circuits)
are circuits responsible for monitoring specific properties that
a design should respect. Assertions about the design properties
are specified at a higher level of abstraction using assertion
languages. Two of the most widely used modern assertion
languages are the Property Specification Language (PSL) and
the SystemVerilog Assertions (SVA).

This work presents the techniques by which assertion check-
ers synthesized from PSL are enhanced with several key debug
features: hardware coverage monitors, activity tracers, asser-
tion completion and assertion threading. The added circuitry
can significantly improve the debugging capabilities of the
resulting checkers at the expense of a slight increase in the
assertion-circuit size.

II. BACKGROUND: ASSERTION CHECKER GENERATION

Assertions are statements that specify how a given circuit
should behave under a variety of circumstances. A checker
generator ([1], [2]) is a tool which accepts assertion statements
and generates monitor circuits that can be used for in-circuit
verification. The debugging enhancements introduced in this
paper are implemented in our checker generator called MBAC.
Assertion checkers are a must for combining hardware emu-
lation or silicon debug with assertion-based verification, given
that assertions are not written in Hardware Description Lan-
guages (HDLs), but rather in languages such as PSL. Since the
assertion languages are powerful and do not necessarily lend
themselves to simple checker circuits, the checker generator’s
task is therefore to transform assertions into efficient monitor
circuits that detect assertion failures. Coding checkers by hand
can be a tedious and error-prone task. In certain cases, a single
PSL statement can imply tens or even hundreds of lines of RTL
code in the corresponding checker.

A brief overview of assertion-language features is given
next for the Property Specification Language [3], although the
key ideas presented in this paper apply equally to SVA or
other modern assertion languages. PSL is a powerful language
built on several layers of description. The Boolean layer
consists of the Boolean expressions of the underlying HDL
(we use the Verilog “flavor” in this paper). The temporal layer
defines temporal sequences, with its own set of operators for
constructing complex temporal chains of Boolean expressions.
Such statements rely on the clock signal to advance time; PSL
syntax uses the semicolon to denote a single clock cycle step.
The most general meaning of ; is a concatenation of sequences
in time. Repetition of events can be bounded ([∗low:high]) or
unbounded ([∗], which means [∗0:∞]), and can be applied
to Boolean expressions or other sequences. As in regular
expressions, [+] denotes a repetition of one or more instances.
Example 1: (PSL Sequences.) If bi are Boolean expressions,
the following are valid PSL sequences:

• {b1; b2; b3} • {{b1; b2[∗]} && {b3; b4}}
• {{b1; b2} : {b3}} • {{b1[∗1:5]; b2} | {b3 : b4[+]}}

The first sequence expresses the fact that the expression b1

must be true first, followed by b2 asserted in the next cycle, and
by b3 asserted in the third cycle. Sequence disjunction (|) and
sequence intersection (&) correspond to the straightforward
OR-ing and AND-ing of independent sequences, while length-
matching intersection (&&) requires that the two sequences
also be of the same duration. The fusion operator (:) is a

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

concatenation for which the last Boolean primitive of the
left side must intersect (i.e. both must be true) with the first
primitive of the right side argument.

The temporal layer also includes properties which add more
expressive power to the use of sequences and Boolean ex-
pressions. First, sequences and Boolean expressions are valid
properties. The operators never and always indicate properties
that either never happen, or happen every clock cycle. The
eventually! operator creates a liveness property which can only
fail at the end of execution if its sequence argument has not
occurred.
Example 2: (PSL Properties.) If bool is a Boolean expression,
seq is a sequence and prop is a property, the following are
PSL properties:

• never seq • always bool –> prop
• eventually! seq • always seq |–> prop

The |–> operator is known as suffix implication: upon
detecting the sequence on the left-hand side, the right-hand
side has to hold. A violation in the property will cause the
assertion to fail. The |=> is a non-overlapped implication,
meaning that the property has to hold on the clock cycle that
follows the sequence’s occurrence.

PSL’s verification layer includes directives which instruct a
verification tool on how to utilize properties and sequences.
The two main operators are:

• assert prop; • cover seq;

The result of using the assert operator is a single bit signal
which indicates pass or fail. In dynamic verification, this signal
is normally deasserted, and it triggers each time a violation is
observed. The cover statement also generates a signal, which
in this case will only trigger at the end of execution if its
sequence argument never occurred (coverage failure).

