
HIGH-SPEED FACTORIZATION ARCHITECTURE FOR SOFT-DECISION
REED-SOLOMON DECODING

Xinmiao Zhang

Department of Electrical Engineering and Computer Science
Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-7071

ABSTRACT

Reed-Solomon (RS) codes are among the most widely uti-
lized error-correcting codes in modern communication and
computer systems. Among the decoding algorithms of RS
codes, the recently proposed Koetter-Vardy (KV) soft-decision
decoding can achieve substantial coding gain, while has a
polynomial complexity. One of the major steps of the KV
decoding is the factorization. The root computation involved
in each iteration level of the factorization is traditionally im-
plemented by exhaustive search. A fast factorization archi-
tecture has been proposed to circumvent the exhaustive root
search from the second iteration level by using a root-order
prediction scheme. However, the root computation in the
first iteration level is still carried out by exhaustive search,
which accounts for a significant part of the overall factor-
ization latency. In this paper, a novel iterative prediction
scheme is proposed to compute the roots in the first itera-
tion level. The proposed scheme can substantially reduce
the average latency of the factorization, while only incurs
negligible area overhead. Applying this scheme to a (255,
239) RS code, a speedup of 36% can be achieved.

1. INTRODUCTION
Reed-Solomon (RS) codes have very broad applications. They
can be found in magnetic and optical recording, spread spec-
trum wireless systems, as well as satellite and deep-space
communications. Since RS codes were introduced in 1960s,
tremendous efforts have been devoted to developing effi-
cient and high-gain decoding algorithms. The well-known
Berlekamp-Massey algorithm (BMA)[1] can correct up to
������ � �� � � � ���� errors for an ��� �� RS code.
Comparatively, list-decoding algorithms attempt to correct
more errors by finding all the codewords within a distance
that is longer than ������ from the received word. A break-
through in list-decoding was achieved by the Sudan [2] and
Guruswami-Sudan (GS) [3] algorithms. These algorithms
are based on an algebraic interpolation technique. By forc-
ing all the interpolation points in the Sudan algorithm to
have higher multiplicities, the GS algorithm can correct up
to ����� errors. Higher coding gain can be also achieved
by soft-decision decoding algorithms through making use of
the probability information from the channel. Various soft-
decision algorithms have been proposed. However, they can

either only achieve relatively low coding gain or have expo-
nential complexity. Recently, Koetter and Vardy extended
the GS algorithm by incorporating the probability informa-
tion into the algebraic interpolation process [4]. By forcing
the interpolation points with higher reliability to have higher
multiplicities, this algorithm can achieve substantial coding
gain while its complexity is polynomial with respect to the
codeword length.

The major steps of the Koetter-Vardy (KV) algorithm
are the interpolation and factorization. Re-encoding and co-
ordinate transformation have been introduced to reduce the
interpolation complexity [5, 6, 7, 8]. Applying these tech-
niques, the number of iterations need to be carried out in
the factorization can be also reduced. Each iteration of the
factorization mainly consists of root computation over finite
fields and polynomial updating. The root computation is tra-
ditionally implemented by exhaustive search, which requires
long latency for long codes. A fast factorization architec-
ture was proposed to reduce the average latency associated
with the root computation [9]. In this architecture, the ex-
haustive root search from the second iteration level can be
circumvented with more than 99% probability by employ-
ing a root-order prediction scheme. In addition, applying
the root-order prediction scheme, the roots of two adjacent
iteration levels can be computed in a short time. Based on
this feature, a partial parallel factorization architecture was
developed to combine the polynomial updating in adjacent
iteration levels [10]. However, the speedup of this archi-
tecture comes at the expense of significantly increased area
requirement. In both of these architectures, the root com-
putation in the first iteration level is still carried out by ex-
haustive search, which accounts for a significant part of the
overall factorization latency.

