
 

  
Abstract—Regularity in IC design has been recognized as 

an effective means to combat variability in nanoscale 
technologies. One way to enforce design regularity is to 
implement ICs using a small library of regular logic bricks. 
In this paper we propose a methodology for the design and 
synthesis of such logic bricks. Since logic bricks are 
comprised of a limited set of logic primitives for 
manufacturability reasons, we propose a primitive-based 
direct mapping approach for generating optimized bricks 
that, in contrast to classical synthesis approaches, can 
provide direct control of implementation structures at 
abstract functional level based on the detection of natural 
decompositions that exist in the function. We demonstrate 
considerable improvement in the performance of logic bricks 
that are generated by the proposed method as compared with 
those produced by a commercial synthesis tool. 
 

Index Terms—circuit design, manufacturability, regularity, 
synthesis 
 

I. INTRODUCTION 
ITH scaling of CMOS technologies to 65nm and below, 
IC designs are suffering from decreasing yield, 

increasing variations, and escalating design and manufacturing 
costs. The root cause of these problems stems from the fact 
that the wavelength of light used in lithography steps has not 
been keeping up with technology scaling. Process engineers 
have been introducing Resolution Enhancement Techniques 
(RETs) to mitigate the discrepancy between the scaling rate of 
design features and the wavelength of light used to print them. 
Nevertheless, faithful reproduction of patterns over the range 
of defocus and exposure latitudes in photo-lithography has 
become highly dependent on layout neighborhood. This has 
led to hotspots (e.g. poly shorts), line-end shortening, and poor 
Across Chip Line-width Variation (ACLV) which result in 
systematic yield losses [1]. 

It is widely recognized that physical regularity leads to 
better control of variability, as exemplified by the use of 
specialized sub-DRC rules in the design of SRAM bit-cells 
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[2]. However, enforcing shape-level regularity in ordinary 
logic has been challenging since generic logic tends to be 
irregular, and the added constraints to produce physical 
regularity can result in substantial area-delay penalty. 
Regularity in IC design has received extensive attention in 
recent years as a means to better control variation during 
manufacturing. Various forms of regular designs have been 
proposed, including restrictive design rules [3], PLA-based 
fabrics [4], homogeneous gate-array-like fabrics [5], and 
heterogeneous regular fabrics [6]. 

Fundamentally, logic elements in standard cells libraries are 
too fine-grained to be efficient building blocks of regular ICs, 
while homogeneous logic elements that are configurable to 
perform various logic functions tend to be underutilized [7]. 
Consequently, regular ICs built from application/domain-
specific coarse-grained regular logic blocks could be the most 
efficient. In this paper, we investigate a method to generate 
coarse-grained logic building blocks that produce efficient 
implementations while facilitating various manufacturability 
benefits afforded by regular ICs. In particular, we present a 
primitive-based brick generator that produces logic bricks 
compatible with those reported in [6] and [1]. 

We begin the remainder of this paper with a summary on 
the benefits of regular logic bricks in Section II. In Section III, 
we provide an overview of a proposed design flow for regular 
ICs constructed with bricks. Following that, we focus on the 
primitive-based brick generator in Section IV. Finally, we 
present experimental results in Section V, and our conclusions 
in Section VI. 

 

II. BENEFITS OF REGULAR LOGIC BRICKS 
A regular logic brick is a small logic function implemented 

physically by mapping onto a micro-regular layout fabric. The 
boundaries of logic bricks contain similar logic primitives to 
provide a common geometrical interface between any two 
bricks. In terms of logic granularity, bricks are more coarse-
grained than simple standard cells as the logic function 
performed by each brick is more complex than a standard cell. 
Using logic bricks, robust IC designs that are based on a small 
number of RET-friendly regular geometry patterns can be 
constructed. 
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A. Regularity by Construction 
By defining a highly regular layout fabric on which logic 

