
 

 
Abstract—The technique of module-threading utilizes standard 

DDR DRAM components to build modified memory modules. 
These modified modules incorporate one or more additional 
control signals. The modification permits the module to operate 
at higher performance levels and at lower power levels than 
standard modules. The modified modules are also capable of 
finer granularity transactions while still operating at full 
bandwidth. 
 

Index Terms— CMOS memory integrated circuits, Distributed 
memory systems, Memory management, Memory architecture, 
MOS memory integrated circuits, MOSFET memory integrated 
circuits, Shared memory systems,  
 

I. INTRODUCTION 

The interface speeds of DRAM (dynamic random-
access memory) components have improved dramatically in 
the last decade. However, DRAM core speeds have seen much 
smaller improvements. This is because DRAM components 
are optimized for low cost per storage bit and not for core 
performance.  
DRAM storage arrays are designed to be as large as possible, 
so that the row and column support circuitry occupies a 
relatively small fraction of the chip area. A consequence of 
this is that the row and column access times are relatively 
large because of the heavily loaded word lines, bit lines, and 
column IO lines. 

II. BURST LENGTH AND ROW GRANULARITY 
 
One of the timing parameters used by the DRAM is the 

column cycle time (tCC). This is the interval required by a 
column access to transfer a block of information between a 
sense amplifier in the DRAM core and a pipeline register in 
the DRAM interface.  

Another timing parameter used by the DRAM is the DQ 
bit time (tBIT). This is the interval of time occupied by a bit of 
information on a data signal.  

The ratio tCC/tBIT is called the burst length (BL). It 
represents the number of parallel bits that are accessed during 
a tCC interval, and which are transferred serially though a DQ 

signal in sequential tBIT intervals. The burst length is also 
called the prefetch length. 

The DDR3 DRAM used in the timing examples of this 
paper has a tCC value of 5.0ns, and a tBIT value of 0.625ns. The 
burst length is thus [5.0/0.625] or 8, as may be seen in the last 
row of Table 1. Historically, the tBIT parameter has changed 
much more rapidly than the tCC parameter. The doubling of 
burst length every three years is due mostly to corresponding 
reductions in the tBIT parameter.     

The row-to-row access time (tRRD) is the time interval 
between commands to access rows in different banks. 
Traditionally the minimum tRRD value is twice the tCC value, 
meaning that two column accesses may be performed during 
each row access. This leads to the following module row 
granularity relationship (i.e. data transferred during a row 
access):  

  
RowGranularity = BL * (tRRD/tCC) * (DQ/module)                 (1) 

 
Or 
 

RowGranularity =          (tRRD/tBIT) * (DQ/module)                 (2) 
 

The row granularity has increased steadily, and this has 
created a performance issue for many applications. Some 
applications simply can’t utilize this much data from each 
random access. One solution to this problem is the use of two 
or more independent access threads on standard memory 
modules, a technique referred to here as module-threading. 

 
TABLE 1. TREND OF MODULE ROW GRANULARITY 

Module Component Year Row Granularity1 (bytes) 

SDRAM (BL2=1) 1998 16 

DDR   (BL=2) 2001 32 

DDR 2  (BL=4) 2004 64 

DDR 3  (BL=8) 2007 128 

 
 

 
1 Two column accesses (with the indicated burst length) per row 

access is assumed. 
2 BL (burst length) refers to the number of bits transferred on each 

data wire in response to each column access. 
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III. SINGLE-THREAD MODULE 
 

Figure 2 shows a block diagram for a standard (single-
thread) memory controller and memory module. The memory 
controller consists of a logic block and an interface that 
occupy part of an integrated circuit. The memory controller 
creates internal read and write interfaces (labeled “R” and 
“W”) that allow other logic blocks on the integrated circuit to 
access the external memory. 

The memory module consists of eight DDR3-1600 
components. The -1600 designation means that data is 
transferred at the rate of 1600 Mb/s. Each DRAM connects to 
just eight of the 64 DQ data signals – each DQ signal is routed 
from a controller pin to a DRAM pin in a single rank 
topology.  

Each DRAM also connects to all of the control and 
address signals (CA) on the module. These signals carry the 
command code and the bank, row, and column addresses used 
by each memory transaction. Each CA signal is routed from a 
controller pin to a pin on each DRAM in a “flyby” connection 
topology (also know as “multi-drop” topology). Each CA 
signal communicates at the rate of 800 Mb/s. 

