
RTL Scan Design for Skewed-Load At-Speed Test under Power Constraints

Ho Fai Ko and Nicola Nicolici
Department of Electrical and Computer Engineering

McMaster University, Hamilton, ON, L8S 4K1, Canada
Email: henryko@grads.ece.mcmaster.ca, nicola@ece.mcmaster.ca

Abstract

This paper discusses an automated method to build scan
chains at the register-transfer level (RTL) for power-
constrained at-speed testing. By analyzing a circuit at
the RTL, where design complexity is lower than at the
gate netlist level, one can divide a circuit into multiple
partitions, which can be tested independently in order to
reduce test power. Despite activating one partition at a
time, we show how through conscious construction of scan
chains, high transition fault coverage can be achieved,
while reducing test time of the circuit when employing
third party test generation tools. Furthermore, as shown
in experimental results, by constructing scan chains for
the partitioned circuit at the RTL, area and performance
penalty of the design-for-test hardware may be reduced.

I. Introduction
Structural tests targeting the single stuck-at fault model
applied through scan chains (SCs) have been successfully
used to detect physical defects that affect the static circuit
behavior [1]. As the geometric feature size of digital in-
tegrated circuits decreases, the number of physical defects
that affect the dynamic behavior (i.e., timing failures) is on
the rise. One problem with the existing current-based test
methods used to screen these type of defects, e.g., IDDQ, is
that it is becoming increasingly difficult to distinguish the
quiescent current of a faulty device from the fault-free one
[2]. As early as in [3], it has been shown that by applying
the same set of stuck-at test vectors at the operational
frequency, timing-related faults can also be detected. As a
result, at-speed testing has established itself as an essential
step in manufacturing test. However, applying at-speed
tests using scan poses unique challenges as discussed next.

To detect timing-related defects, two test patterns V1

and V2 need to be used to initialize the logic into a
known state, and to trigger the targeted transitions in the
circuit at the operating frequency [4]. In this paper we

consider the Skewed-Load test application strategy, where
the second pattern V2 is obtained by shifting the the first
pattern V1. Despite the need for a scan enable which can
switch between the scan and capture mode at-speed, this
method can reuse the existing infrastructure for testing
stuck-at faults and it also eliminates the need for sequential
automatic test pattern generation (ATPG) [1]. However, it
is important to note that for the Skewed-Load approach
the coverage of delay faults (i.e., fault models of timing-
related defects) is limited by the correlation between V1

and V2. This problem is further aggravated when additional
constraints are imposed on SCs by the available power
budget during test.

The elevated power dissipation during test has become
a major concern that limits the test throughput and man-
ufacturing yield and, consequently, new power-conscious
test methodologies have emerged in the past decade [5].
A method independent of the test vectors that guarantees
to reduce the test power in the circuit under test (CUT)
is to divide the circuit into multiple partitions, such that
each partition can be tested separately. This, however,
influences the correlation between at-speed vectors applied
using Skewed-Load, thus adversely affecting the delay
fault coverage. The focus of this paper is to enable the
use of scan chain divisions for power-constrained at-speed
test using the Skewed-Load test application strategy. By
utilizing information obtained from the circuit description
at the RTL, the circuit can be partitioned by consciously
controlling the flip-flops (FFs) from different SCs via
separate scan enables.

The rest of the paper is organized as follows. Section II
discusses the related work and gives the motivation for the
proposed solution. Section III details our proposal, while
results and conclusion are given in Sections IV and V.

II. Related Work and Motivation
A power-aware ATPG algorithm is proposed by Wen et
al. in [6]. By filling the don’t cares in the test patterns

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

Fig. 1. Example of a partitioned circuit

consciously, the amount of transitions in the circuit during
capture is decreased. However, this method may increase
the number of test patterns, and is more complex than
a regular ATPG algorithm. Butler et al. [7] combine an
ATPG algorithm with design partitioning, which limits
the amount of active FFs at a given time. However, this
method requires the circuit to be partitioned manually. Lee
et al. proposed a method to reduce capture power [8] by
assigning to each SC a time when it should capture the
test responses. To solve the problem of data dependencies
between FFs, a new ATPG algorithm is introduced to find
the upper bound of the number of capture cycles needed.
Despite reducing both shift and capture power, this method
may introduce more test patterns and area overhead from
the partitioning of SCs. To lower the power during shift,
Whetsel proposed to divide the SCs in a design such that
they are shifted at different times in [9]. Since the number
of FFs that are active during shift is reduced, the amount of
transitions in the combinational logic are also decreased.
This can effectively reduce the power consumption during
shift. Rosinger et al. proposed a method for reducing both
the shift power and capture power [10]. By employing a
scan architecture with mutually exclusive scan segments, a
circuit is divided such that the test patterns and responses
for each segment will be shifted, and captured respectively
at different times.

