
Design and Implementation of the TRIPS Primary
Memory System

Simha Sethumadhavan, Robert McDonald, Rajagopalan Desikan �, Doug Burger and Stephen W. Keckler
Computer Architecture and Technology Laboratory

Department of Computer Sciences, The University of Texas at Austin
� Department of Electrical and Computer Engineering, The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract— In this paper, we describe the design and implemen-
tation of the primary memory system of the TRIPS processor.
To match the aggressive execution bandwidth and support high
levels of memory parallelism, the primary memory system is
completely partitioned into four banks, can support up to 256
in-flight memory instructions, aggressive reordering of in-flight
loads and stores, up to four loads and stores every cycle and up
to 64 outstanding cache misses to sixteen different cache lines.
The design was implemented using IBM 130nm ASIC technology
and occupies 21% of the processor area. We describe in detail the
microarchitecture of the memory system, detailed design of two
of the most complex and interesting components – the LSQ and
the MHU – and discuss the rationale behind some of the design
decisions. Our design experience suggests that the complexity of
the partitioned memory system is comparable to less aggressive
centralized implementations.

I. INTRODUCTION

Recent technology scaling trends are forcing more heavily
partitioned microarchitectures [1], [2], [3]. In such designs,
the memory system must also be partitioned to match the
bandwidth and capacity requirements of the partitioned ex-
ecution core. However, to our knowledge, no previous system
has achieved a fully partitioned memory system that supports
aggressive reordering of loads and stores while also supporting
sequential memory semantics. In this paper, we describe the
set of microarchitecture and design techniques that enable a
fully partitioned level-one memory system, in which none of
the necessary functions are centralized. We describe low-level
design details of two of the most challenging portions of this
partitioned design, the load/store queues and the miss handling
unit.

Each TRIPS processor supports four thread contexts (similar
to SMT), out-of-order execution, an instruction window of
up to 1024 instructions, and up to 256 memory operations.
To achieve high performance on this machine, the primary
memory system must (1) be fully partitioned so as to pro-
vide memory bandwidth commensurate with the execution
bandwidth, and (2) sustain a high degree of memory-level
parallelism. For an aggressive execution core like TRIPS,
a centralized L1 system cannot provide the necessary low
latency, high bandwidth, or proximity.

To satisfy the above requirements, the TRIPS primary mem-
ory system implements the following advanced capabilities:

1) To support high bandwidth, the L1 caches are address-
interleaved and partitioned across four cache banks thus
supporting up to four loads and stores every cycle. In
addition, the LSQ and MHU mechanisms are also com-
pletely partitioned. Previous implementations have used
partitioning to a limited extent (like address interleaved
caches [4]), but these architectures still used centralized
structures such as the LSQ and MHU, limiting microar-
chitectural scalability.

2) To sustain high levels of memory parallelism, the
TRIPS processor implements miss handling structures
(“MSHRs”) that can support up to 64 load misses to
up to sixteen cache lines. Most modern processors can
support up to eight pending loads to four or fewer cache
lines [5]. In addition, to support aggressive reordering of
loads and stores, the TRIPS processor uses a memory-
side dependence predictor. Typically, centralized proces-
sors feature fetch- or execution-side dependence predic-
tors but these designs cannot be efficiently implemented
in TRIPS because the fetch and execution portions of
the microarchitecture are also partitioned.

(a) TRIPS Processor Core (b) Data Tile Components

256 entry LSQ CAM
256
entry
LSQ
RAM

Dependence Predictor
TLB

16 entry

MHU

data cache
8KB, 2−way

L1DMHU

(1 read, 1 write)

MSHR
16 entry

Write Buffer

In
st

ru
ct

io
n

T
ile

s

Register Tiles

Execution Tiles

D
at

a
T

ile
s

Fig. 1. Single core of the TRIPS SMT-CMP prototype and compo-
nents of a single data tile

The primary memory system (level-1) of the TRIPS proces-
sor prototype is made up of four partitions, each called a Data
Tile(DT). Each DT (Figure 1) is interleaved at a cache-line
granularity and includes an 8KB, 2-way associative cache bank
(L1D), a local copy of the load store queue (LSQ), a local copy
of the data translation lookaside buffers (TLB), a store-load

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

dependence predictor (DPR), and miss-handling unit (MHU).
Each DT is connected to three different networks: the operand
network delivers loads and stores from the execution units to
the DTs, the L2 network is used to access the L2 cache banks
on load and store misses and the status network connects all
the DTs and is used to track stores arriving at the different
DTs.