bricks are implemented, optical proximity correction (OPC) is 
simplified and manufacturability is improved by the reduced 
number of geometry patterns and lithography interactions that 
must be analyzed. The exact layout fabric is technology 
specific, though key features include unidirectional fixed 
width lines placed at a constant pitch or a multiple thereof. For 
example, the fabric in Figure 1 utilizes polysilicon and metal1 
in vertical orientation and metal2 in horizontal orientation. In 
addition, the fabric explicitly prohibits certain patterns that are 
known to have a poor process window [1]. Logic bricks 
mapped onto a regular fabric exhibit regularity by 
construction. Layouts adhering to the fabric guarantee that the 
implemented design will have a sufficient process window. 

B. Efficient Circuit Level Implementation 
Another benefit that coarse-grained logic bricks have over 

standard cells is that very efficient circuits can be 
implemented within the logic bricks. For example, it is well 
known that pass-transistor logic (PTL), when interleaved with 
static CMOS, is highly efficient in implementing many 
functions [8]. However, such efficiency might not be reaped in 
a standard cells approach because the multiplexers (Muxes) in 
standard cells are buffered at inputs and output due to 
uncertain loads in standard cells environment. On the other 
hand, since the exact electrical environment is known within a 
logic brick, unnecessary buffers or inverters can be removed. 
This certainty of a well-characterized environment is in fact a 
crucial criterion to enable the efficient use of PT/static logic 
within bricks. It is worth noting that the ability to remove 
unnecessary inverters not only reduces design area, but also 
has significant impact on leakage reduction as inverters are the 
most problematic structures in terms of leakage. 

C. Efficient Layout 
While the benefits of regular layout fabrics could 

potentially be applied to a standard cells library, the area 
penalty associated with implementing designs using a regular-
fabric-compliant standard cells library would be too great due 
to the fine-grained nature of standard cells. Similar to circuit 
level efficiency, the extra flexibility afforded within coarse-
grained logic bricks enables more efficient layouts. Since the 

sizes of regular logic bricks are on the order of several 
standard cells, we can gain substantial area reduction by using 
diffusion sharing between common nodes.  

As a simple example, consider the implementation of 
function Z = ab + c’ using a pair of Nand2 gates. A standard 
cells layout of such a structure is shown in Figure 2 (a). 
Classic standard cells placement tools would leave space 
between adjacent cells as they have no notion of sharing 
common nets across standard cell boundaries.  In contrast, a 
brick layout takes advantage of that information to obtain a 
more compact layout. Specifically, we have used the fact that 
diffusions of transistors sharing a common net can be abutted 
to reduce the implementation area (by about 20% in this 
example) as shown on Figure 2 (b). 

 

III. OVERALL DESIGN FLOW 
In order to effectively utilize the efficient circuit level 

implementation and the layout compactness of logic bricks, 
we propose a design flow which directly maps a RTL netlist 
into bricks. A typical design would require a small library of 
less than 20 logic bricks. The contents of the brick library are 
derived such that it enables an efficient implementation of the 
target design. Figure 3 shows the synthesis and optimization 
flow of the derivation of a brick library for a given RTL 
netlist.  

Large Boolean nodes in the RTL are factored and 
decomposed into smaller nodes, each of which has a support 
size in the range of 5 to 10 inputs. Each of these small 
Boolean nodes can be directly implemented as a logic brick. 
This is in contrast to conventional two-step procedures where 
a technology-independent synthesis is followed by a 
technology binding step [9]. In such methods, the technology 
binding step is constrained by the netlist structure produced 
during the technology-independent step. Further, due to a 
large technology library, the technology binding step is 
complex and is difficult to model during technology 
independent optimization. 

 
 
 

 
Figure 2. (a) Standard cells, and (b) brick layouts. 
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Figure 1. Logic bricks mapped onto regular fabric.



 

In the proposed flow, the efficiency of each brick 
implementation drives the factoring and decomposition 
decisions. Consequently, the brick generator provides an 
accurate estimate of area-delay for the factors. Further, the 
netlist is collapsed and re-decomposed iteratively in order to 
minimize the number of distinct logic bricks produced, 
thereby minimizing the number of unique geometry patterns in 
the IC implementation. 

