

Abstract—Regularity in IC design has been recognized as

an effective means to combat variability in nanoscale
technologies. One way to enforce design regularity is to
implement ICs using a small library of regular logic bricks.
In this paper we propose a methodology for the design and
synthesis of such logic bricks. Since logic bricks are
comprised of a limited set of logic primitives for
manufacturability reasons, we propose a primitive-based
direct mapping approach for generating optimized bricks
that, in contrast to classical synthesis approaches, can
provide direct control of implementation structures at
abstract functional level based on the detection of natural
decompositions that exist in the function. We demonstrate
considerable improvement in the performance of logic bricks
that are generated by the proposed method as compared with
those produced by a commercial synthesis tool.

Index Terms—circuit design, manufacturability, regularity,
synthesis

I. INTRODUCTION
ITH scaling of CMOS technologies to 65nm and below,
IC designs are suffering from decreasing yield,

increasing variations, and escalating design and manufacturing
costs. The root cause of these problems stems from the fact
that the wavelength of light used in lithography steps has not
been keeping up with technology scaling. Process engineers
have been introducing Resolution Enhancement Techniques
(RETs) to mitigate the discrepancy between the scaling rate of
design features and the wavelength of light used to print them.
Nevertheless, faithful reproduction of patterns over the range
of defocus and exposure latitudes in photo-lithography has
become highly dependent on layout neighborhood. This has
led to hotspots (e.g. poly shorts), line-end shortening, and poor
Across Chip Line-width Variation (ACLV) which result in
systematic yield losses [1].

It is widely recognized that physical regularity leads to
better control of variability, as exemplified by the use of
specialized sub-DRC rules in the design of SRAM bit-cells

This work was funded in part by an IBM PhD Fellowship, an Intel

Fellowship, and the SRC under contract number 2005-HJ-1325.

[2]. However, enforcing shape-level regularity in ordinary
logic has been challenging since generic logic tends to be
irregular, and the added constraints to produce physical
regularity can result in substantial area-delay penalty.
Regularity in IC design has received extensive attention in
recent years as a means to better control variation during
manufacturing. Various forms of regular designs have been
proposed, including restrictive design rules [3], PLA-based
fabrics [4], homogeneous gate-array-like fabrics [5], and
heterogeneous regular fabrics [6].

Fundamentally, logic elements in standard cells libraries are
too fine-grained to be efficient building blocks of regular ICs,
while homogeneous logic elements that are configurable to
perform various logic functions tend to be underutilized [7].
Consequently, regular ICs built from application/domain-
specific coarse-grained regular logic blocks could be the most
efficient. In this paper, we investigate a method to generate
coarse-grained logic building blocks that produce efficient
implementations while facilitating various manufacturability
benefits afforded by regular ICs. In particular, we present a
primitive-based brick generator that produces logic bricks
compatible with those reported in [6] and [1].

We begin the remainder of this paper with a summary on
the benefits of regular logic bricks in Section II. In Section III,
we provide an overview of a proposed design flow for regular
ICs constructed with bricks. Following that, we focus on the
primitive-based brick generator in Section IV. Finally, we
present experimental results in Section V, and our conclusions
in Section VI.

II. BENEFITS OF REGULAR LOGIC BRICKS
A regular logic brick is a small logic function implemented

physically by mapping onto a micro-regular layout fabric. The
boundaries of logic bricks contain similar logic primitives to
provide a common geometrical interface between any two
bricks. In terms of logic granularity, bricks are more coarse-
grained than simple standard cells as the logic function
performed by each brick is more complex than a standard cell.
Using logic bricks, robust IC designs that are based on a small
number of RET-friendly regular geometry patterns can be
constructed.

Design Methodology of Regular Logic Bricks
for Robust Integrated Circuits

Kim Yaw Tong, Vyacheslav Rovner, Lawrence T. Pileggi, and Veerbhan Kheterpal†
Carnegie Mellon University, and Fabbrix Inc.†

{ktong, vrovner, pileggi}@ece.cmu.edu, and veerbhan@fabbrix.com

W

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

A. Regularity by Construction
By defining a highly regular layout fabric on which logic

bricks are implemented, optical proximity correction (OPC) is
simplified and manufacturability is improved by the reduced
number of geometry patterns and lithography interactions that
must be analyzed. The exact layout fabric is technology
specific, though key features include unidirectional fixed
width lines placed at a constant pitch or a multiple thereof. For
example, the fabric in Figure 1 utilizes polysilicon and metal1
in vertical orientation and metal2 in horizontal orientation. In
addition, the fabric explicitly prohibits certain patterns that are
known to have a poor process window [1]. Logic bricks
mapped onto a regular fabric exhibit regularity by
construction. Layouts adhering to the fabric guarantee that the
implemented design will have a sufficient process window.