Using the structures and networks, each DT partition: (a)
provides data for loads and stores, (b) performs address
translation and protection with the DTLB, (c) handles cache
misses with MHU, (d) tracks load and store dependences
with LSQs, (e) performs load/store dependence prediction for
aggressive load store issue with DPR, (f) detects when all store
outputs for a TRIPS block have been produced, (g) writes
stores to caches/memory when they become non-speculative,
and (h) performs store merging on L1 store cache misses.
Since each DT provides all necessary L1 capabilities for the
addresses that are mapped to it, the design can be scaled in a
complexity-effective manner by replicating the DTs.

The design, implementation and verification effort for the
TRIPS partitioned memory system required a total 21 person
months and used an IBM ASIC flow at 130nm for the design.
A group of 4 DTs occupies 21% of the processor core area.
Our design experience suggests that complexity is not a bar-
rier to implementing partitioned memory systems. Although
new mechanisms are required for partitioned systems, these
mechanisms are simple, and the time-to-design and verification
complexity are comparable to a centralized implementation.

The rest of this paper is organized as follows: Sections II
and III describe the memory system related aspects of TRIPS
architecture and the DT microarchitecture respectively. The
design and implementation of the the LSQ and MHU – the
two of the most interesting components in the design where the
most innovation was required – are described in Sections IV
and V. We describe the area and timing aspects of the design
in Section VI and conclude with discussion of scalability and
future work in Section VII.

II. ARCHITECTURE OVERVIEW

The TRIPS system supports most features found in commer-
cial architectures including different size loads/stores (8, 16,
32 and 64-bit), different types of memory attributes (merge-
able/unmergeable, cacheable/uncacheable), synchronization
instructions, and virtual memory. In addition, TRIPS ISA
includes special support for providing sequential memory
semantics and efficiently implementing a partitioned memory
system.

Load/Store Ordering: To determine the correct memory
order and thus track load store dependences in the partitioned
primary memory system, the TRIPS processor uses specially
encoded program order tags called Load Store IDs (or LSIDs).
An LSID is a 5-bit field in a memory instruction. In most
superscalar architectures, the program order (or “age”) is
determined dynamically in the fetch stage and hence the LSID
is not included in the instruction. In a completely partitioned
microarchitecture like TRIPS however, the fetch mechanism

is also partitioned and there are multiple fetch points fetching
independent instruction streams. In such cases, it is impossible
to construct the total memory age order from the partial
memory age orderings observed at different fetch points; hence
LSIDs must be encoded as part of the instruction.

Consistency model: TRIPS implements a weak consistency
model (similar to Power 4 [6]) that enforces load/store de-
pendences but relaxes all execution orders and requires the
programmer to insert memory barriers to realize more strict
consistency. Direct hardware support of more traditional and
programmer friendly consistency models on TRIPS (like in
other aggressive out-of-order processors) can negatively im-
pact performance. Consider, for instance, total store ordering
(TSO). Among other requirements, TSO requires that stores
to different memory addresses commit in program order.
To support TSO on TRIPS, a store must be constrained to
update memory only after the previous store has committed.
This requirement would restrict store commits to one per
cycle whereas a weaker model can enable simultaneous store
commits from all four DT partitions. The slower deallocation
of stores eventually leads to slower deallocation of other
processor resources resulting in performance losses.

Block Atomic Execution: TRIPS implements a block
atomic execution model in which a TRIPS block [2] can
update architectural state only when all of its memory and
register outputs have been generated. To support block atomic
execution, each TRIPS block encodes the number of memory
outputs for a block, and the LSIDs of all outputs in the
store-mask bit vector, in the block header. This information
is broadcast to all the DTs when a new block is fetched.