A chip select signal (CS) is routed with the same flyby 
connection topology as the CS signals. This CS signal is 
shown separately because it will be modified slightly in the 
next section. 

Write transactions are received from the transaction 
interface and are accumulated in a queue that consists of an 
address block (WA) and eight data blocks (WD). Read 
transactions accumulate in a queue that consists of an address 
block (RA). The returning read data is de-multiplexed by eight 
register block (RD).  

The controller accepts write transactions and accumulates 
them in the write queue. Read transactions are accepted into 
the read queue and are executed in order. When the write 
buffer is filled to a predetermined threshold, the controller will 
stop issuing transactions from the read queue, and will instead 
wait for an appropriate read-write turnaround interval, and 
then issue a burst of write transactions. After an appropriate 
write-read turnaround interval, the controller will again issue 
transactions from the read queue.  

This controller policy is a relatively simple one to 
implement, but can achieve good performance results. An 
improved policy will be described in a later section. 

 Figure 3 shows the transaction timing for the memory 
subsystem of Figure 2. The top diagram shows a single read 
transaction. It begins with an ACTIVE command, which 
causes one row of one bank to be sensed and held (there are 
eight banks altogether).  

After a tRCD interval a READ command is issued, and 
after a BL (tCC) interval a second READ command with auto-
pre-charge option is issued. After a CL interval, two bursts of 
read data are returned. Each burst is a time interval of BL 
containing 64 bytes. The two bursts occupy a time interval of 
tRRD and contain a total of 128 bytes.  

The CS signal is asserted for the ACTIVE command as 
well as the READ commands. Also, this timing example uses 
DDR3-1600 components from the 9-9-9 timing bin (see 
reference [3]). 

The bottom diagram shows interleaved read transactions. 
Each transaction is like the one in the top diagram, but is 
directed to a different bank. The controller issues a transaction 
during each tRRD interval to five different banks (A,B,C,D,E). 
A block of 128 bytes is returned during each tRRD interval.  

The bank used in transaction A may be re-used in 
transaction F. This is determined by the row cycle time 
interval (tRC). If the bank in transaction F used the banks of E, 
D, C, or B, then a delay (bubble) must be inserted so tRC is 
met.  

The bubble size will be different depending upon which 
transaction uses the same bank as transaction F. Here it is 
assumed that there is an average bubble size of tBUB-AVG 
between each transaction. Figure 1 shows the previous three 
transactions (C, D, E) with the average bubble “bub” in 
between each. The bubble size that must be added between E 
and F will be one of the three sizes shown: 

 

  
 
Fig. 1.  Summary of bubble delay cases when the bank in F matches E, D, 
and C, and when there is an average bubble size of tBUB-AVG between the 
previous transactions. 
 
 

Because tRC is 5*tRRD, and because there are eight banks 
in the memory device, the following closed-form expression 
can be generated: 

 
   tBUB-AVG=        
     0.125*(5*tRRD-1*tRRD) 
      +0.125*(5*tRRD-2*tRRD-1*tBUB-AVG) 

 +0.125*(5*tRRD-3*tRRD-2*tBUB-AVG)      (3) 
 

In other words, the average bubble size is one of three sizes, 
each with a probability of 0.125 (because of eight banks). The 
tRC delay is equal to 5*tRRD, and is reduced by the indicated 
amounts (3*tRRD+2*tBUB-AVG, 2*tRRD+2*tBUB-AVG, 1*tRRD) in 
each of the cases.  

Solving for tBUB-AVG yields a value of 0.82*tRRD for tBUB-AVG, 

resulting in a bandwidth efficiency of 54% for random, in-
order read transactions. Here bandwidth efficiency is defined 
as: 

 
 BW Efficiency = tRRD /(tRRD + tBUB-AVG)                                  (4) 
 

 



 

 
  

 
Fig. 2.  The block diagram for a single-thread memory controller and memory module. Write transactions accumulate in a queue that consists of an 

address portion (WA) and eight data slices (WD). Read transactions accumulate in a queue that consists of an address portion (RA). The returning 
read data is de-multiplexed by eight data slices (RD). Each transaction affects all eight DRAM components on the memory module. 
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Fig. 3.  Transaction timing for a single-thread memory controller and memory module. The top diagram shows a single read transaction. It begins 
with an ACTIVE command, followed by two READ commands (the second with an auto-pre-charge option). Two bursts of read data are returned, each 
with 64 bytes, for a total of 128 bytes. The bottom diagram shows interleaved read transactions. Each transaction is like the one in the top diagram, but 
is directed to a different bank. A block of 128 bytes is returned during each tRRD interval. The bank used in transaction A may be re-used in transaction 
F (this is the tRC interval). This timing example uses DDR3-1600 components from the 9-9-9 timing bin. 