The role of the checker generator is to generate an RTL cir-
cuit which implements the behavior of an assertion. The latest
version of our checker generator builds various automata for
properties and sequences. The automata-based checkers can
be seen as pattern matching machines, with some similarities
to classical regular expression matching. A short description
of automata for assertions is given next.

An automaton is often depicted by a directed graph, where
vertices are states, and the conditions for transitions among the
states are inscribed on edges [4]. In our case, the transition
conditions will be expressed by possibly-complex Boolean-
layer expressions. For a given assignment of various symbols,
all conditions that are true will cause a transition into a set
of states, leading to non-determinism. A property can be
converted to an equivalent finite automaton in a recursive
manner [5]. First, terminal automata are built for the Boolean
expressions. Next, these automata are recursively combined
according to the operators used in a given property. This
produces a Nondeterministic Finite Automaton (NFA).

When the automaton representing an assertion reaches a
final state, an assertion violation has been found. The checkers
implemented in hardware can be derived from the NFA de-

scription, provided that implementations allow multiple states
to be simultaneously active. Alternatively, deterministic finite
automata (DFA) can be produced for purely deterministic
sequential implementations; however DFAs are usually larger
than equivalent NFAs. We note that because of the way
our automata algorithms are designed, the assertion result is
not simply a yes/no answer given at the end of execution,
but rather a continuous and dynamic report of when/where
the assertion has failed, which is obviously more useful for
debugging purposes.

III. DEBUGGING IN EMULATION ENVIRONMENTS

Modern interfaces built around IP cores often use pipelined
data transfers. Thus, a failure is often embedded in multiple
previous transactions running concurrently. Recent work has
shown that specifying the various types of transfers, phases,
corner scenarios and transfer sequences in a hierarchical
fashion can be used to automate the generation of protocol
monitors [6] used to assist in tracing back to the source of
the failure. We solve this problem using a novel approach
explained in Section IV-E. Finally, assistance can be given to
the designer by using advanced RTL source code localization
techniques such as those recently discussed by Peischl and
Wotawa [7].

Tools from companies such as Novas [8] now support
advanced debugging methods to help find the root cause(s)
of failures by back-tracing assertion failures in the RTL code.
Design slicing can further help by automatically reducing the
search space by elimination of the circuit elements that are
not related to the assertion [9].

For debugging purposes, it may be beneficial to re-create a
part of the execution that failed on the emulation environment
in a software simulator. Since the assertion checkers from
MBAC are generated as RTL code, they can be used both
in simulation and in emulation. Leveraging both the observ-
ability of the software simulation and the rapid execution of
emulated hardware can be done through the use of cut-based
debugging [10].

A. A Case for Assertion Space Debugging

In this paper, we primarily consider adding debugging
capabilities in the assertion space, in which the assertion’s
faulty behavior is further explored to locate the source of the
problem. Our approach is built on providing software control
during the checker generation process, which lets the tool
instrument the checkers with enhancements that help converge
to the root cause of an assertion failure. This information could
also be used in the circuit space debugging, which we omit
from consideration here. The next example shows a simple
assertion that might require a fair amount of investigation to
deduce the cause of a failure.
Example 3: (Typical Bus Arbitration Assertion.)

assert always { REQ & READY } |–>
{∼GNT ; {BUSY & ∼GNT}[∗0:4] ; GNT & ∼BUSY};

Fig. 1. Hardware PSL Checker with Debugging Enhancements

In this case, the knowledge of the assertion failure will
not reveal the exact sequence of events responsible for the
failure. For example, if REQ, READY and GNT are all
asserted simultaneously, this will be a failure as much as if
the GNT was never asserted. Explicit knowledge about the
precondition status (in this case “REQ & READY”) is better
than having to manually create new markers for precondition
signals in the debug environment. In our simple example, the
precondition marker is easily created; however PSL does not
preclude having a complex sequence as a precondition, which
would then become a difficult task to re-create in the debug
environment.

IV. ENHANCING ASSERTION CHECKERS FOR DEBUG

In this section we present multiple debugging enhancements
that can be compiled into the assertion checker circuits pro-
duced by our checker generator. These enhancements increase
the observability of signals in assertion circuits, and increase
the amount of coverage information provided by the checkers.
The methodology flow is illustrated in Figure 1. The MBAC
checker generator produces assertion-monitoring circuits from
PSL statements and augments these checkers with debug-assist
circuitry. Other forms of debug information, such as signal
dependencies, can also be sent to the front-end applications.
Since major FPGA manufacturers now provide hardware inter-
face tools such as embedded logic analyzers, this allows the
integration of our techniques even in the simplest, low-end
emulation platforms.