III. DT MICROARCHITECTURE OVERVIEW

The load and store instructions can be mapped onto any
of the sixteen execution units on the TRIPS processor (Fig-
ure 1a.) The memory instructions issue from the execution
units when all their inputs are available, and are then delivered
to the DT through the operand network. This section provides
an overview of the basic steps involved in load and store
processing in the DT and the pipelines that implement the
load/store processing steps. We also describe store tracking,
the only additional microarchitecture mechanism required for
implementing the TRIPS partitioned memory system. We
conclude this section with a discussion of the rationale behind
the memory side dependence prediction.

A. Load Processing

The pipeline diagram in Figure 2 illustrates the different
stages of load processing. Every incoming load accesses (a) the
TLB to perform address translation and check the protection
attributes, (b) the dependence predictor (DPR) to check for
possible store dependences, (c) the LSQ to identify older
matching uncommitted stores, and (d) the cache tags to check
for cache hits. Based on the responses (hit/miss) from the four
units, the control logic decides on the course of action for that
load. Table I summarizes the possible load execution scenarios
in the DT.

LRU

Update

LSQ

CACHE

LSQ

WRITE/

SEARCHEXECUTION
TILES

LD FROM

combine

LOAD REPLY TO
EXECUTION UNITS

fill

allocate

BUFFER
OCN

MHU
buffer

OCN
SEARCH
MSHR

READ
MSHR

LOAD

DATA

READ

CHECK

PRIOR

STORE

OLDEST

LOAD

PICK

CACHE

TAG

DATA

TAG

COMPARE

ETC.

DPRED

TLB

ACCESS

LSQ

FWD

DETECT

BUFFER

queue
request

WRITE
MSHR

Multiple store fwd (1−8 cycles)

From
L2

To

L2

LSQ − Deferred load pipeline

MHU − Missed load pipeline

0−16 loads per flit

Fig. 2. The DT Load Pipelines

TLB DPR Cache LSQ Response
Miss X X X Report TLB Exception
Hit Hit X X Defer load until all prior

stores are received
Hit Miss Hit Miss Forward data from cache
Hit Miss Miss X Forward data from L2

cache, issue cache fill
request

Hit Miss Hit Hit Forward data from LSQ
and cache

TABLE I

LOAD EXECUTION SCENARIOS. X REPRESENTS “DON’T CARE”
STATE.

Load hit: When the load hits in the cache, and only in
the cache, the load reply can be generated in two cycles. This
best-case latency is likely to be the common case for most
loads. When a load hits both in the cache and the LSQ, the
load return value is formed by composing the values obtained
from the LSQ and cache. First, the load picks up any matching
stores bytes from the LSQ and then reads the remaining bytes
from the cache. This operation can take multiple cycles and
is referred to as store forwarding. Section IV describes store
forwarding in more detail.

DPR hit: A load may arrive at the DT before an earlier
store on which it depends. Processing such a load right away
will result in a dependence violation and a flush leading to
performance losses. To avoid this performance loss, the TRIPS
processor employs a simple dependence predictor that predicts
whether the load processing should be deferred. If the DPR
predicts a likely dependence the load waits in the LSQ until all
prior stores have arrived. After the arrival of all older stores,
the load is enabled from the LSQ, and allowed to access
the cache and the LSQs to obtain the most recent updated
store value. Figure 2 illustrates the stages involved involved
in processing deferred loads.

Load miss: If the load misses in the cache, it is buffered
in the MSHRs [7] and a read request is generated and sent

to the L2. When the data is returned from the L2, the loads
in the MSHRs are enabled and load processing resumes. Like
deferred loads, missed loads also access the LSQ and cache to
pick up the most recent store values. Figure 2 illustrates the
stages involved in processing missed loads.

B. Store Processing

Store processing occurs in two phases. During the first
phase, each incoming store is buffered in the LSQ and the
other DTs are notified about the store’s arrival. During this
phase each store checks for dependence violations; if any
younger loads to the same address as the store are in the queue,
then a violation is reported to the control unit, which initiates
recovery. The dependence predictor is also trained to prevent
such violations in the future.