None of the existing methods for scan chain divi-
sion are suitable for at-speed test using the Skewed-Load
test application strategy. This is because when generating
patterns that trigger the targeted transitions, all the FFs
driving a logic cone must be controlled by an ATPG
tool. As a consequence, as shown later in this paper, scan
chain divisions need to share FFs between them. Thus,
one will need to carefully analyze the design to create
the multiple scan chain divisions such that shared FFs
between partitions are minimized. Since sizes of designs
will continue to increase in the future, the complexity for

analyzing and identifying scan chain divisions at the gate
level of design abstraction can become prohibitively high.
As a consequence, to ensure the complexity of the analysis
algorithm remains low, it is apparent that such investigation
should be done at the RTL, rather than at the gate netlist
level. Although there are a number of methods proposed
in the literature, such as [11, 12], to construct functional
SCs at the RTL, none of them explore CUT partitioning
for managing test power. Therefore, the main motivation
for this paper is to investigate the suitability of creating
scan chain divisions for power-constrained at-speed test.

III. Creating Scan Chain Divisions at RTL
using a New Partitioning Algorithm
In this section we first explain the problem of circuit parti-
tioning. We then introduce the architecture for controlling
the partitioned circuit during test. Next, we present an
algorithm for dividing a circuit into smaller partitions such
that they can be tested independently. After determining
how each FF and the associated combinational logic should
be allocated to the appropriate partition, the scan synthesis
algorithm for inserting SCs to the design at RTL in [13]
is applied. This algorithm helps create SCs with reduced
correlation between test pattern pairs for Skewed-Load test
application strategy. Once the scan circuit is constructed,
the corresponding RTL description of the partitioned cir-
cuit can be interfaced to a RTL-to-GDSII tool flow for
logic synthesis and test pattern generation.

A. Architecture for the Partitioned Circuit
The idea of partitioning is to locate the independent logic
cones that are driven and captured by mutually exclusive
sets of FFs. When such logic cones are found, they can be
put into different smaller sections in a design. In order to
better understand the problems, an example of a partitioned
circuit is shown in Figure 1(a). In this circuit, there are
four partitions, each with its own targeted logic cone and

OR
(a) Testing Partition 1

OR
(b) Testing Partition 2

Fig. 2. Architecture for controlling partitions
during test application

its corresponding triggering and capturing FFs. Since each
of the four partitions are independent of each other, testing
this whole circuit becomes the task of testing four smaller
circuits, each with its own logic cone. Since the partition-
under-test is smaller than the whole circuit, the power
dissipated during shift and capture will be lowered.

There is one major problem that needs to be solved when
locating the independent partitions of a circuit. Due to the
functional data dependencies in a circuit, it is difficult to
locate the mutually exclusive triggering and capturing FFs
for the selected logic cones in different partitions. An easy
way to solve this problem is to insert dummy FFs between
partitions to break these conflicts of shared FFs. However,
this could incur excessive amount of area overhead since
the dummy FFs are inserted just for the purpose of test.

Figure 1(b) shows an enlargement of Partition 2 in the
circuit. As in other partitions, the selected logic cone, and
the corresponding FFs that trigger transitions and capture
circuit responses are identified. As mentioned above, it is

difficult to find the mutually exclusive set of triggering
and capturing FFs for a selected logic cone in a circuit.
Thus, we divide the FF sets into three categories in order
to identify the conflicting FFs. The three categories are (i)
local FFs, (ii) outgoing FFs and (iii) incoming FFs. Local
FFs drive and capture responses for the logic cone only
in the specified partition. Outgoing FFs capture responses
from the logic cone in the specified partition, but drive the
logic in another partition. The FFs labeled Outgoing FFs
(1) in Figure 1(b) represent FFs that capture responses of
the logic cone in Partition 2, but also drive the logic cone
in Partition 1. Incoming FFs drive the logic cone in this
partition, but are located in another partition. Notice that
Incoming FFs (1) in Partition 2 are the same set of FFs in
Partition 1 labeled Outgoing FFs (2).