A. Dependency Graphs

When debugging an assertion, the ability to quickly deter-
mine which signals and parameters can influence the assertion
output is an important aid to pinpointing the cause of an
error. An explicit enumeration of the signals that can cause an
assertion failure helps shorten the debug cycle in any scenario.
As a part of the generated checkers in our tool, all of the signal
and true parameter dependencies are listed in annotations for
each assertion circuit. From this, a dependency graph is then
extracted for failure-cause visualization, or for automatic wave
script generation in the emulation environment. When an as-
sertion fails, the signals that are referenced in an assertion can
be automatically added to the wave window and/or extracted
from an emulator, in order to provide the necessary visibility
for debugging. Depending on the current capture setup for the

trace buffer, an additional rerun might not be needed upon a
failure.

Dependency graphs are particularly useful when complex
assertions fail, and even more so when an assertion references
other user-declared sequences and/or properties, as permitted
by the PSL language [3]. In such cases, an assertion’s signal
dependencies can not be quickly identified at first sight.
Optimizations performed on the assertion circuit may result
in the removal of some dependencies which will simplify
the resulting list. This indicates that either the assertion was
incorrectly constructed (since it used redundant signals) or
that the combination of multiple sub-expressions resulted in
a contradiction or tautology with respect to a subset of the
input signals or parameters. In either case, the dependency
graph helps in identifying the cause of an assertion violation.

B. Monitoring Activity

Sequences are expressed internally as automata before being
converted to the checker hardware. Monitoring the activity
of a sequence can be a quick way of knowing whether the
input stimulus is actually exercising a portion of an assertion.
Using the appropriate compilation option, our tool generates
activity signals for each sequence sub-circuit. This activity
signal is formed by conjoining all of the state signals in a given
sequence automaton, such that when a sequence automaton
has at least one active state, the activity signal is asserted.
An example of activity signals is visible in Figure 2 for the
following assertion.
Example 4: (Test Assertion for Activity Signals.)

assert always ({a; b} | => {c[∗0:1]; d});
Here, the activity signals for both sequences are visible,

along with the assertion signal (out mbac), and the assertion
as interpreted by Modelsim (gold1). As can be observed, the
union of both activity signals coincides with Modelsim’s ac-
tivity indication. Since MBAC’s assertion signal is registered,
it is asserted on the clock cycle following Modelsim’s failure
marker (downward triangle). Monitoring activity signals eases
debugging by improving observability in assertion circuits. For
example, if no activity was ever detected on the right side of
a temporal implication, this indicates that the implication is
vacuously true [11]; the pre-condition never occurred and thus
never triggered the consequent (right side). Monitoring activity
for Boolean terminals can also be performed, as required in
the property a –> next b, for example.

C. Monitoring Assertion Completion

In order to gauge the effectiveness of a testbench, assertions
must be exercised reasonably often in order to be meaningful.
After-all, assertions that do not trigger because they were
not exercised are not very useful for verification. Conversely,
assertions that are extensively exercised but never trigger offer
more assurance that the design is operating properly.

Assertions can alternatively be compiled in completion
mode, whereby the result signal indicates when the assertion
completed successfully. The completion mode has no effect

Fig. 2. Activity signals for property: always ({a; b} | => {c[∗0:1]; d}). oseq corresponds to the right-side sequence, cseq to the left-side sequence.

s1

true

s2a

s3c & ~d & ~e

compe
d

d

Fig. 3. Debug automaton for always ({a} | => {{c[∗0:1]; d}|{e}). The
final state indicates when the property completes.

s1

true

s2a

s3c & ~d & ~e

fail~c & ~d & ~e

~d

Fig. 4. Automaton for always ({a} | => {{c[∗0:1]; d}|{e}). The final
state indicates when the property fails.

on assertions of the type assert never seq, given that no
obligations are placed on any Boolean expressions. Assertion
completion can be visualized using an example.
Example 5: (Test Assertion for Assertion Completion.)

assert always ({a} | => {{c[∗0:1]; d}|{e}});
In completion mode, the consequent automaton (right side

of | =>) is modified to detect the completion of the sequence.
For a given start condition, only the first completion is identi-
fied by the automaton. An example of completion monitoring
is shown in Figure 3. As a reference point, the example
assertion is normally compiled as the automaton shown in
Figure 4. In this case, the result signal (or final state) is
triggered when the assertion fails. The highlighted state s1
indicates the initial state, which is the only active state upon
reset. The PSL abort operator has the effect of resetting a
portion of the checker circuitry, and thus applies equally to
normal mode or completion mode.