Pick Store
to commit

Read
Store data
from LSQ

Access
cache
tags

LRU update

Write to
cache or
merge
buffer

Store
Commit

Check for
hit or miss

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Fig. 3. The ST Commit Pipeline

When a block becomes non-speculative, the second phase of
store processing begins as illustrated in Figure 3. In this phase
the oldest store is removed from the LSQ, checked in the TLB,
and the store value is written out to the cache/memory system.
If the store hits in the cache, the corresponding cache line is
marked as dirty. If the store misses in the cache, the store
miss request is sent to the L2. We chose a write-back, write-
noallocate policy to minimize the number of commit stalls.

C. Store Tracking

In the TRIPS execution model, a block can commit only
after all of its store outputs have been generated. When a store
arrives at any DT, the store arrival information is broadcasted
to the other DTs through the Data Status Network (DSN). Each
DT then increments a local counter that counts the number of
stores that have arrived at the memory system. When all of
the stores in a block have been received, the DT that received

the last store sends a message to the control tile indicating that
all memory outputs have been generated.

D. Memory-Side Dependence Processing

In the TRIPS implementation, the instruction window is
partitioned across sixteen execution units (Figure 1) and the
dependent loads and stores can be mapped on to any of the
execution units. A naive extension of conventional dependence
processing mechanisms [8] would hold back the load in the
execution unit until the execution of the dependent store. This
strategy can increse the load latency as explained below.

The latency of dependent loads can be broken down into
four parts: (1) the latency for the load to detect that the
dependent store has executed, (2) the latency for the load to be
delivered from the execution unit to the DT, (3) the latency to
access the DT, and (4) the latency to deliver the value from the
DT to the target of the load. With execution side dependence
processing, no overlap is possible between any of the latencies,
because the loads are issued only after the dependent stores
resolve and rest of the steps must be performed in order.
However, memory side dependence processing allows the
overlap of steps (1) and (2).

IV. LSQ MICROARCHITECTURE

The LSQ is critical for supporting aggressive memory
ordering and is often considered to be one of the most complex
structures in an out-of-order processor. This section describes
the design of the LSQ in the context of the partitioned TRIPS
microarchitecture.

The LSQ must support four major functions: (1) detect
ordering violations between loads and stores to the same
address, (2) forward values from uncommitted stores to loads
to same address, (3) buffer and wake up deferred loads, and
(4) buffer and commit store values to memory. All the above
functions, except the third, are also required of the LSQs in
conventional architectures. The third functionality is related
to dependence prediction and is most efficiently implemented
in the DT/LSQs for TRIPS. In this section, we describe the
state in the LSQ and the store forwarding functionality of the
LSQ. We omit the description of other functionality for space
reasons.

A. LSQ state

The TRIPS microarchitecture allows up to eight blocks to be
in-flight simultaneously and each block can have a maximum
of 32 memory instructions; therefore, a maximum of 256
memory instructions in-flight. To accommodate the case when
all the memory instructions in a block reach a DT partition, the
LSQ is sized to hold 256 memory instructions. The logical and
physical organization of the LSQ are illustrated in Figure 4.

B. LSQ Store Forwarding

The store-load forwarding operation is the most complicated
operation in the LSQ because the load may match an arbitrary
number of stores and can forward from up to eight distinct
stores because of different sized LDs/STs. To handle this case,

VALID TYPE ST DATA

LD TARGETENABLE
BYTEWAIT ADDRESS

Ports:

1 read
1 write
1 search

Physical LSQ Organization

Logical LSQ Record

37 8 643

1 search

0 read
1 write

Ports:

Enable
Byte

CAMCAM

Address

S
ta

tu
s

Fl
ip

 F
lo

p
s

RAM

Ports:

1 write
2 read

store data

ld target & load address

Fig. 4. Logical and Physical Organization of the LSQ

the LSQ scans all the matching stores starting from the most
recent store, processing one matching store every cycle, either
until the value every load byte has been obtained or until there
are no matching stores to the unforwarded bytes.