When testing a partition, the local FFs, the incoming
FFs and the outgoing FFs will have to be activated together.
Thus, the incoming FFs and outgoing FFs will not only be
active when the targeted partition is under test, but also
when testing the adjacent partitions in order to maintain
the desired level of fault coverage. As a result, it is obvious
that it will be beneficial to have a large number of local
FFs, and a small number of incoming FFs and outgoing
FFs in order to reduce the test power of a single partition.
It is also desired that the outgoing FFs of a partition should
be shared with the least amount of adjacent partitions. This
not only simplifies the control of the partitioned circuit, but
also guarantees the outgoing FFs will be active in as little
time as possible. This can be done by carefully identifying
the independent logic cones when partitioning the circuit.
The algorithm for doing so will be presented in the next
subsection. One point the reader should note is that if a
logic cone is too large to be partitioned, the number of
incoming and outgoing FFs can become excessive if two
partitions are created. In this case, since all these shared
FFs need to be active at the same time, partitioning a large
cone will likely not help reduce its test power.

In order to activate the appropriate sets of FFs for
each partition during test, the architecture in Figure 2 will
have to be employed. In this architecture, a separate scan
enable (SE) signal is assigned to each partition. The local
FFs in a partition are controlled by the corresponding SE
signal. An OR gate is inserted in order to combine the SE
signals from multiple partitions since the outgoing FFs of a
partition will also be activated when the adjacent partitions
are being tested. Figure 2(a) shows the configuration when
Partition 1 is tested. The SE signal for Partition 1 (labeled
SE1) is enabled as shown in the figure with a solid line.
This enables the FF sets Local FFs (1), Outgoing FFs (2)
in Partition 1, as well as Outgoing FFs (1) in Partition
2 in order to test Logic cone 1. When the SE signal for
Partition 2 (labeled SE2) is activated as shown in Figure
2(b), the FF sets Local FFs (2), Outgoing FFs (1) in

Partition 2 and Outgoing FFs (2) in Partition 1 will be
enabled to test Logic cone 2. To prevent excessive tester
channel occupation, a simple decoder can be inserted to
activate the SE signals one at a time, since, to lower test
power, only one partition should be active at a time.

B. The Partitioning Algorithm
A pre-processing step consists of extracting information
about the data dependencies between FFs in the design
from the RTL description. This can easily be done by
building a sequential graph (S Graph), where the nodes
represent FFs in the design and data dependencies are
shown as edges. Once the S Graph is built, the problem
of dividing a circuit into multiple small partitions with
the emphasis of having a large amount of local FFs and
small number of outgoing FFs in a partition becomes
equivalent to splitting the S Graph into smaller sub-graphs
with the least amount of cross-edges between each sub-
graph. This is because each cross-edge between two sub-
graphs represents an outgoing FF between two partitions
in a circuit. As a result, the partitioning problem can be
easily formulated as the minimal cut set problem, which is
known to be NP-hard in graph theory. However, since we
have an additional constraint that the outgoing FFs should
be shared by a minimum number of neighboring partitions,
we have developed a simple greedy algorithm instead of
reusing the existing heuristics.

We define four variables in Table I. Before detailing the
algorithm, the gain function is described as:

Gain = (NFO + NFI)− (NLO + NLI) (1)
This equation gives a higher gain when a node in the
S Graph has more edges connecting to a node in a
neighboring partition than to a node in the local partition.