B. Efficient Circuit Level Implementation
Another benefit that coarse-grained logic bricks have over

standard cells is that very efficient circuits can be
implemented within the logic bricks. For example, it is well
known that pass-transistor logic (PTL), when interleaved with
static CMOS, is highly efficient in implementing many
functions [8]. However, such efficiency might not be reaped in
a standard cells approach because the multiplexers (Muxes) in
standard cells are buffered at inputs and output due to
uncertain loads in standard cells environment. On the other
hand, since the exact electrical environment is known within a
logic brick, unnecessary buffers or inverters can be removed.
This certainty of a well-characterized environment is in fact a
crucial criterion to enable the efficient use of PT/static logic
within bricks. It is worth noting that the ability to remove
unnecessary inverters not only reduces design area, but also
has significant impact on leakage reduction as inverters are the
most problematic structures in terms of leakage.

C. Efficient Layout
While the benefits of regular layout fabrics could

potentially be applied to a standard cells library, the area
penalty associated with implementing designs using a regular-
fabric-compliant standard cells library would be too great due
to the fine-grained nature of standard cells. Similar to circuit
level efficiency, the extra flexibility afforded within coarse-
grained logic bricks enables more efficient layouts. Since the

sizes of regular logic bricks are on the order of several
standard cells, we can gain substantial area reduction by using
diffusion sharing between common nodes.

As a simple example, consider the implementation of
function Z = ab + c’ using a pair of Nand2 gates. A standard
cells layout of such a structure is shown in Figure 2 (a).
Classic standard cells placement tools would leave space
between adjacent cells as they have no notion of sharing
common nets across standard cell boundaries. In contrast, a
brick layout takes advantage of that information to obtain a
more compact layout. Specifically, we have used the fact that
diffusions of transistors sharing a common net can be abutted
to reduce the implementation area (by about 20% in this
example) as shown on Figure 2 (b).

III. OVERALL DESIGN FLOW
In order to effectively utilize the efficient circuit level

implementation and the layout compactness of logic bricks,
we propose a design flow which directly maps a RTL netlist
into bricks. A typical design would require a small library of
less than 20 logic bricks. The contents of the brick library are
derived such that it enables an efficient implementation of the
target design. Figure 3 shows the synthesis and optimization
flow of the derivation of a brick library for a given RTL
netlist.

Large Boolean nodes in the RTL are factored and
decomposed into smaller nodes, each of which has a support
size in the range of 5 to 10 inputs. Each of these small
Boolean nodes can be directly implemented as a logic brick.
This is in contrast to conventional two-step procedures where
a technology-independent synthesis is followed by a
technology binding step [9]. In such methods, the technology
binding step is constrained by the netlist structure produced
during the technology-independent step. Further, due to a
large technology library, the technology binding step is
complex and is difficult to model during technology
independent optimization.

Figure 2. (a) Standard cells, and (b) brick layouts.

 r

 micro-regular
logic

micro-regular
logic

micro-regular
logic

Figure 1. Logic bricks mapped onto regular fabric.

In the proposed flow, the efficiency of each brick
implementation drives the factoring and decomposition
decisions. Consequently, the brick generator provides an
accurate estimate of area-delay for the factors. Further, the
netlist is collapsed and re-decomposed iteratively in order to
minimize the number of distinct logic bricks produced,
thereby minimizing the number of unique geometry patterns in
the IC implementation.

IV. PRIMITIVE-BASED BRICK GENERATION
The aforementioned material in Sections II and III

provides some background for the Regular Logic Brick
methodology. The remainder of this paper focuses on our
Primitive-Based Brick Generator (PBBG). PBBG leverages
the tractable and well-characterized environment within logic
bricks to perform efficient logic and circuit level
optimizations. Unique features of PBBG include: 1) it utilizes
structures of BDDs to guide functional decompositions, and 2)
there exists a one-to-one correspondence between
decompositions and the logic primitives used to implement
bricks.