 

IV. PRIMITIVE-BASED BRICK GENERATION 
The aforementioned material in Sections II and III 

provides some background for the Regular Logic Brick 
methodology. The remainder of this paper focuses on our 
Primitive-Based Brick Generator (PBBG). PBBG leverages 
the tractable and well-characterized environment within logic 
bricks to perform efficient logic and circuit level 
optimizations. Unique features of PBBG include: 1) it utilizes 
structures of BDDs to guide functional decompositions, and 2) 
there exists a one-to-one correspondence between 
decompositions and the logic primitives used to implement 
bricks.  

BDD structures are used to identify the most natural and 
efficient decompositions in the logic functions, while the 
correspondence between decompositions and logic primitives 
enables abstract functional decompositions to directly control 
physical implementation and allows electrical issues to be 
taken into account during decompositions. 

Figure 4 shows a brief overview of PBBG. The procedure 
begins with an abstract Boolean function and iteratively 
decomposes the function from output toward inputs. During 
every iteration, an abstract function node is selected, and a 
collection of possible decompositions are evaluated. The 
decomposition that produces the lowest cost estimate is 
selected, and the corresponding primitive is used to 

decompose the function. The factors from this decomposition 
are inserted into the abstract function queue if they are not 
implemented yet. The iteration stops when there is no more 
abstract function in the queue. 

In [6], Kheterpal et al. have chosen a logic primitive set 
composed of Nand2, 2:1-Mux, and inverters. In this paper, we 
expanded the primitive set to include Nand3, Nor2, Aoi21, 
Oai21, Aoi22, and Oai22. The purpose of this expansion is to 
provide a primitive set that contains the most frequently used 
logic elements which appear in logic bricks to enable the most 
efficient implementations. 

A. Logic Decomposition and Electrical Characterization 
We employed a decomposition scheme that uses structures 

of BDDs to guide the decompositions. The basic theory of 
BDD-based logic synthesis was presented by Yang and 
Ciesielski in [10]. By analyzing the structures of BDDs, 
decompositions that occur naturally in the functions can be 
found. One attractive feature of this scheme is that it can 
effectively identify natural Mux-based decompositions in 
addition to And/Or-based decompositions. Nevertheless, 
efficient use of Muxes as discussed in Section II.B requires 
electrical analysis to justify the use of unbuffered Muxes. 
Figure 5 shows SPICE simulation results verifying that all our 
logic primitives can safely drive an unbuffered Mux of fanout-
of-one in designs where slew constraint is set to be 60ps.  

Building upon the theory presented in [10], we have 
developed a set of functional decompositions that directly 
correspond to the logic primitives we use to build logic bricks. 
In addition, we have developed a novel procedure to identify 
common sub-factor of two functions by analyzing their BDDs. 
As shown in Figure 6, two functions, G and H, that share a 
common sub-factor, K, will also share a sub-BDD. By 
identifying such a sub-BDD, we can decompose G and H in 
terms of K. Namely, G = TG(XG, K) where XG is a subset of 
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Figure 4. Overview of PBBG. 



 

the original support of G, and TG is the decomposition 
function given by TG = k’G|K=0 + kG|K=1 for a new 
intermediate variable k = K. H is also decomposed in a similar 
manner so that the sub-factor K is shared by both G and H. 
Notice that such a sub-factor detection method is only feasible 
in PBBG by virtue of the small size of the logic functions. 

We have also implemented the interval_cofactor algorithm 
presented by Stanion in [11] rather than the restrict operator 
used by Yang for don’t care minimization. Our experiments 
showed that Stanion’s algorithm produced logic bricks of 
better quality than those produced using the restrict operator. 