In this paper, a novel iterative prediction scheme is pro-
posed to compute the roots in the first iteration level. This
scheme carries out up to three trial-and-error direct root com-
putations before exhaustive search is employed. As a result,
the average latency associated with the first iteration root
computation can be significantly reduced. In addition, all
the hardware units required by this scheme can be shared
with the units already exist in the architectures of [9] and
[10]. Therefore, the extra hardware required by this scheme
is negligible. Applying the proposed algorithm to a (255,

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

Interpolation Factorization
Multiplicity

Computation

Reliability
Information From

the Channel

Decoded
List Output

Koetter-Vardy Front End Modified Guruswami-Sudan List Decoder

Fig. 1. The KV decoding algorithm

239) RS code, a speedup of 36% can be achieved, while the
extra area requirement is around 1%.

The structure of this paper is as follows. Section 2 de-
scribes the factorization step in the KV algorithm and the
root-order prediction scheme. Section 3 presents the itera-
tive prediction scheme for the first iteration level root com-
putation. Then the factorization architecture, which has in-
corporated the proposed scheme, is presented in Section 4.
Section 5 summarizes this paper.

2. FACTORIZATION IN THE KV ALGORITHM
In this paper, we only consider RS codes constructed over
finite fields of characteristic two. Fig. 1 illustrates the block
diagram of the KV algorithm. The multiplicity computa-
tion step decides on the interpolation points and their rela-
tive multiplicities according to the probability information
from the channel. In practice, this step can be implemented
as multiplying a probability information matrix by a non-
negative real number, �, then followed by the floor function.
Comparatively, the interpolation and factorization steps are
much more hardware demanding. For an ��� �� code, the in-
terpolation step finds a bivariate polynomial ����� � with
minimum weighted degree that passes each non-trivial inter-
polation point with at least its associated multiplicity. Then
the factorization step finds all factors of ����� � in the form
of � �	��� with ����	����
 �. Here ������ denotes the
degree of the polynomial. Among various factorization al-
gorithms, the one proposed in [11] is suitable for efficient
hardware implementations. This algorithm can be described
by the pseudo codes listed in Algorithm A.

Algorithm A: Factorization Algorithm
Initialization: iteration level � � 	
���������������� �� ��
�

find the largest non-negative integer �, such that ��

divides ����� �
F1:
����� � � ����� ����

F2: find all the roots of
��	� � � in �� ����
for each root � of
��	� � � do

���� � �
if � � � � �

output ���	�� ����� � � � � ��� � ���
else

F3: ����� � �
����� � ��
F4: ������ � � ������ �

call ����������� ������ �� �� ��
�

In Algorithm A, the � roots in each output vector form
the coefficients of a degree � � � polynomial. The polyno-
mials corresponding to all output vectors contain the 	���
factors as a subset. Applying re-encoding and coordinate
transformation, the number of factorization iteration levels
can be reduced from � to �� , where � is the number of errors
intend to be corrected in the � most reliable code positions.
After the total iteration number has been reduced, further
speedup of the factorization can be achieved by optimizing
the computations involved in each iteration level. As it can
be observed from Algorithm A, each iteration mainly con-
sists of the root computation in the F2 step and the polyno-
mial updating in the F3 step. The F1 and F4 steps are trivial.
They can be implemented by using a register to keep track of
the address displacements. Traditionally, the root computa-
tion over finite fields are implemented by exhaustive search.
For long codes, the F2 step has very long latency.

The latency of the root computation from the second
iteration level can be reduced by the root-order prediction
scheme proposed in [9]. From Algorithm A, it can be only
derived that the degree of
��	� � � is at most the order, �,
of the corresponding root, �, in the previous iteration level.
However, it is found from simulations that in most cases the
degree of
��	� � � equals � and
��	� � � has a single root of
order �. Therefore, if a root with order � is found in iteration
level �, then it is predicted that the corresponding
��	� � � in
iteration level �� � can be expressed as

��	� � � � �� � ���� �
���� �
����� � � � ��
�����
� (1)

where
���� is the coefficient of � �� � in
����� �. From (1),
it can be derived that

����� �
������
�
��

��� � (2)

where � is the minimum positive integer satisfying
�
�

�

�
odd.