 



 

IV. DUAL THREAD MODULE  
 

Figure 5 shows a block diagram for a dual-thread memory 
controller and memory module. It is similar to the single 
thread subsystem of Figure 2; this section will focus on the 
modifications that were made to support dual-thread 
operation.  

The memory controller now has four internal interfaces 
(labeled “Ry”, “Wy”, “Rz” and “Wz”) that provide parallel 
access to two independent memory spaces. 

The memory module consists of two sets of four DDR3-
1600 components. Again, the -1600 designation means that 
data is transferred at the rate of 1600 Mb/s. Each DQ signal is 
still routed from a controller pin to a DRAM pin in a “point-
to-point” connection topology. Each CA signal is still routed 
from a controller pin to a pin on each of the eight DRAMs in a 
“flyby” connection topology. Each CA signal communicates 
at the rate of 800 Mb/s. 

There are now two chip select signals (CSy and CSz) that 
are routed with the same flyby connection topology as the CS 
signals. However, each of the chip select signals connects to 
only four of the eight DRAMs, allowing them to be separately 
controlled. 

Write transactions are accumulated in one of two write 
queues (WAy/WDy and WAz/WDz). An address bit is used to 
determine which queue to use. This address bit will be chosen 
to ensure that there is an approximately equal number of 
transactions directed to the “y” and “z” memory spaces.  

Read transactions also accumulate in one of two read 
queues (RAy and RAz). The returning read data is de-
multiplexed by one of two sets of four register slices (RDy 
and RDz).  

The controller policy is the same as that described for 
Figure 2. The one difference is that read transactions are 
paired for the two memory spaces, and write transactions are 
paired. In other words, the controller does not attempt to 
perform a read transaction in one space and write transaction 
in the other.  

Figure 6 shows the transaction timing for the memory 
subsystem of Figure 5. The top diagram shows a single pair of 
read transactions. Transaction A begins with an ACTIVE 
command to a bank in the “y” space. After a tRCD interval a 
READ command is issued, and after three BL (tCC) intervals a 
second, third, and fourth READ command is issued. The 
fourth READ includes the auto-pre-charge option. After a CL 
interval, four bursts of read data are returned. Each burst is a 
time interval of BL containing 32 bytes. The four bursts 
occupy a time interval of tRRD and contain a total of 128 bytes. 
Note that the tRRD value is twice the value used in Figure 3. 
This is because the same amount of data (128 bytes) requires 
twice as much time to transfer with half the number of wires 
(the 32 DQy wires). 

The “z” memory space is accessed by a second 
transaction B. This transaction is offset by a delay of BL/2 
relative to transaction A, but otherwise is identical, 
performing an ACTIVE command and four READ 

commands. The commands are steered to the two sets of 
DRAMs using assertions on the CSy and CSz signals.    

The bottom diagram shows interleaved pairs of read 
transactions. Each transaction pair is like the pair in the top 
diagram, but is directed to different banks. The controller 
issues a transaction during each tRRD interval to three different 
bank pairs (A/B,C/D,E/F). Two blocks of 128 bytes is 
returned during each tRRD interval, one on the DQy signals and 
one on the DQz signals. The banks used in transaction A/B 
may be re-used in transaction G/H. This is determined by the 
row cycle time interval (tRC). The tRC value in Figure 6 is 48 
CK cycles (3*tRRD), compared with a value in Figure 3 of 40 
CK cycles (5*tRRD). 

The bubble size will be different depending upon which 
transaction uses the same bank as transaction F. Again, it is 
assumed that there is an average bubble size of tBUB-AVG 
between each transaction. Figure 4 shows the previous three 
transaction pairs (A/B, C/D, E/F) with the average bubble 
“bub” in between each. The bubble size that must be added 
between E/F and G/H will be one of the three sizes shown. As 
before: 

 

  
 
Fig. 4. Summary of bubble delay cases when banks in G/H match E/F, 
C/D, and A/B, and when there is an average bubble size of tBUB-AVG 

between the previous transactions. 
 
