
Dynamic Code Value Specialization Using the
Trace Cache Fill Unit

Weifeng Zhang Steve Checkoway Brad Calder Dean M. Tullsen
Department of Computer Science and Engineering

University of California, San Diego

Abstract—
Value specialization is a technique which can improve a

program’s performance when its code frequently takes the same
values. In this paper, speculative value specialization is applied
dynamically by utilizing the trace cache hardware. We implement
a small, efficient hardware profiler to identify loads that have
semi-invariant runtime values. A specialization engine off the
program’s critical path generates highly optimized traces using
these values, which reside in the trace cache. Specialized traces
are dynamically verified during execution, and mis-specialization
is recovered automatically without new hardware overhead.
Our simulation shows that dynamic value specialization in the
trace cache achieves a 17% speedup, even over a system with
support for hardware value prediction. When combined with
other techniques aimed at tolerating memory latencies, this
technique still performs well – this technique combined with an
aggressive hardware prefetcher achieves 24% better performance
than prefetching alone.

I. INTRODUCTION

Value prediction breaks true data dependence chains by
directly predicting load values [1], [2], [3], [4], taking ad-
vantage of value locality. The benefit of value prediction
comes from reducing the program’s critical dependence path
of execution, particularly when loads that miss in the cache
are part of the dependence chain. However, hardware value
prediction requires extensive hardware support. Additionally, a
missed opportunity for value prediction techniques is that they
immediately lose the knowledge of a known value as soon as
the targeted instruction is predicted, even if that knowledge
could lead to further optimization or simplification.

Another optimization that exploits value locality is static
software value specialization. In this case, the code is spe-
cialized to particular values, often allowing the code to be
simplified and accelerated significantly. However, static value
specialization does not handle values that are only known at
runtime, or which change slowly over time.

This paper presents a technique that dynamically specializes
the code for semi-invariant load values detected at runtime.
The specialized code exists only in the trace cache [5], [6],
[7], [8], [9], with traces constructed and specialized by the
trace cache fill unit. The trace cache is an existing mech-
anism to store a program’s dynamic instruction sequences,
called execution traces. Since each trace may contain multiple
non-contiguous basic blocks, speculative value specialization
allows compiler-like optimizations to be applied to semi-
invariant runtime values beyond basic blocks.

This technique significantly outperforms hardware value
prediction, because the assumption that a register takes a
constant value can be propagated through the trace, often
resulting in dead code elimination or strength reduction. It
outperforms static specialization because it is a hardware-
based dynamic technique, which can adapt quickly to runtime
values, and even infrequent changes in those runtime values.
We rely on hardware support to detect semi-invariant loads, but
we track very few loads at a time, so the hardware overhead is
relatively small. This technique can also recover quickly from
mispredictions with minimal changes to existing hardware
support for mis-speculation recovery.

Our study uses a hardware value profiler to dynamically
capture the load instruction’s invariant or semi-invariant values
during a program’s execution. Traces are then optimized with
candidate load values, by performing constant propagation,
copy propagation, and dead move (code) elimination. We
implement a trace cache in which both a non-specialized trace
and a value specialized trace for the same path may co-exist.
We use a trace confidence scheme to determine whether to use
the specialized trace or the non-specialized trace during fetch.
For a specialized trace, we store with it the predicted values
used to perform the specialization.

There are two primary benefits to incorporating the value
prediction and the specialization of traces in the trace cache.
First, it simplifies the implementation of value prediction in
several ways: (1) prediction decisions are made much less
frequently and are performed in the back end of the pipeline,
and (2) the latency requirements for tracking and acting on
load value locality are severely relaxed. The other primary
benefit of applying this optimization in the trace cache is that
it allows further optimization through propagating these values
through the trace.

Many of the specific specializations we perform will provide
a benefit anywhere value locality is detected. For this study,
however, we only predict loads, which provides the greatest
benefits, and limits the size and complexity of the structures
needed to collect the profiles.

The main contributions of this paper are:
• We proposes a speculative value specialization architec-

ture, which explores new opportunities (semi-invariant
values) for continuous optimization in the backend of the
pipeline.

• We proposes a two-level confidence scheme to improve
the value specialization accuracy. It allows the non-

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

specialized trace to co-exist with its corresponding spe-
cialized trace. This enables us to quickly switch back
to the non-specialized trace, when there are specialized
traces whose specialized values later change during exe-
cution.

• We demonstrate that speculative value specialization is
beneficial, even for the short traces stored in the trace
cache.