The algorithm for partitioning a circuit is shown in
Algorithm 1. The designer can specify how many partitions
are needed in order to meet the power constraint. The
function PartitionSize returns the number of FFs in the
specified partition. At the beginning of the algorithm, all
nodes in the S Graph are assigned to Partition 1. Then,
line 2 will use the gain formula in Equation 1 to calculate
the gain of all nodes in the S Graph. At this point, the
greedy algorithm starting at line 5 of Algorithm 1 will be
applied repeatedly until all Partitions are created. It starts
by selecting a node with the highest gain from Partition
i − 1 at line 6. The reason for choosing the highest gain
can be shown using Figure 3. In this figure, the algorithm
is trying to select a node in Partition 1 and move it to

TABLE I. Variables for the gain function
Variable Name Representation
NLI Number of incoming edges from local partition
NLO Number of outgoing edges to local partition
NFI Number of incoming edges from foreign partition
NFO Number of outgoing edges to foreign partition

Fig. 3. Example of an S Graph
Partition 2. The two candidate nodes will be FF3 and
FF4 with gains -1 and 2 respectively. By moving FF4
to Partition 2, the number of cross edges between the two
partition can be decreased by 2, while moving FF3 will
increase the number of cross edges by 1.

After a node is selected, lines 8 and 9 will update the list
that contains all the incoming FFs and outgoing FFs of a
partition. These incoming FF list and outgoing FF list will
be used to update the gain of the parent and child nodes
of the selected node at line 10 of the algorithm. This is
repeated until Partition i − 1 reaches the targeted size, at
which point line 11 will lock the nodes that are driven
by Partition i − 1 in Partition i. The reason for this is to
prevent a FF to be shared by more than two partitions.
This can be shown using FF7 in Figure 3. Assuming the
algorithm is trying to select a node from Partition 2 for
creating Partition 3, by locking FF7, which is driven by
FF4 in Partition 1, it avoids FF4 being shared between
Partition 1, 2 and 3 at the same time, since it also drives
FF6 which is located in Partition 2. Algorithm 1 will
terminate at line 11 if the amount of locked FFs is larger
than the targeted size.

IV. Experimental Results
In this section we discuss our results for a DMA circuit
[14]. It is important to note that this circuit contains
2050 FFs when using gate level scan and 2115 FFs when

Algorithm 1: Partition Algorithm
Input : S Graph, Numpartition

Output : Partitioned S Graph

1 Calculate target size of each partition;
2 Assign all nodes to Partition 1;
3 Calculate gain of all nodes;
4 for (i = 2; i < Numpartition; i++) do
5 while (PartitionSize(i− 1) > desired size) do
6 Pick node in Partition i− 1 with highest gain;
7 Move selected node to Partition i;
8 Update the incoming list of Partition i− 1 and i;
9 Update the outgoing list of Partition i− 1 and i;

10 Update gain of parent and child nodes of the selected
node;

11 Lock FFs in Partition i;
12 Return S Graph;

Period SC Gate Full RTL Full ∆
(ns) # TF AU FC CTP ST CPU TF AU FC CTP ST CPU TF AU FC CTP ST CPU
1.85 6 77138 4591 91.80 2354 805 14.23 103730 4974 93.26 4260 629 5.42 -26592 -383 1.46 -1906 176 8.81

9 77150 4727 91.62 2329 531 15.00 103186 4993 93.23 4218 415 5.45 -26036 -266 1.61 -1889 116 9.55
12 77162 9241 85.77 2041 349 13.07 104558 5128 92.80 4292 315 5.47 -27396 4113 7.02 -2251 34 7.60

1.80 6 77884 4582 91.61 2323 794 14.39 108166 5243 93.26 4096 604 5.21 -30282 -661 1.65 -1773 190 9.18
9 77896 4720 91.44 2278 519 12.35 108428 5283 93.27 4140 406 5.37 -30532 -563 1.83 -1862 113 6.98
12 77908 9246 85.63 2066 353 12.87 107610 5230 93.26 4028 296 5.16 -29702 4016 7.64 -1962 57 7.71

1.75 6 79450 4579 91.69 2304 787 18.97 102658 4987 93.21 4313 637 5.48 -23208 -408 1.52 -2009 150 13.49
9 79462 4692 91.55 2326 530 12.40 102886 5012 93.20 4331 427 5.37 -23424 -320 1.65 -2005 103 7.03
12 79474 9297 85.76 2062 352 13.53 104904 5389 92.89 4316 318 5.52 -25430 3908 7.14 -2254 34 8.01