D. Counting Activity

MBAC includes options to automatically create counters on
assert and cover statements for counting activity. Counting
assertion failures is straightforward, however counting the
cover directive requires particular modifications. In dynamic
verification, the cover operator is usually rewritten as follows:

cover seq → assert eventually! seq

This approach is not compatible with counters (and in general
is not useful for debugging) because eventually! is a liveness
property and thus triggers only at the end of execution. In order
to count occurrences for coverage metrics, a plain detection (or
matching) automaton is instead built for the sequence, and a
counter is used to count the number of times the sequence

occurs. The cover signal then triggers only at the end-of-
execution if the counter is at zero. If no counters are desired,
a one-bit counter is implicitly used. The counters are built to
saturate at their final count and do not roll-over. The counters
are also initialized by a reset of the assertion checker circuit,
typically the reset of the Device Under Verification (DUV).

Counters can be used with completion mode from Sub-
section IV-C to construct more detailed coverage metrics for
a given testbench. Knowing how many times an assertion
completed successfully can be just as useful as knowing
how many times an assertion failed. For example, if a pre-
determined number of a certain type of bus transaction is
initiated by a testbench, and an assertion that is responsible
for catching a faulty sequence never fails, we may deduce that
this particular transaction type is working properly. For added
sanity checking, the assertion could be compiled in completion
mode with a counter, and at the end of the testbench, this count
value should correspond to the number of bus transactions that
were exercised. In the example, the assertion may have passed
because a different kind of transfer was erroneously issued.
Completion mode provides a confirmation that if an assertion
never failed, it was not because of a lack of stimulus. Counters
and completion of assertions are implemented in simulators
such as Modelsim, it is therefore natural that these features be
also incorporated into assertion circuits.

E. Hardware Assertion Threading

When users want to more closely observe which start
condition caused a failure, our checker generator has the ability
to instantiate many copies of sequence circuits, and alternately
dispatch preconditions into succeeding circuits. This allows a
violation condition to be extracted from the other pipelined
signals in the assertion circuit. The assertion threading tries to
separate the parallel activity to help identify the root cause of
the sequence of events leading to the failure of an assertion.
Threading applies to PSL sequences, which are the typical
means for specifying complex temporal chains of events.

An example scenario where assertion threading is useful
is in the verification of highly pipelined circuits, where tem-
porally complex sequences are used in assertions. In such
cases, it is highly desirable to partition sequences into different
threads in order to separate a failure sequence from other
sequences. Assertion threading achieves the effect of creating
multiple deterministic state machines, which are more natural
to hardware designers and intuitive for debugging.

Figure 5 illustrates the mechanisms used to implement
assertion threading. The hardware dispatcher redirects the
precondition signal to the multiple sequence-checker units in

Fig. 5. Hardware Assertion Threading

a round robin sequence. The tokens indicate the progress
through the sequence automata. In the example, hardware
thread #2 has identified a failure. The knowledge of the current
state of the hardware dispatcher (pointing to thread #1), indi-
cates that the assertion was triggered two valid preconditions
before the failure. Therefore, the assertion failure can be
pinpointed to that particular precondition or any modulo–3
preconditions before. The precondition typically corresponds
to the result of the left-side of a temporal implication, whereas
the right side is the consequent. Some tradeoff is required
between an accurate location of the source of the failure and
hardware resources, as will be shown in Section V.

In assertion threading, entire failure-detection sequence-
automata are replicated. Since a single automaton will detect
all sequence failures, replicating the automaton and sending
tokens into different copies ensures that no failure will be
missed. The dispatcher uses a logical rotation of a one-hot
encoded register such that at each clock cycle a precondition
is guaranteed to be passed to one of the hardware threads. If a
token enters a thread for which a previous token is still being
processed, identifying the precise cause of a failure becomes
more difficult; however, no failures will be missed. In such
cases, all that must be done is to increase the number of
hardware threads in order to properly isolate a sequence. To
complete the threading, the sequence output is a disjunction
of the threaded automata outputs. Threading also applies to
sequences in the left side of a temporal implication. In such
cases, normal detection sequence automata (as opposed to
failure detection) are replicated. Seen from the sub-circuit
boundary, a multi-threaded sub-circuit’s behavior is identical
to that of a non-threaded sub-circuit.