XX

���
���
���

���
���
���

���������
���������
���������
���������

���������
���������
���������
���������

����
����
����
����

����
����
����
����

���������������
���������������
���������������

���������������
���������������
���������������

���������
���������
���������

���������
���������
���������

Byte 0 Byte 7Byte 6Byte 5Byte 4Byte 3Byte 2Byte 1AGE

Obtained from
cache

ST double 0xbbbb

ST half 0x8000

ST word 0x8004

ST double 0xbbbb

ST half 0x8004

ST byte 0xfff1

ST byte 0x8000

ST byte 0x8006

LOAD double 0x8000

16

17

18

19

20

21

22

23

24

Fig. 5. Multiple stores forwarding to loads in the LSQ

Figure 5 illustrates an example of multiple forwarding
where multiple stores of different sizes match to a 8-byte LD
(Address 0x8000, Age 24). In the first cycle, the CAMs are
associatively searched and the stores 23, 22, 20, 18 and 17
are identified as matching stores. These matches are scanned
starting from the most recent store. In the first scan, byte
6 of the LD is retrieved from store 23 and load byte is
marked as forwarded. In the next scan, a new associative
search identifies the matching stores corresponding to the the
remaining unforwarded bytes. The search now returns 22, 20,
18 and 17. Store 23 does not match because it produces byte
6 which was already forwarded to in cycle 1; at the end
of the second scan, byte 0 from the store 22 is forwarded
to the load. After the next three scans, bytes 4 and 5 are
forwarded from 20, byte 7 is forwarded from 18 and byte 1 is
forwarded from 17. At this point, there are no more matching
stores to the remaining unforwarded bytes (bytes 2 and 3)

and therefore LSQ forwarding is terminated. The remaining
bytes are obtained from the cache. In this example, forwarding
takes five cycles and during this period, the LSQ is completely
stalled and cannot accept new loads or stores. Note that after
the first associative search which searches both the address
and the byte enable CAM and the rest of the scans search
only the byte enable CAM which is eight-bits wide.

C. Design Rationale

Multiple forwarding in the LSQ: Many superscalar pro-
cessors avoid the complex processing required for multiple
forwarding by either simply flushing [9] or replaying [6] the
load when multiple matching stores are detected in the LSQ.
This strategy is not feasible in a block-atomic architecture like
TRIPS because it can lead to deadlocks. If there are partial
matches within a block, the load will not execute until the
matching stores are drained, but the matching stores cannot
be drained because the load and its dependents may have to
execute to produce the block outputs.

Unified LSQ: Recently several processors have supported
memory ordering using separate load and store buffers to
increase the bandwidth and decrease the power per access.
TRIPS, however, uses an unified LSQ because separate buffers
will require more than 32 bits for encoding the memory
instructions. This is because implementing separate LD and
ST buffers requires that each memory instruction carry two
different types of age tags; one tag encoding the global
age and a second tag encoding the relative load/store ages.
Alternatively, one can partition the TRIPS LSQ in LQ/SQ
with the instruction encoding fixed at 32 bits. This strategy
is disadvantageous because it restricts the number of memory
instructions in the block and places hard restrictions on the
number of loads and stores seperately in block (due to reduced
number of bits available for both the tags).

Maximally sized LSQs: Although only one fourth of the
total memory instructions are expected to reach any DT
partition, the LSQ in each DT is maximally sized. There
are two microarchitectural reasons motivating maximally sized
LSQs:

1) Deadlock avoidance: If the LSQs are undersized then
with speculative execution, younger memory instruc-
tions may arrive earlier than the older instructions and
may take up all slots in the LSQ preventing the older
instructions from completing and eventually stalling
forward progress.

2) Design Simplicity: When we started the project it ap-
peared to us that maximally sized conventional age-
indexed LSQs would pose the least design risk because
they were well-understood and straight-forward to im-
plement.

In research conducted after the prototype implementation
we have discovered complexity-effective methods to safely
reduce the LSQ size without causing deadlocks [10]. These
undersized LSQs are managed as a free-list and are as simple
as the conventional LSQ.

V. MISS HANDLING UNIT MICROARCHITECTURE

The Miss Handling Unit (MHU) plays a key role in sustain-
ing high levels of memory parallelism by managing multiple,
outstanding L1D load and store misses. The MHU sends L1D
miss requests to the L2 cache via the On Chip Network (OCN)
– the chip data transfer fabric – and receives read data (for load
misses) and write acknowledgements (for store misses) from
the L2 cache. While much of the TRIPS MHU functionality is
typical of out-of-order processors, the use of on-chip networks
imposes different correctness and performance requirements.