1.70 6 80506 4276 92.62 2295 784 14.61 104204 5114 93.27 4333 641 5.50 -23698 -838 0.65 -2038 143 9.11
9 80518 4368 92.51 2291 522 12.51 104218 5117 93.28 4308 423 5.22 -23700 -749 0.77 -2017 99 7.29
12 80530 8869 86.93 2045 349 13.62 104696 5413 93.01 4328 316 5.33 -24166 3456 6.08 -2283 33 8.29

Avg 78756 6099 89.91 2226 556 13.96 104937 5157 93.16 4247 452 5.38 -26180 942 3.25 -2021 104 8.59

TABLE II. Test generation results for the DMA core with three partitions
Period SC Gate Full RTL Full ∆

(ns) # TF AU FC CTP ST CPU TF AU FC CTP ST CPU TF AU FC CTP ST CPU
1.85 16 77178 4539 91.87 2295 296 15.66 92204 3964 93.60 7426 155 7.37 -15026 575 1.73 -5131 141 8.29

24 77210 9333 85.66 2074 178 14.53 93339 3776 93.81 7811 106 7.67 -16129 5557 8.14 -5737 72 6.86
32 77242 5008 91.27 2294 149 16.00 92008 4111 93.41 7428 74 7.58 -14766 897 2.14 -5134 75 8.42

1.80 16 77924 4537 91.67 2305 297 14.05 94289 4004 92.71 7545 157 7.81 -16365 533 1.04 -5240 140 6.24
24 77956 9339 85.52 2040 175 13.32 93954 3781 93.96 7891 108 7.86 -15998 5558 8.44 -5851 67 5.46
32 77988 5020 91.06 2271 147 13.23 93947 4128 92.54 7583 76 8.35 -15959 892 1.48 -5312 71 4.88

1.75 16 79490 4526 91.76 2291 295 13.98 93860 4050 92.55 7487 154 7.57 -14370 476 0.79 -5196 141 6.41
24 79522 9387 85.65 2067 177 13.77 94314 3715 93.94 7758 105 7.75 -14792 5672 8.29 -5691 72 6.02
32 79554 5029 91.13 2278 148 12.92 93379 4309 92.43 7447 73 7.91 -13825 720 1.29 -5169 75 5.01

1.70 16 80546 4226 92.69 2338 301 12.88 89196 3934 92.32 7540 155 7.42 -8650 292 -0.37 -5202 146 5.46
24 80578 8985 86.79 2038 175 13.27 89372 3758 93.48 7918 108 7.35 -8794 5227 6.69 -5880 67 5.92
32 80610 4723 92.08 2264 147 12.31 88423 4005 92.42 7509 75 8.08 -7813 718 0.34 -5245 72 4.23

Avg 78816 6221 89.76 2213 207 13.83 92357 3961 93.10 7612 112 7.73 -13541 2260 3.33 -5399 95 6.10

TABLE III. Test generation results for the DMA core with eight partitions

employing the proposed RTL scan. The number of FFs
is different between the two circuits because for gate level
scan the synthesis tool will be able to remove the redundant
FFs before introducing scan. However, with RTL scan,
these redundant FFs are already included in the scan paths.

When dividing a circuit into k partitions, it is expected
that the number of active FFs in a partition should be 1/k of
the total number of FFs. However, in the proposed solution,
for the purpose of launching patterns for detecting delay
faults, not only the local FFs, but also the incoming FFs
in neighboring partitions must be activated. For example,
for three partitions, there will be 1044 (or 49.4%) active
FFs in the largest partition; for eight partitions, the largest
partition will have 522 (or 24.7%) FFs. Note, it is assumed
that the power when testing a single partition will be
directly proportional to the scan chain division size. This
is consistent with prior literature [9].