V. EXPERIMENTAL RESULTS

The effects of assertion threading, assertion completion and
activity monitors are explored by synthesizing the assertion
circuits produced by our checker generator using ISE 6.2.03i
from Xilinx, for a XC2V1500–6 FPGA. The dependency
graphs from Section IV-A do not influence the circuits gener-
ated by the checker generator, while the assertion and coverage
counters from Section IV-D contribute a hardware overhead
that is easily determined a priori. The number of flip-flops
(FF) and four-input lookup tables (LUT) required by a circuit

is of primary interest, given that assertion circuits are targeted
towards hardware emulation and silicon debug. Since speed
may also be an issue, the maximum operating frequency for
the worst clk-to-clk path is reported. The assertions used in
this section were created during the development of MBAC to
exercise the checker generator as thoroughly as possible. Typ-
ical assertions, such as those used for verifying bus protocols,
span few clock cycles and do not showcase the strength of our
checker generator because they are easily handled.

A. Assertion Completion and Activity Monitoring

The activity monitors introduced in Section IV-B are used to
observe when sequences are undertaking a matching or a fail-
ure detection. An activity signal is composed of the disjunction
of state signals from all of the states in a given automaton.
Table I shows the resource usage of example assertions with
and without the addition of sequence-activity monitors. As
can be noticed, the maximum operating frequency is virtually
not affected, and in some cases, an additional flip-flop is
required. The effect of the OR gate required for the state-signal
disjunction is visible in the LUT metric. Further benchmarking
shows the efficiency of our checker generator, compared to the
FoCs checker generator from IBM [2], [12].

As described in Section IV-C, assertions can also be com-
piled in completion mode as opposed to the typical failure
mode. Table II shows hardware metrics for a set of example
assertions compiled in normal mode and in completion mode.
From the table, it can be observed that a completion-mode
assertion utilizes an equal or smaller amount of resources.

B. Assertion Threading

As explained in Section IV-E, assertion threading replicates
sequence circuits in order for the failure conditions to be
isolated from other preconditions. This was shown to ease the
debugging process considerably, particularly when temporally
complex assertions are used. Table III shows how the resource
utilization scales as a function of the number of hardware
threads. Because 8-way threading is only useful for sequences
that span at least 8 clock cycles, the assertions used must have
a certain amount of temporal complexity for the results to be
meaningful. From the table, it can be observed that resource
utilization scales linearly with the number of hardware threads.

VI. CONCLUSION

In this paper we have presented techniques that facilitate
debugging within the ABV framework, either in the emulation
or in the silicon debug stages. By selecting various compilation
options, debugging is enhanced by providing better observabil-
ity, traceability and coverage metrics in the assertion checkers
generated by MBAC. While providing an increased ability
to determine the causes of errors, the hardware overhead
is modest. These improvements are particularly well suited
for the complex temporal sequences of modern assertion
languages.

TABLE I

RESOURCE USAGE OF ASSERTION CIRCUITS AND ACTIVITY MONITORS. (N.O. = NO OUTPUT)

FoCs MBAC MBAC+Act.Mon.
Assertion FF LUT MHz FF LUT MHz FF LUT MHz
Bus arbitration assertion from Example 3 6 13 428 6 10 487 7 11 487
assert always ({a;b} |=> {c[*0:1];d}); (Example 4) 4 4 622 4 4 622 4 6 616
assert always ({a} |=> {{c[*0:1];d}|{e}}); (Example 5) 3 4 622 3 4 622 4 5 622
assert never {a;d;{b;a}[*2:4];c;d}; 25 24 622 12 12 622 12 16 616
assert always {a} |=> {e;d;{b;e}[*2:4];c;d}; N.O. 15 21 378 16 25 375
assert always {a} |=> {b; {c[*0:2]} | {d[*0:2]} ; e}; 7 12 355 7 12 428 8 14 425
assert never { {{b;c[*1:2];d}[+]} && {b;{e[–>2:3]};d} }; 43 51 422 16 20 422 16 25 419
assert always {a} |=> {{{c[*1:2];d}[+]} && {{e[–>2:3]};d}}; N.O. 16 39 349 18 44 337
assert always {a} |=> {{{b;c[*1:2];d}[+]} & {b;{e[–>2:3]};d}}; N.O. 44 127 269 45 136 268
assert always {a} |=> {{{b;c[*1:2];d}[+]} && {b;{e[–>2:3]};d}}; N.O. 35 112 258 36 119 270

TABLE II

ASSERTION-CIRCUIT RESOURCE USAGE IN TWO MBAC MODES.