A. MHU State

Figure 6 illustrates the components of the MHU. The MHU
in each DT contains (1) sixteen MSHRs that hold information
on each of the missed loads, (2) four 64-byte fill buffers that
hold cache lines returning from L2 (on the OCN) before it is
written to the L1D cache, (3) a four entry FIFO load request
queue(LRQ) that decouples fill buffer allocation from the load
miss processing, (4) a 64-byte store merge buffer that can
coalesce multiple stores to the same cache line before sending
it to the L2, (5) a 64-byte store transmit buffer that is used
as scratch storage for holding the coalesced writes while the
OCN packets are being created and sent, and (6) a 64-byte
spill buffer that holds one cache line worth of data and is
used to temporarily buffer cache spills before sending them
out on the OCN.

MSHR entry:

MSHR

ADDR TYPE AGE TARGET SIZE STATUS

63 bits

Load
Request
Queue

Coherency
 Checks

Store Miss

Cache spill

Cache Spill
Buffer

Output
Buffer

To
L2 cache

From
L2 Cache

Input
Buffer

Fill Buffer

Cache fill

Load
Miss

Store Merge
Buffer

Store Transmit
Buffer

Fig. 6. Block diagram of the MHU. Inset shows the logical structure
of the MSHRs

B. MHU Operations

The MHU is capable of filtering redundant read requests
(for load misses) and coalescing smaller write updates (store
misses) into larger chunks before sending them out into the
OCN. Both of these optimizations are critical to improving the
packet efficiency and utilization of the OCN.

Load Miss Processing: On a cache load miss, the MHU
allocates a MSHR to hold the information pertaining to the
load. If there are no pending requests to the same cache line

the load is placed in the LRQ . To avoid deadlock conditions,
the pipelines in the DT ensure that requests accepted in the DT
can always be allocated in the MSHRs and the LRQ. When a
free fill buffer entry becomes available, and the OCN port is
available, a fill buffer is allocated for the transaction, the load
is removed from the request queue and a read request is sent
on the OCN.

When a read reply returns on the OCN, the reply data is
placed in the fill buffer allocated for that transaction. As the
data arrives from the OCN, the load(s) corresponding to the
missed data are identified in the MSHR, packaged as if it were
a load entering the DT for the first time and sent to access
the caches and the LSQ. This approach of re-injecting the load
as new loads significantly simplifies bypassing between stages
and correctness reasoning in the MHU.

Store Coalescing: A OCN transaction requires one header
flit and between one and four data flits depending on the size
of datum. To minimize the overhead of header packets, the
MHU attempts to create larger packets by coalescing multiple
stores misses to same cache line. This functionality is provided
by the merge and transmit buffers in the MHU. If the L1 store
miss is to the same cache line as the cache line currently in
the store merge buffer then the missed store updates the merge
buffer. If the store miss is to a different cache line, then the
line in the merge buffer is moved to the transmit buffer and
the new store is allocated in the merge buffer. Once a line
is moved into the transmit buffer, the MHU logic scans and
packages the cache line into fewest possible flits.

MHU Coherence Policies: As the MHU handles both
L1 load and store misses concurrently, it needs to ensure
coherency between load and store misses to the same address.
The load misses and store updates to the same cache line
can arrive in three different orders at the MHU: �� the store
update arrives before the load request to the same address, ��
the store update arrives after the load request, or �� both the
load request and store update arrive at the same time.

In case 1, instead of forwarding to the load from the merge
buffers, the merge buffers are flushed to the memory system.
The load is then issued to the memory system as usual.
This strategy takes avoids building complex forwarding logic
between the merge buffer and the incoming load request for an
uncommon execution scenario. In case 2, the strategy adopted
for case 1 will not work because the load request may have
already read the L2 caches and outside of the L1 none of the
structures have store-to-load forwarding capabilities. In this
case, the store updates the corresponding bytes of the matching
fill buffer entry. When the load data arrives, it ensures that the
store update bytes are not overwritten. In case 3, the store
update is held back a cycle so that it becomes a write-after-
read case as described in case 2.