BDD structures are used to identify the most natural and
efficient decompositions in the logic functions, while the
correspondence between decompositions and logic primitives
enables abstract functional decompositions to directly control
physical implementation and allows electrical issues to be
taken into account during decompositions.

Figure 4 shows a brief overview of PBBG. The procedure
begins with an abstract Boolean function and iteratively
decomposes the function from output toward inputs. During
every iteration, an abstract function node is selected, and a
collection of possible decompositions are evaluated. The
decomposition that produces the lowest cost estimate is
selected, and the corresponding primitive is used to

decompose the function. The factors from this decomposition
are inserted into the abstract function queue if they are not
implemented yet. The iteration stops when there is no more
abstract function in the queue.

In [6], Kheterpal et al. have chosen a logic primitive set
composed of Nand2, 2:1-Mux, and inverters. In this paper, we
expanded the primitive set to include Nand3, Nor2, Aoi21,
Oai21, Aoi22, and Oai22. The purpose of this expansion is to
provide a primitive set that contains the most frequently used
logic elements which appear in logic bricks to enable the most
efficient implementations.

A. Logic Decomposition and Electrical Characterization
We employed a decomposition scheme that uses structures

of BDDs to guide the decompositions. The basic theory of
BDD-based logic synthesis was presented by Yang and
Ciesielski in [10]. By analyzing the structures of BDDs,
decompositions that occur naturally in the functions can be
found. One attractive feature of this scheme is that it can
effectively identify natural Mux-based decompositions in
addition to And/Or-based decompositions. Nevertheless,
efficient use of Muxes as discussed in Section II.B requires
electrical analysis to justify the use of unbuffered Muxes.
Figure 5 shows SPICE simulation results verifying that all our
logic primitives can safely drive an unbuffered Mux of fanout-
of-one in designs where slew constraint is set to be 60ps.

Building upon the theory presented in [10], we have
developed a set of functional decompositions that directly
correspond to the logic primitives we use to build logic bricks.
In addition, we have developed a novel procedure to identify
common sub-factor of two functions by analyzing their BDDs.
As shown in Figure 6, two functions, G and H, that share a
common sub-factor, K, will also share a sub-BDD. By
identifying such a sub-BDD, we can decompose G and H in
terms of K. Namely, G = TG(XG, K) where XG is a subset of

RTL
netlist

Decomposition /
factoring

Collapse

Design
implemented
with bricks

Primitive-based
logic brick
generator

Regular
Fabric

constraints

Figure 3. RTL to logic brick synthesis.

enqueue
function

pick one
function

BDD structures
to detect natural
decompositions

yes

queue
empty?

evaluate
possible
decomps

no

cost function
and heuristics

perform the
best decomp

factors
impl. ?

done

enqueue
factors

yes

no

Figure 4. Overview of PBBG.

the original support of G, and TG is the decomposition
function given by TG = k’G|K=0 + kG|K=1 for a new
intermediate variable k = K. H is also decomposed in a similar
manner so that the sub-factor K is shared by both G and H.
Notice that such a sub-factor detection method is only feasible
in PBBG by virtue of the small size of the logic functions.

We have also implemented the interval_cofactor algorithm
presented by Stanion in [11] rather than the restrict operator
used by Yang for don’t care minimization. Our experiments
showed that Stanion’s algorithm produced logic bricks of
better quality than those produced using the restrict operator.

More importantly, Yang’s work focused on large Boolean
networks, and used BDD decompositions as a technology-
independent logic optimization technique. It has been reported
that some optimality is lost in the subsequent technology
binding step. In contrast, due to the one-to-one
correspondence between logic primitives and decompositions
in PBBG, there is not a separate technology binding step in
our flow. Consequently, abstract logic level decompositions
have direct impact on the actual physical implementation of
the logic bricks. Again, this is only feasible for a small set of
logic primitives, as imposed in the Regular Logic Brick
methodology for manufacturability reasons.

B. Cost Function and Heuristics
Given that Boolean functions are directly mapped onto

logic primitives during functional decomposition, it is
essential for the brick generator to have an accurate estimate
of the final implementation cost throughout the decomposition
procedure. At the beginning of the process we only have an
abstract Boolean function. In the middle of the process, we
will have a partially implemented Boolean network with some
of the nodes being actual logic primitives, while other nodes
remain as abstract functions. Therefore, we need a good cost
function to accurately correlate abstract Boolean functions
with their eventual implementations.

We have formulated the following cost function, and have
experimentally verified that it does give a very good estimate
of the efficiency of the final implementation.