Normal Assertion Completion
Assertion FF LUT MHz FF LUT MHz
Bus Arbitration Assertion from Example 3 6 10 487 6 8 487
assert always ({a;b} |=> {c[*0:1];d}); (Example 4) 4 4 622 4 4 622
assert always ({a} |=> {{c[*0:1];d}|{e}}); (Example 5) 3 4 622 3 3 622
assert always {a} |=> {e;d;{b;e}[*2:4];c;d}; 15 21 378 15 16 483
assert always {a} |=> {b; {c[*0:2]} | {d[*0:2]} ; e}; 7 12 428 7 10 425
assert always {{{b;c[*1:2];d}[+]} : {b;{e[–>]};d}} |=> next a; 8 8 487 8 8 487
assert always {a} |=> {{{c[*1:2];d}[+]} && {{e[–>2:3]};d}}; 16 39 349 16 31 339
assert always {a} |=> {{{b;c[*1:2];d}[+]} & {b;{e[–>2:3]};d}}; 44 127 269 44 127 269
assert always {a} |=> {{{b;c[*1:2];d}[+]} && {b;{e[–>2:3]};d}}; 35 112 258 35 96 299

TABLE III

AREA TRADEOFF METRICS FOR ASSERTION THREADING.

None 2-way 4-way 8-way
Assertion FF LUT MHz FF LUT MHz FF LUT MHz FF LUT MHz
Example 3 6 10 487 15 19 378 29 38 300 57 69 258
A1 12 12 622 25 24 622 49 47 521 97 93 448
A2 15 21 378 33 46 326 65 85 273 129 176 236
A3 16 20 422 33 40 422 65 79 422 129 156 355
A4 26 76 278 57 150 267 113 290 233 225 579 223
A5 35 112 258 73 224 242 145 445 227 289 856 198
A1: assert never {a;d;{b;a}[*2:4];c;d};
A2: assert always {a} |=> {e;d;{b;e}[*2:4];c;d};
A3: assert never { {{b;c[*1:2];d}[+]} && {b;{e[–>2:3]};d} };
A4: assert always {a} |=> {{{b;c[*1:2];d}[+]} : {b;{e[–>]};d}};
A5: assert always {a} |=> { {{b;c[*1:2];d}[+]} && {b;{e[–>2:3]};d} };

REFERENCES

[1] M. Boule and Z. Zilic, “Incorporating efficient assertion checkers into
hardware emulation,” in IEEE International Conference on Computer
Design, Oct. 2005, pp. 221–228.

[2] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic Generation of Simulation Checkers from Formal
Specifications,” Conference on Computer Aided Verification, pp. 538–
542, 2000.

[3] Accellera. (2005) PSL Language Reference Manual, version 1.1.
[Online]. Available: http://www.eda.org/vfv/docs/PSL-v1.1.pdf

[4] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages and Computation, 2nd ed. Addison-Wesley, 2000.

[5] M. Boule and Z. Zilic, “Efficient automata-based assertion-checker
synthesis of PSL properties,” Under review, 2006.

[6] A. Nandi, B. Pal, N. Chhetan, P. Dasgupta, and P. P. Chakrabarti, “H-
DBUG: A high-level debugging framework for protocol verification
using assertions,” in IEEE Indicon Conference, Chennai, India, Dec.
2005, pp. 115–118.

[7] B. Peischl and F. Wotawa, “Automated source-level error localization
in hardware designs,” in IEEE Design and Test of Computers, vol. 23,
no. 1, Jan. 2006, pp. 8–19.

[8] Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai, “Advanced techniques
for RTL debugging,” in Design Automation Conf., 2003, pp. 362–367.

[9] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and
T. Teitelbaum, “Program slicing of hardware description languages,”
in Conference on Correct Hardware Design and Verification Methods,
1999, pp. 298–312.

[10] D. Kirovski, M. Potkonjak, and L. M. Guerra, “Improving the observ-
ability and controllability of datapaths for emulation-based debugging,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 18, no. 11, Nov. 1999, pp. 1529–1541.

[11] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient Detection
of Vacuity in Temporal Model Checking,” Formal Methods in System
Design, pp. 141–163, 2001.

[12] IBM AlphaWorks. (2006) FoCs Property Checkers Generator ver. 2.03.
[Online]. Available: http://www.alphaworks.ibm.com/tech/FoCs