The rest of the paper is organized as follows. Section II
describes prior related research. Section III describes the value
specialization architecture. Section IV gives details of the
simulation. Section V shows the value specialization results.
Section VI summarizes this paper.

II. RELATED WORK

This section summarizes prior research on trace cache
optimization and value specialization.

A. Trace Cache Optimizations

Friendly, et al. [10] are the first to perform trace opti-
mizations via the trace cache fill unit. Their basic optimiza-
tions include constant propagation, register re-association, and
scaled addition. They also propose to mark the register move
instruction as an explicit move so that it can be eliminated
during register renaming without further execution. Jacobson
and Smith [11] propose three specific optimization techniques
based on the trace processor. One of these optimizations is to
collapse a small chain of dependent instructions into a single
operation using a new instruction not available to the external
ISA. Our work extends the fill-unit optimization architecture
by identifying new optimization opportunities – specialization
to semi-invariant load values. By specializing traces with semi-
invariant load values, we are able to hide the load latency and
break the instruction dependence chain at the same time.

The recent rePlay [12], [13], [14] and PARROT [15], [16]
frameworks enable very aggressive hardware optimizations, by
using a dynamically configurable optimization engine running
in parallel with a high performance execution core. The key
idea in these frameworks is the atomic execution of traces.
Control dependencies are speculatively converted to form long
atomic traces upon which very aggressive code elimination
can be applied. These architectures have potential to specialize
traces based on their live-in values, but have not exploited this.

Continuous hardware optimization, recently proposed by
Fahs, et al [17], augments the renaming stage of the processor
pipeline with a dataflow optimizer. The in-pipeline optimizer
uses simple, table-based hardware to reduce the instruction
dataflow height by performing basic optimizations. By exploit-
ing execution results fed back from the execution stage, the
optimizer can potentially evaluate instructions without further
executing them in the later pipeline stages. Our optimization
architecture performs optimizations offline, thus having less
impact on the microarchitectural timing. We also exploit semi-
invariant runtime constants, which are not handled in their
architecture.

B. Value Specialization

Value specialization [18], [19], [20] is typically done by
the compiler in a very conservative manner. Specialization is
mainly applied at the procedural level.

Mock, et al. [21] develop a selective dynamic compilation
system (DyC) to optimize the code at run-time. A small
portion of code is selected and annotated by the compiler so
that it can be optimized according to runtime values. Wu, et
al. [22] exploit runtime value locality to reuse computation
within statically-identified code regions. Fu, et al. [20] exam-
ine code specialization by statically scheduling load-dependent
instructions ahead of loads. These instructions can then be
executed based on hardware speculated values.

Zhang, et al. [23] designed a dynamic value specialization
framework, called Trident, on a multithreaded architecture. Ex-
ecution traces are collected and optimized (using speculative
load values) by the optimizer, which runs as a helper thread,
and are stored in a memory buffer. Trident explicitly inserts
software checks in the trace to verify load values and recover
from mis-specialization. Shankar, et al. [24] explore runtime
specialization under the Jikes RVM. Runtime constants are
identified by profiling heap object locations. However, soft-
ware value specialization systems often suffer the overhead of
dynamic value verification (extra instructions inserted in the
trace) and the overhead of dispatching the specialized traces
(branching in and out of the value specialized code). They
also need to invalidate cache lines when the mis-specialized
code is invalidated. Our technique avoids the above overhead
as well as the cache side effects. In addition, our research
focuses on the challenges and the potential of speculative value
specialization on the short traces found in the hardware trace
cache.

Value profiling has been studied to guide static and dynamic
optimization. Calder, et al. [18] use Top-N-Value tables (TNV)
for fast and low overhead instruction profiling. Muth, et
al. [19] generalize the notion of value profiles to expres-
sion profiles, which profile the runtime values of arbitrary
expressions. The expression profiles allow more aggressive
optimizations, which may not be possible from simple value
profiles. The hardware value profiler used in this study is based
on [18], [23]. The value confidence scheme is used to select
and replace values from the profiler.