C. Design Rationale

Why fill buffers? For deadlock-free operation, the MHU
should not have any resource dependences on the OCN.
Namely, the MHU can never refuse to accept incoming OCN
replies while waiting for the OCN to accept new outgoing

requests. Fill buffers guarantee deadlock-free operation by
providing support for decoupling the OCN fills from rest of
the MHU as they are always allocated prior to generation.
Another alternative is to directly fill from the OCN into the
caches. This strategy requires either a dedicated cache port for
fills or mechanisms to premptively acquire cache ports. The
former is undesirable because of area constraints and latter
because of the high complexity.

Why Load Request Queues? LRQ’s are used to improve
the utilization of the fill buffers and to avoid conservatively
stalling on mergeable misses. For deadlock-free operation,
two slots have to be reserved in all MHU load handling
structures, so that loads already in the pipeline can be slotted.
Pre-reserving two slots in the fill buffers can be constraining
because there are only four fill buffers. Providing more fill
buffers is expensive in terms of area and restricted by timing
constraints. To work To work around this, the fill buffer
allocation is decoupled from the load execution by using
the request queues and pre-reserving slots in the request
queue. Pre-reserving slots is area-efficient and timing-efficient
because LRQ is smaller than fill buffers (45 bits vs 512 bits).

Sizing of structures: The number of MHU entries was
chosen so as to saturate the link between the DTs and the
OCN. For uninterrupted traffic on the link, the MHU should
have sufficient MSHRs to hold all incoming loads between
the L1 miss detection and L1 reply for a load. Assuming
one load is issued every cycle in this interval, and given
that the average round trip for miss handling is 14 cycles,
we would need fourteen MSHRs. An additional two MSHRs
are required for deadlock-free operation, bringing the total
number of MSHRs to sixteeen. If all these loads are to different
cache lines, then a 16-entry fill buffer is required. However,
to meet cycle times and constraints of our ASIC methodology
we restricted the number of fill buffers to four. This is unlikely
to be performance critical because load misses are commonly
clustered and contiguous and hence it is uncommon to have 16
back-to-back loads to different cache lines to one DT partition.

VI. PHYSICAL DESIGN

Each DT has an 8KB, 2-way set associative cache with 64
byte lines. The cache has 1 read and 1 write port. Each LSQ
bank contains 256 entries and consists of CAM and RAM
parts. The CAM is physically constructed out of eight 32-entry
CAMs (one per block) and has a read, write and search port.
The DTLB is a 16 entry, 48-bit wide CAM with two search
ports (one load, one store), one read port and one write port.
The predictor is built using a single ported 1024-bit array.

Area: Figure 7 shows the DT floorplan after synthesis,
timing and layout optimizations. The design was implemented
using IBMs 130nm ASIC process and the DT measures
3.37mm � 1.188mm. The CAM is entirely synthesized from
flip-flops and occupies a large fraction of the DT area. A
Custom CAM is likely to be smaller than the synthesized
CAM, but our design methodology did not support integration
of custom CAMs into the design flow.

Dependence Predictor, TLB, Router and Logic

Miss
Handler

8 Kb, 2−way
Cache

LSQ
RAM

LSQ
CAM

Fig. 7. Major structures in the DT floorplan

Timing and Critical Paths: The design synthesized to
3.2ns under worst case process parameters and operating
conditions. The top critical path is the detection of store
forwarding in the LSQ and the generation of signals for
stalling the DT pipelines during store forwarding. At a high
level, this process involves generating a eight-bit mask that
encodes the blocks older than the load, ANDing with another
eight-bit mask that encodes blocks with matching stores, and
then performing a cumulative OR on the resulting 8-bit mask.
This process takes up roughly 45% of the cycle time. Then, the
forwarding signal must be distributed to rest of DT pipelines
to stall conflicting operations. The high fanout on this signal
contributes significantly (27% of cycle time) to the total delay.