() ()∑∗∗+∗= fact_costsup_costα1area_costαcost -

The various components of the cost function are as follows:

sup_cost is a measure of the amount of support reduction
achieved in the decomposition. It is defined as

()
()sizesupport function original

sizesupport factors
sup_cost ∑=

For a bi-decomposition (i.e. one that produces exactly two

factors), sup_cost is a number between 1 and 2, where 1
indicates a disjoint decomposition (i.e. the supports of the
factors do not overlap at all), while 2 indicates a complete
overlap of the supports. Intuitively, a disjoint decomposition is
preferred because at least one of the factors is guaranteed to
have its support size be reduced to half of the original
function’s support size.

fact_cost is zero if the factor has already been implemented,
but if the factor has not already been implemented, then
fact_cost is computed as follows:

() () ()factorsdifffactorworkfactornodesfact_cost ++= ∑∑

where nodes(factor) returns the number of nodes in the BDD
representing the abstract factor and work(factor) returns the
computational work [12] of the factor.

() ()factorentropy2factorwork n ∗=
where n is the support size of the factor and entropy(factor) is

the informational entropy measure of the factor.
Finally, the term diff(factors) captures the absolute difference

in the estimated costs of the factors. The purpose of this term
is to avoid decompositions that produce highly imbalance
factors. In the case of bi-decomposition, a decomposition with
low diff(factor) and low sup_cost will produce factors that both
have support sizes halved relative to the original (i.e. the
decomposition is balanced and disjoint).

In addition to the cost function, we also employed a set of
heuristics based on good circuit design practices. These
heuristics include using good drivers (e.g. Inverter, Nand2) at
the output of a brick, and avoid having cascaded Muxes that
require buffering between series drain/source of transistors.

0

20

40

60

80

100

120

FO1 FO2 FO3 FO4
Cld (fF)

Sl
ew

 R
at

e
(p

s)

Nd2X7 driving MuxUb Nr2X6 driving MuxUb
Nd3X6 driving MuxUb Oai22X6 driving MuxUb

Figure 5. Slew of unbuffered Muxes.

c

1

G
G = (bc’e’)’

a

d

b

e

H
H = (ad’ +
 bd’e’)’

Figure 6. Common sub-factor detection.

K = b’+e

V. EXPERIMENTAL RESULTS
In order to isolate the brick generation step for an apple-to-

apple comparison, we devised the following experiment. We
generated a large number of random functions with support
sizes in the range of 5 to 10, and implemented those functions
using a commercial tree mapping approach (Design Compiler,
DC) [13] and our brick generator, PBBG. The rationale behind
this experiment is: if our brick generator performed
consistently better than DC (which was used in the prototype
design flow presented in [6]) over a large number of functions,
then we are reasonably confident that our brick generator will
improve the overall results when plugged into the overall
Regular Logic Brick design methodology. We further propose
a figure of merit to grade the quality of the bricks.

A. Figure of Merit
Since logic bricks are used as a technology library to

implement IC designs, one way to grade their quality is to
implement benchmark designs with various bricks libraries,
and compare the area / delay / power of the resultant
implementations. However, such comparisons would
unavoidably incorporate other factors such as the contents of
the library with respect to the requirements of the target
designs, and the intricacies of the high level synthesis, which
could obscure the effects of the brick generator.

Instead, we propose a figure of merit (FOM) based on
logical effort [14], which is independent of the final
implementation of IC designs. As shown in Figure 7 (a), if we
plot the normalized delay (w.r.t. to the reference inverter) of a
logic brick against the load it is driving in terms of fanout (i.e.
Cout/Cin), the slope of the graph, g, is the logical effort of the
brick, which is a measure of how good a driver the brick is
compared with the reference inverter. The intercept on the
delay-axis, p, is the parasitic delay of the brick.

The FOM we propose is the area under the graph over a
relevant range of loads. The significance of this FOM is as
follows: if we integrate the graph over a range of loads, and
divide the integral by that range, we obtain the average
normalized delay over the range of loads. Hence, the area
under the graph is proportional to the average delay. We chose
the typical load to be between fanout-of-one (FO1) and
fanout-of-four (FO4), hence the range of Cout/Cin is [1,4] as
shown in Figure 7 (b). The area under graph is easy to

compute once p and g are known as it is simply the area of a
trapezium.