Such a � can be only in the form of � � �	 �� � ���. In this
case, the root, ��, in iteration level � � �, can be computed
by cyclically shifting the bits in the normal basis represen-
tation of
������
�

��

��� , �, bit positions to the direction of the
least significant bit. In addition, it can be derived that
����
does not change in later iteration levels if the predictions are
correct. Hence, the value of
���

��� can be stored and reused.
The prediction failure rate of this scheme is very low

for practical applications of RS codes. However, ignoring
these cases may bring significant performance degradation
to the KV algorithm. From the definition of root order, ��

is a ���-order root of
��	� � � if and only if the coefficients
of �� �� � �� � � � � � ��� in
��	� � � ��� are zero, while the
coefficient of � � is not. Since
��	� � � ��� is computed in
the F3 step, the checking of whether the prediction is correct
can be done by observing the output of this step. In the
case of prediction failure, the roots are re-computed either
through direct computation or exhaustive search when the
degree of
��	� � � is two or higher, respectively.

10
−5

10
−4

10
−3

10
−2

10
−1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FER

Pe
rc

en
ta

ge
 o

f m
ax

im
um

 ro
ot

 o
rd

er

Maximum root order in the first iteration level for (15, 11) RS code

λ=4.99,r>=t−2

λ=4.99,r=t

λ=5.99,r>=t−2

λ=5.99,r=t

λ=6.99,r>=t−2

λ=6.99,r=t

10
−5

10
−4

10
−3

10
−2

10
−1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FER

Pe
rc

en
ta

ge
 o

f m
ax

im
um

 ro
ot

 o
rd

er

Maximum root order in the first iteration level for (255, 239) RS code

λ=4.99,r>=t−2

λ=4.99,r=t

λ=5.99,r>=t−2

λ=5.99,r=t

λ=6.99,r>=t−2

λ=6.99,r=t

Fig. 2. Simulation results for maximum root order

In the fast factorization architecture of [9], the root com-
putation in the first iteration level is still carried out by ex-
haustive search, which may account for a significant part of
the overall factorization latency. For example, the exhaus-
tive root search for a (���� ���) RS code in the first iteration
level can consume 31% of the fast factorization latency. In
the partial parallel factorization architecture of [10], the fac-
torization latency is reduced by combining the polynomial
updating from adjacent iteration levels. However, the la-
tency associated with the exhaustive root search in the first
iteration level does not change. Therefore, the first iteration
root computation accounts for a even more significant part
of the overall latency in this architecture. In the next section,
we introduce a novel iterative prediction scheme for the root
computation in the first iteration level. This scheme carries
out up to three direct root computation trials before exhaus-
tive search is employed. As a result, the average latency for
the first iteration root computation is substantially reduced.
In addition, this scheme only requires negligible extra area
compared to the area required by the entire factorization ar-
chitecture.

3. ROOT COMPUTATION IN THE FIRST
ITERATION LEVEL

The
��	� � � in the first iteration level may have multiple
roots. From first glance, no information on these roots can
be directly derived. However, from simulations, we found it
is highly likely that the maximum order of the roots in the

first iteration level is very close to the degree of
��	� � �.
Assume ����
��	� � �� � � and the maximum order of the
roots in the first iteration level is �, Fig. 2 illustrates some
simulation results on the probability of � � � and � � � �
� for (��� ��) and (���� ���) codes with different values of
�. These results are obtained under AWGN channel with
BPSK modulation. From Fig. 2, it can be observed that the
probabilities of � � � or � � �� � decrease with increasing
�. In addition, it is more likely that the maximum root order
is close to ����
��	� � �� in the case that the frame error rate
(FER) is low.