Tables II and III show the testability results generated
by a commercial ATPG tool [15] for the DMA circuit
with three and eight partitions. The timing constraints and
number of SCs are listed in columns 1 and 2 respectively.
Note that the number of SCs for the DMA circuit with
three and eight partitions are chosen to be different to
show that the benefit of our approach is irrespective to
the number of SCs in the design. The column labeled
TF represents the total number of transition delay faults
in the circuit. The column labeled AU represents ATPG
untestable faults, which are faults that are untestable due
to the limitation of scan cell arrangement. FC corresponds
to fault coverage for transition faults, CTP denotes the
number of compressed test patterns, ST is the scan time
in thousands of clock cycles, and CPU represents test
generation time in seconds. For the columns labeled Gate
Full, full scan is inserted at the gate level after the circuit

has been synthesized. All the columns for the gate level
case are generated without partitioning the circuit. For the
columns named RTL Full, the testability results for TF,
AU, CTP, ST and CPU are calculated by summing the
corresponding data between the multiple partitions that are
obtained by our approach. It is to be noted that the TF for
RTL scan is higher than that of gate level scan due to the
presence of redundant FFs and the added DFT logics for
controlling the multiple partitions. Despite the increase in
TF, the amount of AU for RTL scan with three and eight
partitions are actually 942 and 2260 faults less than that of
gate level scan on average. This decrease in AU faults in
turn improves the fault coverage of the RTL scan by 3.25%
and 3.33%. This improvement is due to reusing the method
from our prior work [13]. However, by employing the scan
chain division method proposed in this paper, although
the amount of CTP increases by over 2000 and 5000 on
average, the scan time is actually reduced on average by
104 and 95 thousand clock cycles. This translates also into
18.7% and 45.9% reduction in volume of test data for the
DMA circuit with three and eight partitions respectively.
This is because within a single partition, there are fewer
active FFs that need to be scanned. Besides, note that our
proposed solution also improves the test generation time.

Tables IV and V show the area and performance results
comparison between gate level scan and RTL scan with
three and eight partitions for the DMA circuit. Column
1 shows the timing constraints used by the synthesis
tool [16]. Column 2 provides the total number of SCs
and Columns 3, 5 and 7 indicate whether the timing
constraints were met during synthesis for the non-scan
circuit, the circuit with gate level scan and the RTL scan
circuit. Columns 4 and 6 show the area overhead when
compared to the non-scan circuit for gate level scan and

Original Area OH
Period of (No DFT) Gate Full RTL Full ∆

(ns) SC Timing Met? % Met? % Met? %
1.85 6 Yes 11.47 Yes 11.21 Yes 0.26

9 11.47 Yes 10.52 Yes 0.96
12 11.47 Yes 11.03 Yes 0.44

1.80 6 Yes 13.02 No 11.67 Yes 1.35
9 13.02 No 11.14 Yes 1.88
12 13.02 No 10.13 No 2.89

1.75 6 Yes 14.50 No 8.95 Yes 5.55
9 14.50 No 8.84 Yes 5.66
12 14.50 No 9.97 Yes 4.53

1.70 6 No 18.19 No 12.42 Yes 5.78
9 18.19 No 12.48 Yes 5.71
12 18.19 No 12.49 Yes 5.70

Average 14.30 10.90 3.39

TABLE IV. Area data for DMA with three
partitions

Original Area OH
Period of (No DFT) Gate Full RTL Full ∆

(ns) SC Timing Met? % Met? % Met? %
1.85 16 Yes 11.47 Yes 12.11 Yes -0.64

24 11.47 Yes 10.99 Yes 0.48
32 11.47 Yes 11.91 Yes -0.44

1.80 16 Yes 13.02 No 12.88 Yes 0.14
24 13.02 No 11.27 No 1.75
32 13.02 No 11.98 Yes 1.04

1.75 16 Yes 14.50 No 11.23 Yes 3.27
24 14.50 No 11.28 No 3.22
32 14.50 No 12.29 Yes 2.21

1.70 16 No 18.19 No 15.18 Yes 3.01
24 18.19 No 14.77 Yes 3.42
32 18.19 No 14.22 Yes 3.97