 

Since tRC is 3*tRRD, and because there are eight banks in 
the memory device the following closed-form expression can 
be generated: 

 
   tBUB-AVG=        
     0.125*(3*tRRD-1*tRRD) 
      +0.125*(3*tRRD-2*tRRD-1*tBUB-AVG)      (5) 

 
In other words, the average bubble size is one of two sizes, 

each with a probability of 0.125 (eight banks). The tRC delay is 
equal to 3*tRRD, and is reduced by the indicated amounts 
(2*tRRD+2*tBUB-AVG, 1*tRRD) in each of the cases.  

Solving for tBUB-AVG yields a value 0.33*tRRD for tBUB-AVG, 

resulting in a bandwidth efficiency of 75% for random, in-
order read transactions. Again bandwidth efficiency is defined 
as: 

 
 BW Efficiency = tRRD /(tRRD + tBUB-AVG)                                (6) 
 
 



 

Fig. 5.  The block diagram for a dual-thread memory controller and memory module. One address bit is statically selected to steer each transaction to 
either the “y” or “z” memory space. The controller maintains separate read and write queues for each of the independent memory spaces. The module 
in this example has eight DRAMs, with four DRAMs in each memory space. There are two chip select signals (CSy and CSz) used to direct commands 
on the CA signals to the two sets of DRAMs.   
 

 
Fig. 6. Transaction timing for a dual-thread memory controller and memory module. The top diagram shows a single pair of read transactions. The “A” 
transaction is directed to the “y” DRAMs using the CSY signal. It begins with an ACTIVE command, followed by four READ commands (the fourth 
with an auto-pre-charge option). Four bursts of read data are returned, each with 32 bytes, for a total of 128 bytes. The “B” transaction is offset by two 
CK cycles, and is directed to the “z” DRAMs. The bottom diagram shows pairs of interleaved read transactions. Each pair is like the one in the top 
diagram, but is directed to different banks. Two blocks of 128 bytes is returned during each tRRD interval. The banks used in transactions A/B may be 
re-used in transactions G/H (this is the tRC interval). This example uses DDR3-1600 from the 9-9-9 timing bins. 
 
 
 



 

 

V. QUAD-THREADING  
 

The multi-threading concept can be extended by adding 
two additional chip select signals (four total) to the memory 
module to provide four independent memory spaces. The 
DRAM components would also need an option for a burst 
length of 16. There would then be enough command 
bandwidth on the CA signals to interleave four concurrent 
transaction streams.  

The interleave factor for each stream would be two 
(compared with three and five for dual- and single-threading), 
resulting in an effective read bandwidth of 88%. These results 
are summarized in Table 2. 

 

VI. MODULE POWER 

 
The use of multi-threading also reduces the total power 

for each transaction. Typically, the module power required for 
row accesses (the ACTIVE command) accounts for 0.25 to 
0.50 of the total power, with the rest consumed by the column 
operation (the READ command).   

Dual-threading has the same total number of column 
accesses as single-threading, but only one-half as many 
devices are accessed for each row transaction. This reduces 
the total power to 0.75 to 0.875 that of a single-threaded 
module..  

Likewise, quad-threading has the same number of total 
column accesses as single-threading, but only one-quarter as 
many row accesses. This reduces the total power to 0.625 to 
0.813 that of a single-threaded module. These results are 
summarized in Table 2. 
 

 TABLE 2. MULTI-THREADING BENEFITS 

Threading Factor Read BW 
(larger is better) 

Power per Transaction 
(smaller is better) 

single 0.54 1 

dual 0.75 0.750 – 0.875  

quad 0.88 0.625 – 0.813 

 

VII. QUEUE DETAILS 

 
Figure 7 shows more detail for the queue elements used in 

Figure 2 and Figure 5. As previously described, write 
transactions are accumulated in the write queue. Read 
transactions are accepted into the read queue and executed in 
order. When the write buffer is filled to a predetermined 
threshold, the controller will stop issuing transactions from the 
read queue, and will issue a burst of write transactions. The 
controller will then return to issuing transactions from the read 
queue. 