In the case of � � �, the root can be computed according
to (2). However, the probability of this case is low when
the FER is high, code is long or � is large. Fortunately,
under certain circumstances, we can still compute a root of

��	� � � directly from its coefficients if the root order is less
than �. Assume among the roots of
��	� � �, there is � with
order �
 �. Then
��	� � � can be written as

��	� � � � �� � ��� �� �� (3)

Since ����
��	� � �� � �, ���� �� �� � ���. Therefore, (3)
can be expanded as

��	� � � �

��
�

	

�
� � �

�
�

�

�
�� ��� � � � ��

�
�

�

�
��

�

� �
���

�� �
�����

���� � � � �� ���

(4)

Multiplying out the right side of (4), it can be observed that
the coefficients of
��	� � � equals the sum of the terms listed
in Table 1. In this table, we assume � ! ��� ��. Otherwise,
the terms with negative powers of � should be replaced by
zero.

Since the binomial coefficients are computed over �� ���,
they are either zero or one. Therefore, in Table 1, there may
exist two columns, in which the nonzero binomial coeffi-
cients have the same pattern. In this case, each term in one
column equals the the term in the same row of the other col-
umn multiplied by ��, where � is the difference between the
indices of the two columns. Accordingly, �� can be com-
puted by a division between the coefficients of
��	� � � cor-
responding to these two columns. For example, in the case
of � � � and � � �, the binomial coefficients are listed in
Table 2. It can be observed that the ’1’s in the column for

���� have the same pattern as those in the column for
����.
In addition, the difference of the power of � between the
corresponding terms in these two columns is � � � � �.
Therefore, �� can be computed as
�����
����. Furthermore, it
can be observed from Table 2 that �� can be also computed
as
�����
����.

For practical applications, the maximum order of the
roots of
��	� � � does not exceed eight. By exhaustive list-
ing of the binomial coefficient patterns, it can be observed
that there exist at least one pair of coefficients that can be

Table 1. The terms for the coefficients of
��	� � �
����� ������� ������� � � � ������� ��������� � � � ������

�

�

�
����

�
�

�

�
�����

�
�

�

�
������ � � �

�
�

�

�
�������

�

�

�
������

�
�

�

�
������� � � �

�
�

���

�
����������

�
�

�

�
��������� �

�

�

�
������ � � �

�
�

���

�
����������

�
�

���

�
����������

�
�

�

�
��������

. . .
...

...
. . .

�

�
�

�������

�
����������

�
�

���������

�
������������ � � �

�
�

�

�
����

Table 2. The binomial coefficients for the case of � � � and
� � �

����� ����� ����� ����� ����	 ����
 ����� ����� ����� �����

1 1 0 0 1 1
1 1 0 0 1 1

1 1 0 0 1 1
1 1 0 0 1 1

1 1 0 0 1 1

used to directly compute �� if ��"� �� �� � � � � satis-
fies the conditions listed in Table 3. In addition, a possible
value of �, which applies to all possible � � � for a given
�, is provided in Table 3. For example, if � � �, then as
long as ���� �� ��
 �, there exist at least one pair of co-
efficients of
��	� � � with their quotient equals ��. It can
be also observed from Table 3 that � always equals to some
non-negative integer power of two. In this case, � can be
computed from �� by a cyclical shift if normal basis repre-
sentation for finite field elements is employed.

Table 3. The conditions for directly computing ��

� 2 3 4 5 6 7 8
�� � � � � � � � � � � � � � � ��

s 2 1 4 4 2 1 8

The maximum order of the roots for
��	� � � in the first
iteration level is unknown. The only information we have is
that it is close to the degree of
��	� � � with high probability.
Therefore, we start by predicting that
��	� � � has a single
root � with order � � �, and compute � by (2). In the case
of prediction failure, we make a second prediction: � � ��
�, and compute � through dividing proper coefficients of

��	� � �. In the case that the second prediction fails, � is
decreased by one again. This process can be carried out
iteratively until a real root is found or the condition in Table
3 is no longer satisfied. The correctness of the predictions
can be checked by observing the coefficients of
��	� � ���.