Notice that the proposed FOM accurately reflects the fact
that although brick A has a higher logical effort (slope) than
brick B, its lower parasitic delay (intercept) makes it a better
implementation than brick B (assuming both A and B perform
the same logic function) over the range of interest because, on
average, brick A will have lower delays than brick B. Of
course, this argument is only valid if the load distribution is
uniform over the range. Nevertheless, in the absence of other
design specific information, this is a reasonable assumption.

B. Comparison with Design Compiler
Using the FOM described above we graded a collection of

bricks generated for a commercial 65nm CMOS technology.
The logical effort and parasitic delay of each brick is found via
SPICE simulations similar to those outlined in Chapter 5 of
[14]. Table 1 summarizes the results for this experiment. Each
row of Table 1 reports the results for bricks with support size
indicated in the left-most column. The columns with headings
‘DC’ and ‘PBBG’ are the measured FOM (lower is better) and
area for bricks generated using DC and PBBG respectively.
The numbers reported are the average over all bricks for each
support size. On average, there is about 5% to 10%
improvement in the FOM, with some of the larger
improvement seen on bigger bricks as those are the ones more
likely for PBBG to find some efficient Mux-decompositions
and PT/static implementations that a more general synthesis
approach might miss.

Table 1 Comparison with Design Compiler.

FOM (average) Area (average) Support
Size DC PBBG DC PBBG

5 48.8 46.7 18.9 18.2
6 54.2 50.5 23.7 23.0
7 69.1 62.4 27.8 26.8
8 88.3 82.6 33.5 32.4
9 91.4 87.2 37.3 36.2

10 100.9 92.7 42.4 41.6

VI. CONCLUSIONS AND FUTURE WORK
We have presented the benefits of implementing IC designs

on regular fabrics using a small collection of logic bricks. We
also presented an automated primitive-based logic brick
generator, and proposed a figure of merit to grade the quality
of logic bricks. Based on the proposed figure of merit, our
experimental results demonstrated that logic bricks generated
by our procedure are on average superior to those generated
by a classical commercial synthesis approach. As a final
remark, we would like to caution that we do not claim that our
procedure is better than Design Compiler in general, as DC is
undoubtedly a more comprehensive tool that is extremely
versatile and scalable to handle huge designs and large
technology libraries. Our only claim is that for the specific

Cout / Cin

N
orm

alized delay

g

p

Cout / Cin

N
orm

alized delay

A

B

4

(a) (b)

Figure 7. A logical effort based figure of merit.

1

problem of logic bricks generation, a specialized tool, such as
the one that we are proposing here, can provide substantial
improvement. Future work includes integrating our brick
generator with a Regular Fabrics design flow to further
evaluate the merits of our brick generator.

REFERENCES
[1] T. Jhaveri, et al. “Maximization of layout printability / manufacturability

by extreme layout regularity,” SPIE 2006.
[2] A. J. Strojwas, “Process-Design Interaction: Modeling Based Design for

Manufacturability,” Tutorial, DAC, June 2003.
[3] M. Lavin, “Backend CAD flows for restrictive design rules,” Proc. of

ICCAD, Nov 2004, pp. 739-746.
[4] F. Mo, and R. Brayton, “PLA-based regular structures and their

synthesis,” Trans. of CAD, June 2003, pp. 723-729.

[5] Y. Ran, and M. Marek-Sadowska, “Designing a via-configurable regular
fabric,” Proc. of CICC, 2004. pp. 423-426.

[6] V. Kheterpal, et al. “Design methodology for IC manufacturability based
on regular logic-bricks,” Proc. of DAC, June 2005, pp. 353-358.

[7] A. Koorapaty, et al. “Heterogeneous programmable logic blocks,” Proc.
of DATE, Mar 2003, pp. 1118-1119.

[8] S. Yamashita, et al. “Pass-transistor / CMOS collaborated logic: the best
of both worlds,” Symp. on VLSI Circuits, June 1997.

[9] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[10] C. Yang, and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” Trans. on CAD, July 2002, pp. 866-876.

[11] T. Stanion, and C. Sechen, “Boolean division and factorization using
binary decision diagrams,” Trans. on CAD, Sept. 1994, pp. 1179-1184.

[12] L. Hellerman, “A measure of computational work,” Trans. on
Computers, vol. c-21, May 1972.

[13] http://www.synopsys.com/products/logic/design_compiler.html
[14] I. Sutherland, R. Sproull, and D. Harris, Logical Effort. Academic Press,

1999.