More importantly, Yang’s work focused on large Boolean 
networks, and used BDD decompositions as a technology-
independent logic optimization technique. It has been reported 
that some optimality is lost in the subsequent technology 
binding step. In contrast, due to the one-to-one 
correspondence between logic primitives and decompositions 
in PBBG, there is not a separate technology binding step in 
our flow. Consequently, abstract logic level decompositions 
have direct impact on the actual physical implementation of 
the logic bricks. Again, this is only feasible for a small set of 
logic primitives, as imposed in the Regular Logic Brick 
methodology for manufacturability reasons. 

B. Cost Function and Heuristics 
Given that Boolean functions are directly mapped onto 

logic primitives during functional decomposition, it is 
essential for the brick generator to have an accurate estimate 
of the final implementation cost throughout the decomposition 
procedure. At the beginning of the process we only have an 
abstract Boolean function. In the middle of the process, we 
will have a partially implemented Boolean network with some 
of the nodes being actual logic primitives, while other nodes 
remain as abstract functions. Therefore, we need a good cost 
function to accurately correlate abstract Boolean functions 
with their eventual implementations. 

We have formulated the following cost function, and have 
experimentally verified that it does give a very good estimate 
of the efficiency of the final implementation. 

( ) ( )∑∗∗+∗= fact_costsup_costα1area_costαcost -     

 
The various components of the cost function are as follows: 

sup_cost is a measure of the amount of support reduction 
achieved in the decomposition. It is defined as 

( )
( )sizesupport  function original

sizesupport  factors
sup_cost ∑=  

 
For a bi-decomposition (i.e. one that produces exactly two 

factors), sup_cost is a number between 1 and 2, where 1 
indicates a disjoint decomposition (i.e. the supports of the 
factors do not overlap at all), while 2 indicates a complete 
overlap of the supports. Intuitively, a disjoint decomposition is 
preferred because at least one of the factors is guaranteed to 
have its support size be reduced to half of the original 
function’s support size. 

fact_cost is zero if the factor has already been implemented, 
but if the factor has not already been implemented, then 
fact_cost is computed as follows: 

( ) ( ) ( )factorsdifffactorworkfactornodesfact_cost ++= ∑∑  

where nodes(factor) returns the number of nodes in the BDD 
representing the abstract factor and work(factor) returns the 
computational work [12] of the factor. 

( ) ( )factorentropy2factorwork n ∗=  
where n is the support size of the factor and entropy(factor) is 

the informational entropy measure of the factor. 
Finally, the term diff(factors) captures the absolute difference 

in the estimated costs of the factors. The purpose of this term 
is to avoid decompositions that produce highly imbalance 
factors. In the case of bi-decomposition, a decomposition with 
low diff(factor) and low sup_cost will produce factors that both 
have support sizes halved relative to the original (i.e. the 
decomposition is balanced and disjoint). 

In addition to the cost function, we also employed a set of 
heuristics based on good circuit design practices. These 
heuristics include using good drivers (e.g. Inverter, Nand2) at 
the output of a brick, and avoid having cascaded Muxes that 
require buffering between series drain/source of transistors. 
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V. EXPERIMENTAL RESULTS 
In order to isolate the brick generation step for an apple-to-

apple comparison, we devised the following experiment. We 
generated a large number of random functions with support 
sizes in the range of 5 to 10, and implemented those functions 
using a commercial tree mapping approach (Design Compiler, 
DC) [13] and our brick generator, PBBG. The rationale behind 
this experiment is: if our brick generator performed 
consistently better than DC (which was used in the prototype 
design flow presented in [6]) over a large number of functions, 
then we are reasonably confident that our brick generator will 
improve the overall results when plugged into the overall 
Regular Logic Brick design methodology. We further propose 
a figure of merit to grade the quality of the bricks. 

A. Figure of Merit 
Since logic bricks are used as a technology library to 

implement IC designs, one way to grade their quality is to 
implement benchmark designs with various bricks libraries, 
and compare the area / delay / power of the resultant 
implementations. However, such comparisons would 
unavoidably incorporate other factors such as the contents of 
the library with respect to the requirements of the target 
designs, and the intricacies of the high level synthesis, which 
could obscure the effects of the brick generator. 