If a real root is found through the above iterative pre-
diction process, it must be the root with the highest order.
However,
��	� � � may have other roots of lower order, all
of them needs to be found in the factorization algorithm.
Assume a root, �, with order � is directly computed. Then

��	� � � � �� � ��� �� ��

Fig. 3. The procedure for first iteration root computation

Hence the rest of the roots can be found by solving �� � �
	. The coefficients of �� � can be derived through a poly-
nomial expansion and a polynomial division. However, this
process requires extra area and incurs long latency. Through
the polynomial updating in the F3 step

��	� � � �� � � � �� � ��

is computed. Therefore, the coefficients of the shifted factor
 �� � �� can be directly observed from the output of the F3
step. Accordingly, �� � �� � 	 can be solved instead of
 �� � � 	. Adding � back to the computed roots, the roots
of �� � � 	 can be derived. The roots for polynomials
with degree higher than two can not be easily computed. In
addition, from Fig. 2, the probability for the maximum root
order to be larger than or equal to ��� is high. Therefore, we
will limit the iterative prediction process to until � � �� �.
Another advantage to stop the process at this point is that,
as it can be observed from Table 3, it is guaranteed that ��

can be directly computed from the coefficients of
��	� � �
when � � � � �. In the case that all predictions failed, ex-
haustive search is employed to find the roots of
��	� � �. In
summary, the root computation for the first iteration level of
the factorization can be carried out according to the iterative
prediction procedure illustrated in Fig. 3. In this figure, the
RCBY1 and RCBY2 blocks implement the root computa-
tion for �� � when its degree is one and two, respectively.

Fig. 4. The Comp root architecture

4. VLSI ARCHITECTURE FOR THE
FACTORIZATION STEP

This section first presents detailed architectures for the com-
putation units required by the proposed first iteration root
computation scheme. Then we demonstrate how to incorpo-
rate these units into the fast factorization architecture pro-
posed in [9] to further reduce the latency.

Employing the iterative prediction scheme, it only takes
one inversion and one multiplication to compute a root in the
Comp Root block for each prediction. As it was mentioned
in the previous section, there may exist more than one pair
of coefficients that can be used for root computation. The
pairs of coefficients can be carefully selected such that the
divisors in these pairs remain the same through the three
predictions as much as possible. In this case, the inversions
required in later predictions can be saved. For example, if
����
��	� � �� � �, then in the first prediction, � can be
computed as
�����
����. In the case that this prediction fails,
we predict � � �, and �� can be computed as
�����
����. Sim-
ilarly, if � � �, �� can be computed as
�����
����. Therefore,
by choosing the pairs of coefficients as above, the compli-
cated inversion can be saved in the latter two predictions.
For a degree one polynomial �� � � �� � �, its root can
be computed as ��

�
 �. Hence, the Comp root and RCBY1

can be implemented by similar architectures. In addition, as
it can be observed from Fig. 3, the Comp root and RCBY1
are activated at different time. Accordingly, the Comp root
architecture illustrated in Fig. 4 can be used to implement
both the Comp root and RCBY1 blocks.

In the Comp root architecture, depends on whether the
divisor changes or not in the three predictions, the inverse
value can be either computed by the Inv block or can be read
from the register. The function of the Fract Power block is
to compute � from the value of its power by a cyclical shift.
This block also includes the conversion to and from nor-
mal basis representations. As it has been discussed in the
previous section, it is more efficient to compute the root of
 �� � �� instead of �� �. Hence, the coefficients fed into
this architecture for the RCBY1 implementation are actually
proper coefficients of
��	� � � ��. Accordingly, � needs to
be added back to the output of the Fract Power block to de-

2 1 0

Fig. 5. The architecture for RCBY2 block

rive the actual root. The only difference between the Comp
root architecture and the RC3 architecture in [9] is the parts
attached to the output of the Fract Power block.