 
 

Fig. 7.   Memory controller queue details. Write transactions are accumulated in the write queue. Read transactions are accepted into the read queue 
and executed in order. When the write buffer is filled to a predetermined threshold, the controller will stop issuing transactions from the read queue, 
and will issue a burst of write transactions. The controller will then return to issuing transactions from the read queue. The Wfull and Rfull signals 
provide flow control, so transactions from the controller can be held off. Comparison logic checks read addresses against write addresses to ensure 
coherency. The Rtag signal frames the read data. 



 

  
The Wfull and Rfull signals are provided so transactions 

from the controller can be held off if the associated queue 
becomes full. The comparison logic checks read addresses 
against write addresses to ensure coherency. For example, a 
read of a pending write will return the write queue data. This 
ensures that the results do not depend upon the order in which 
read and write transactions are performed. The Rtag signal is 
used to frame the read data. In the case of in-order read 
transactions, it simply serves as a timing mark for each block 
of data. 

Note that the WD and RD logic blocks are shown as 
slices – there is one for each each DRAM in Figures 2 and 5. 
In the case of Figure 2, the eight slices are operated together. 
In the case of Figure 5, there are two groups of four slices 
operated independently for each of the two memory spaces.  

Note also that the 16-bit input of the WD queue is loaded 
many times for each load of the WA queue – 8 times for 
single threading and 16 times for dual threading. This is 
because each slice must store 16 bytes and 32 bytes, 
respectively, for each 128 byte write transaction.    

 

VIII. OUT-OF-ORDER WRITE EXECUTION 
 

 When the write queue becomes full or nearly-full, some 
or all of the transactions are written to memory.  It is not 
necessary to empty the write queue in the same order it was 
filled. As long as read/write coherency is maintained, the write 
transactions may be issued in any order. 

In fact, there is a performance benefit to issuing the write 
transactions in an order which avoids unnecessary bank 
conflicts with previous transactions.  

For example, after the final read transaction has issued 
and a read/write turnaround bubble has been observed, a first 
write transaction is selected. The selection criteria will include 
choosing a bank address that doesn’t conflict with any of the 
remaining read transactions that are still in progress.  

Each subsequent write transaction will be chosen in the 
same manner, so the smallest number of bank-interference 
bubbles are added to the transaction stream. 

An approximate relationship for out-of order efficiency of 
the write buffer unloading process is as follows: 

 
 Efficiency = tRRD /(tRRD + tBUB)                    (7) 
 
Where 
 
 tBUB ~ tRRD [NQ+1]/ [Q*BQ]                           (8) 
           
With the following definitions: 
 
 N = tRC / tRRD                                                    (9) 
 B = banks per memory space                      (10) 
 Q = transaction entries per queue                (11) 

 

 
The out-of-order efficiency is plotted in Figure 8 as a 

function of queue depth for the single thread (N=5) and dual 
thread (N=3) cases, with the number of memory banks set to 
8.   
 

 
Fig. 8.  Queue Depth versus Efficiency. The expression for efficiency is 
evaluated for queue depths of 1-8 transactions for an eight bank memory 
for the single thread and dual thread examples previously discussed. 

 
As expected, the dual-threading case is much more 

efficient for small queues because there are a smaller number 
of transactions which can potentially interfere with one 
another. A benefit of the smaller queue size is less controller 
area, and simpler controller logic for detecting the conflicts. 

 

IX. OUT-OF-ORDER READ EXECUTION 
 
The same out-of-order benefits may be realized for read 

transactions. This requires that read transactions be tagged 
with a sequence tag (the Rtag signal) in Figure 7). This 
requires that the transaction generating logic be able to accept 
the returning read data out-of-order – this may not be possible 
in some applications   

 

X. FINE GRANULARITY TRANSACTIONS 
 

Finally, note that the 128 byte transaction size could be 
reduced to 64 bytes in the case of the dual-threaded module in 
Figure 6. This would increase the number of concurrent 
transactions, but might be a benefit for some applications 
which didn’t need as much data per access. 

 
 
 



 

 

CONCLUSIONS 
The historical trend of increasing row and column access 

granularity of memory modules will increasingly limit the 
performance in certain classes of applications. The 
architectural technique of module-threading may be applied to 
conventional memory modules with relatively low incremental 
cost. This technique permits the module to provide greater 
performance with reduced power consumption. It also permits 
the option of lower granularity transactions at full bandwidth. 
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