Instead, we propose a figure of merit (FOM) based on 
logical effort [14], which is independent of the final 
implementation of IC designs. As shown in Figure 7 (a), if we 
plot the normalized delay (w.r.t. to the reference inverter) of a 
logic brick against the load it is driving in terms of fanout (i.e. 
Cout/Cin), the slope of the graph, g, is the logical effort of the 
brick, which is a measure of how good a driver the brick is 
compared with the reference inverter. The intercept on the 
delay-axis, p, is the parasitic delay of the brick. 

The FOM we propose is the area under the graph over a 
relevant range of loads. The significance of this FOM is as 
follows: if we integrate the graph over a range of loads, and 
divide the integral by that range, we obtain the average 
normalized delay over the range of loads. Hence, the area 
under the graph is proportional to the average delay. We chose 
the typical load to be between fanout-of-one (FO1) and 
fanout-of-four (FO4), hence the range of Cout/Cin is [1,4] as 
shown in Figure 7 (b). The area under graph is easy to 

compute once p and g are known as it is simply the area of a 
trapezium. 

Notice that the proposed FOM accurately reflects the fact 
that although brick A has a higher logical effort (slope) than 
brick B, its lower parasitic delay (intercept) makes it a better 
implementation than brick B (assuming both A and B perform 
the same logic function) over the range of interest because, on 
average, brick A will have lower delays than brick B. Of 
course, this argument is only valid if the load distribution is 
uniform over the range. Nevertheless, in the absence of other 
design specific information, this is a reasonable assumption. 

B. Comparison with Design Compiler 
Using the FOM described above we graded a collection of 

bricks generated for a commercial 65nm CMOS technology. 
The logical effort and parasitic delay of each brick is found via 
SPICE simulations similar to those outlined in Chapter 5 of 
[14]. Table 1 summarizes the results for this experiment. Each 
row of Table 1 reports the results for bricks with support size 
indicated in the left-most column. The columns with headings 
‘DC’ and ‘PBBG’ are the measured FOM (lower is better) and 
area for bricks generated using DC and PBBG respectively. 
The numbers reported are the average over all bricks for each 
support size. On average, there is about 5% to 10% 
improvement in the FOM, with some of the larger 
improvement seen on bigger bricks as those are the ones more 
likely for PBBG to find some efficient Mux-decompositions 
and PT/static implementations that a more general synthesis 
approach might miss. 

 

Table 1 Comparison with Design Compiler. 

FOM (average) Area (average) Support 
Size DC PBBG DC PBBG 

5 48.8 46.7 18.9 18.2 
6 54.2 50.5 23.7 23.0 
7 69.1 62.4 27.8 26.8 
8 88.3 82.6 33.5 32.4 
9 91.4 87.2 37.3 36.2 

10 100.9 92.7 42.4 41.6 
 

VI. CONCLUSIONS AND FUTURE WORK 
We have presented the benefits of implementing IC designs 

on regular fabrics using a small collection of logic bricks. We 
also presented an automated primitive-based logic brick 
generator, and proposed a figure of merit to grade the quality 
of logic bricks. Based on the proposed figure of merit, our 
experimental results demonstrated that logic bricks generated 
by our procedure are on average superior to those generated 
by a classical commercial synthesis approach. As a final 
remark, we would like to caution that we do not claim that our 
procedure is better than Design Compiler in general, as DC is 
undoubtedly a more comprehensive tool that is extremely 
versatile and scalable to handle huge designs and large 
technology libraries. Our only claim is that for the specific 
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problem of logic bricks generation, a specialized tool, such as 
the one that we are proposing here, can provide substantial 
improvement. Future work includes integrating our brick 
generator with a Regular Fabrics design flow to further 
evaluate the merits of our brick generator. 
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