The roots of a degree two polynomial can be computed
directly by the algorithm developed in [1]. According to this
algorithm, the RCBY2 block can be implemented by the ar-
chitecture introduced in Fig. 5. Similarly, the root computa-
tion are actually carried out on �� ��� � �

�
� �� �

�
� � �

�
.

Hence � needs to be added back to the computed roots. In
the case that �

�
is zero, the second-order root, ’root2’, can be

computed by the right part of RCBY2 architecture. When
 �
�
	� 	, the degree two polynomial only has roots when

the trace function (#�) of �
�
 �
�
� ���

�
�� is zero. In this case,

the two simple roots, ’roota’ and ’rootb’, can be computed
as multiplying the vector formed by the standard basis rep-
resentation of �

�
 �
�
� ���

�
�� by a pre-computed matrix. For

detailed explanations, the interested reader is referred to [9].
The top left part of this architecture is the same as the MRC2
block in the fast factorization architecture proposed in [9].
The RCBY2 block is only used in the first iteration root
computation, while the MRC2 block is used from the sec-
ond iteration level. Therefore, the RCBY2 architecture can
be shared for both blocks. Accordingly, two multiplexors
are added to the ’roota’ and ’rootb’ outputs, as illustrated at
the bottom of Fig. 5, to enable resource sharing.

Incorporating the iterative prediction scheme for the first
iteration level root computation, the factorization algorithm
can be implemented by the architecture illustrated in Fig.
6. Compared to the fast factorization architecture in [9], the
only differences are the blocks shown in shade: the Comp
root block replaced one of the RC3 block, the RCBY2 block
replaced the MRC2 block and two multiplexors are added.
In addition, the Control block is slightly different and some
connections are added. The PU and PS units implement the
F3 step, the F4 and F1 steps, respectively. The detailed de-
scription of how the fast factorization architecture works can
be found in [9]. Compared to the RC3 and MRC2 architec-
ture, the Comp root and RCBY2 architecture as illustrated in
Fig. 4 and Fig. 5 requires an extra of four adders, three 2:1

Comp
root

Root & Polynomial Scheduling (RPS)

PU1 PU2 PUt

do
ne

PS1 PS2 PSt

Polynomial & Root-order Buffers

return to Polynomial & Root-order Buffers

Q (X,Y)

ena1

RCBY2Exhaustive

Control

ro
ot

s

ro
ot

s

ro
ot

ro
ot

 #

do
ne

do
ne

 Root Check

ro
ot r' 1 ro
ot

ro
otr' 2 r' t

r 1 r 2 r t

r 1 r 2 r t

ena3

ena2

read1

readt

start

r' 1

RC32

r' 2

RC3t

A
N

D

r' t

Q
1(

0,
Y

)

Q
1(

X
,Y

)

Q
2(

0,
Y

)

Q
2(

X
,Y

)

Q
t(0

,Y
)

Q
t(X

,Y
)

 De-Scheduling (DRPS)

read2

A

A

Fig. 6. The factorization architecture

multiplexors, one multiplier and one matrix multiplication
for the square root block. For RS codes of length 255, the
computations are carried out over �� ����. Each �� ����
multiplier requires 77 XOR gates and 64 AND gates, while
each adder requires 8 XOR gates. On average, the mul-
tiplication of a � � � binary matrix takes � � ��� � ��
XOR gates. In addition, each 1-bit 2:1 multiplexer is equiv-
alent to an XOR gate in terms of area and delay. Hence,
the RCDY2 and Comp root blocks require extra 161 XOR
gates and 64 AND gates. Taking the 56 XOR gates required
by the two shaded multiplexors into account, the iterative
prediction scheme only adds 227 XOR gates and 64 AND
gates, and slightly larger control logic. This extra area only
accounts for around 1% of the overall area of the fast factor-
ization architecture.