The next most critical path is the logic for extracting and
packaging store misses to the L2. There are two components
to the delay, the first involves the actual extraction process and
the second that is a stall signal that is asserted when a multi-
cycle OCN transaction has to be generated. For higher fre-
quency implementations, adding an extra stage to the pipeline
can eliminate the critical path, without affecting performance
because the store writes are unlikely to be critical operations.

The third most critical path involves checking for coherence
in the MHU and performing coherence updates. The source
of the problem is not the delay associated with the coherence
checks, but the late availability of the load address that drives
the coherence checks. Speculatively performing the coherence
checks a cycle earlier can result in false positives which
can complicate the design. Adding another stage (for the
uncommon case of a coherence violation) in the pipeline will
reduce performance by increasing the latency of missed loads.

VII. CONCLUDING REMARKS

The TRIPS microarchitecture includes a primary memory
system that is fully partitioned and capable of supporting high
levels of memory level parallelism. The memory system is
made up of four Data Tiles(DT), partitioned by interleaving
based based on addresses of the memory instructions. To
support high levels of memory level parallelism, the DT
utilizes memory side dependence predictors, deep LSQs, and
an agressive miss handling unit capable of supporting up to

16 outstanding load misses per DT (64 per core). The design,
implementation and verification required 21 person months
and our design experience suggests that the design complexity
of the partitioned memory system is comparable with the
complexity of a centralized memory system.

A completely partitioned memory system like TRIPS pro-
vides a complexity-effective way of increasing the capacity
and bandwidth of the memory system by simply increasing
the number of partitions. For instance, eight loads/stores per
cycle can be supported on TRIPS with eight DTs. However, for
such partitioning to be beneficial and feasible (1) the memory
instructions should be placed close to the cache banks to
which their addresses map to, (2) the area overheads from
replicated structures like LSQs should be minimized, and (3)
the mechanisms used for communicating across the partitions
should scale.

The TRIPS compiler team is currently investigating tech-
niques for placing the memory instructions closer to DTs
by array alignment analysis and sophisticated profile driven
optimizations. In follow-up research, we have solved the area
overhead problem, by utilizing the on-chip network for safely
buffering overflows from the undersized LSQs [10]. Efficient
store-tracking mechanism for sixteen or more partitions is
a challenging problem and left for future work. Solutions
to these problems are the last few remaining steps towards
scalable and completely distributed memory systems.

VIII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their suggestions
that helped improve the quality of this paper. This research is
supported by the Defense Advanced Research Projects Agency
under contracts F33615-01-C-4106 and NBCH30390004 and
an NSF instrumentation grant EIA-0303609.

REFERENCES

[1] Elliot Waingold et al., “Baring it all to software: RAW machines,” IEEE
Computer, vol. 30, no. 9, pp. 86–93, September 1997.

[2] Doug Burger et al., “Scaling to the End of Silicon with EDGE archi-
tectures,” IEEE Computer, vol. 37, no. 7, pp. 44–55, July 2004.

[3] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “WaveScalar,”
in Proceedings of the 36th Micro, December 2003, pp. 291–302.

[4] G. S. Sohi and M. Franklin, “High-bandwidth data memory systems for
superscalar processors,” in Proceedings of the 4th ASPLOS, Apr. 1991,
pp. 53–62.

[5] L. Ceze, J. Tuck, and J. Torrellas, “Are we ready for high memory-
level parallelism?” in Proceedings of the 4th Workshop on Memory
Performance Issues, February 2006.

[6] S. Vetter, S. Behling, P. Farrell, H. Holthoff, F. O’Connell, and W. Weir,
The POWER4 Processor Introduction and Tuning Guide. IBM, 2001.

[7] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in Proc. of the 8th annual symposium on Computer Architecture. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1981, pp. 81–87.

[8] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in Proc. of the 25th annual symposium on Computer
architecture. Washington, DC, USA: IEEE Computer Society, 1998,
pp. 142–153.

[9] Intel Architecture 32 Family Developer’s Manual, Volume 3, Appendix
A.2. Intel, 2001.

[10] S. Sethumadhavan, D. Burger, and S. W. Keckler, “Partition the Banks,
not the functionality, of Large-Window Load-Store Queues,” Department
of Computer Sciences, The University of Texas at Austin, Tech. Rep.
TR-06-39, 2006.