Average 14.30 12.51 1.79

TABLE V. Area data for DMA with eight parti-
tions

RTL scan accordingly. Column 8 shows the difference
in area overhead between gate level scan and RTL scan.
As can be seen in the table, despite the presence of the
redundant FFs and the additional logic for controlling the
partitions during test, the area for RTL scan is 3.39%
and 1.19% respectively less on average than that of gate
level scan. Moreover, from Columns 3 and 5 of Tables
IV and V, the non-scan circuit and gate level scan fail
to meet timing beyond 1.75 ns and 1.80 ns respectively.
However, the performance is improved to 1.7 ns for the
RTL scan with three and eight partitions as indicated in
Columns 7 in both tables. We attribute this contribution to
the fact that the logic synthesis tool can better optimize the
circuit by generating the scan paths and functional logic
simultaneously when the scan infrastructure is provided in
the RTL description. However, one point to note is that
the synthesis tool failed to meet the timing constraints at
1.8 ns for the DMA circuit with three partitions and 12
SCs, and at 1.8 ns and 1.75 ns for the DMA circuit with
eight partitions and 24 SCs. We consider this anomaly to
be caused by the heuristic nature of the logic synthesis
engine. It is also important to note that the computational
time for partitioning the circuit and inserting scan at the
RTL only takes a few minutes when performed on the
DMA circuit with 2115 FFs on a 1.5GHz PowerPC G4
with 1GB of RAM.

V. Conclusion
This paper described how by dividing a circuit into
multiple partitions at the RTL for power-constrained at-
speed testing, testability of the circuit can be improved by
consciously constructing the SCs.

References

[1] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits. Boston:
Kluwer Academic Publishers, 2000.

[2] X. Lin, R. Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson,
and N. Tamarapalli, “High-Frequency, At-Speed Scan Testing,”
IEEE Design and Test of Computers, vol. 20, no. 5, pp. 17–25,
Sept-Oct 2003.

[3] P. Maxwell, R. Aitken, V. Johansen, and I. Chiang, “The Effect of
Different Test Sets on Quality Level Prediction: When is 80% Better
Than 90%?” in Proceedings of International Test Conference, 1991,
p. 358.

[4] J. Savir and S. Patil, “Scan-Based Transition Test,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, no. 8, pp. 1232–1241, 1993.

[5] N. Nicolici and B. M. Al-Hashimi, Power-Constrained Testing of
VLSI Circuits. Kluwer Academic Publishers, 2003.

[6] X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.-T. Wang, K. K.
Saluja, and K. Kinoshita, “Low-Capture-Power Test Generation for
Scan-Based At-Speed Testing,” in Proceedings of International Test
Conference, 2005, pp. 4–10.

[7] K. Butler, J. Saxena, A. Jain, T. Fryars, J. Lewis, and G. Hether-
ington, “Minimizing Power Consumption in Scan Testing: Pattern
Generation and DFT Techniques,” in Proceedings of International
Test Conference, 2004, pp. 355–364.

[8] K.-J. Lee, S.-J. Hsu, and C.-M. Ho, “Test Power Reduction with
Multiple Capture Orders,” in Proceedings of the 13th Asian Test
Symposium, 2004, pp. 26–31.

[9] L. Whetsel, “Adapting Scan Architectures for Low Power Opera-
tion,” in Proceedings of International Test Conference, 2000, pp.
863–872.

[10] P. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan Architecture
With Mutually Exclusive Scan Segment Activation for Shift- and
Capture-Power Reduction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1142–
1153, 2004.

[11] T. Asaka, S. Bhattacharya, S. Dey, and M. Yoshida, “H-SCAN+:
A Practical Low-Overhead RTL Design-for-Testability Technique
for Industrial Designs,” in Proceedings of International Test Con-
ference, 1997, pp. 265–274.

[12] Y. Huang, C.-C. Tsai, N. Mukherjee, O. Samman, D. Devries, W.-T.
Cheng, and S. M. Reddy, “On RTL Scan Design,” in Proceedings
of International Test Conference, 2001, pp. 728–737.

[13] H. F. Ko and N. Nicolici, “Functional Scan Chain Design at RTL
for Skewed-load Delay Fault Testing,” in Proceedings of the 13th
Asian Test Symposium, 2004, pp. 454–459.

[14] Faraday Technology Corporation. (2002) Faraday Structured
ASIC Benchmarks. [Online]. Available: http://www.faraday-
tech.com/StructuredASIC/download/

[15] Synopsys Test Tools, “TetraMAX ATPG,”
http://www.synopsys.com/products/test/tetramax dsA4.pdf,
2003. [Online]. Available:
http://www.synopsys.com/products/test/tetramax dsA4.pdf

[16] Synopsys Synthesis Tools, “Design Compiler,”
http://www.synopsys.com/products/logic/design compiler.html,
2003. [Online]. Available:
http://www.synopsys.com/products/logic/design compiler.html