Table 4. The # of pipelining stages for building blocks
of stages # of stages

RCBY2 5 Comp root 4
Exhaustive 3 RC3 4

RPS 1 PU 3
DRPS 1 Root Check 1

The factorization architecture is pipelined, and the crit-
ical path consists of 10XOR gates and 1 AND gate. Table
4 summarizes the number of pipelining stages each block
in Fig. 6 can be divided into. Assume the conditional pre-
diction failure rates for the first through the third trials are
$��, $�� and $��, iteratively. Then the number of
clock cycles needed for the first iteration root computation is
��$���������������$��������������
$�����������������$��������������
$��� �� � �� �� �� �� ���� ����. For a (255,239)

code with � � ����, $�� � ���, $�� � ��� and
$�� � ��� at �% � �	�� In this case, the first iter-
ation root computation takes an average of 42 clock cycles.
Compared to the exhaustive search approach, which requires
256+3 clock cycles out of the overall latency of 823 clock
cycles, the proposed iterative prediction scheme brings an
speedup of 36%. Since the prediction failure rates decrease
with FER, the speedup can be brought by this scheme will
be more significant for applications requiring lower FER.

5. CONCLUSION
A novel iterative prediction scheme is proposed in this paper
to speed up the first iteration root computation in the factor-
ization step of the KV algorithm. This scheme carries out
up to three trial-and-error direct root computations before
exhaustive search is employed. In addition, all the com-
putation units required for this scheme can be shared with
the blocks already exist in the fast factorization architecture.
Hence, the extra area required by incorporating this scheme
is negligible. The speedup can be brought by the proposed
scheme is heavily dependent on code rate, code length, max-
imum interpolation multiplicity and channel model. Further
study for codes with different settings need to be carried out
to optimize this scheme.

6. REFERENCES
[1] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York,

1968.
[2] M. Sudan, “Decoding of Reed-Solomon codes beyond the error cor-

rection bound,” Journal of Complexity, vol. 12, pp. 180-193, 1997.
[3] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon

and Algebraic-Geometric codes,” IEEE Trans. Inform. Theory, vol.
45, pp. 1755-1764, Sep 1999.

[4] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 49(11), pp. 2809-
2825, Nov. 2003.

[5] W. J. Gross, F. R. Kschischang, R. Koetter and P. Gulak, “A VLSI
architecture for interpolation in soft-decision decoding of Reed-
Solomon codes,” Proceedings of the 2002 IEEE Workshop on Signal
Processing Systems, pp. 39-44, San Diego, Oct. 2002.

[6] R. Koetter and A. Vardy, “A complexity reducing transformation
in algebraic list decoding of Reed-Solomon codes,” Proceedings of
ITW2003, Paris, France, Mar. 2003.

[7] A. Ahmed, R. Koetter and N. Shanbhag, “VLSI architecture for soft-
decision decoding of Reed-Solomon codes,” Proceedings of ICC2004,
Paris, France, Jun. 2004.

[8] W. J. Gross, Implementation of Algebraic Soft-Decision Reed-
Solomon Decoders, Ph.D. dissertation, Dept. of Elec. Comp. Engr.,
University of Toronto, Toronto, QC, Canada, 2003.

[9] X. Zhang and K. K. Parhi, “Fast factorization in soft-decision Reed-
Solomon decoding,” IEEE Trans. on VLSI Systems, vol. 13(4), pp.
413-426, Apr. 2005.

[10] X. Zhang, “Partial parallel factorization in soft-decision Reed-
Solomon decoding,” Proc. of ACM Great Lake Symposium, Philadel-
phia, PA, Apr. 2006.

[11] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed-
Solomon codes beyond half the minimum distance,” IEEE Trans. In-
form. Theory, vol. 46, no. 1, Jan.2000.