III. VALUE SPECIALIZATION ARCHITECTURE

This section describes our value specialization architecture,
which includes a backend value profiler to detect value biases,
a specialization engine to optimize traces, and a trace cache
to store execution traces. Our design models a Pentium 4-like
architecture, in which the conventional instruction cache is
absent; however, optimizations we demonstrate would apply
similarly if there was a traditional instruction cache backing
the trace cache. The architecture is shown in Figure 1. The
following sections describe these components in more details.

fill unitfetch
line
buffer

trace special-
ization engine

Execution Engine

 D-cache L1

unified
L2

trace cache

commit

value profiler

Fig. 1. The Value Specialization Architecture

A. Load Value Profiling

This architecture uses a hardware value profiler to identify
loads with semi-invariant behavior and their common values.
The profiler sits on the backend of the pipeline, and can
identify the top N values of each load instruction. We adapt
the software value profiler from [18] for an efficient hardware
implementation. The profiler is organized as a set-associative
cache, which has the following format in each of its entries:

tag usage <value,confidence> pairs
counter (e.g. six pairs)

Here, the usage counter and confidence counters are up and
down saturating counters. The confidence scheme used in this
paper is represented by a tuple <threshold, penalty, bonus>.
When a load is committed, the confidence counter whose
associated value is the same as the load’s committed value
is increased by the bonus (e.g., 1), and all other confidence
counters are decremented by the penalty (e.g., 7). If the
incoming value is new, the existing value that has the lowest
confidence is replaced. When a value’s confidence counter
saturates, it is confident, and can be used for specialization.

Once a load starts being used for value specialization within
a trace, its usage counter is incremented if the specialization
is correct. Otherwise, it is decremented. When a new load
is profiled, the profiler entry with the lowest usage counter
is replaced by the new load. Thus, usage counters are used
to keep good loads in the profiler. This is an improvement
over a similar profiler implementation [23], in which LRU
replacement is used.

During profiling, all committed loads are buffered into a
small FIFO (e.g. size 8) before inserting them into the profiler.
When the queue is full, the oldest loads are replaced if
they haven’t been consumed by the profiler. We found the
performance is not very sensitive to the queue size. This is
reasonable since recurring loads will have the opportunity to
be profiled eventually.

B. Trace Cache

In this architecture, instructions are primarily fetched from
the trace cache. On a trace cache hit, the whole trace line
is fetched in one cycle. Otherwise, a slow fetch takes place.
That is, instructions are fetched from the L2 cache, up to the
maximum number allowed by the fetch bandwidth or up to a

taken branch. The trace cache miss triggers the linefill buffer
to start collecting the committed instructions to form a new
trace at the missing address. A trace may contain up to 16
instructions or three basic blocks [10].

1) Trace Specialization in the Trace Cache: Each trace has
a trace ID to identify the next trace to be fetched from the trace
cache [6], [7]. In order to store value specialized traces without
introducing additional storage (and complexity), we augment
the trace cache so that each cache entry has the following
format:

Trace ID s-flag confidence instructions N predicted
(e.g. 2-bit) (up to 16) values

Here, the 1-bit s-flag indicates if the trace is value specialized
(s-trace) or non-specialized (n-trace). The 2-bit trace con-
fidence is explained in the next section. We also store the
predicted values for the specialized loads. For the results in
this paper, we allow up to N specialized values (s-values) per
trace, and we find N=4 is sufficient. To identify which load a
s-value belongs to, each instruction in the trace is augmented
with a single bit to indicate if it is a load that is used during
specialization. Thus, s-values are stored in the same order as
their load instructions occur in the trace. Alternatively, s-values
can be stored in an auxiliary structure matching the mapping
of the trace cache.

For each n-trace, there exists at most one corresponding s-
trace. A newly created s-trace always overwrites the old one.
Since we also store s-traces in the trace cache, the trace cache
can hold both the s-trace and the n-trace for the same block (as
long as both traces are used often enough to avoid eviction).
Both traces share the same trace ID. When the trace cache
gets a hit for two valid blocks in its set with the same ID, we
will use the trace confidence scheme to decide which trace to
execute, as discussed in the next section.

After an s-trace is fetched for execution, the s-values from
the trace are copied to the physical registers allocated at the
renaming stage. This allows any dependencies on this register
to be speculatively executed, just as in value prediction. When
a specialized load reaches the writeback stage, it has to wait
until its true load value comes back from the lower memory
hierarchy. Upon the arrival of the true load value, the s-value
is verified against the true value. If the s-value is correct, the
speculative load is ready to commit.

If instead the s-value is found to be incorrect, mis-
specialization is triggered. All instructions after the specialized
load are squashed, and execution starts right after the s-load
instruction that was value mispredicted.

2) Trace Confidence: The trace cache uses the same re-
placement policy to manage s-traces and n-traces. However,
an s-trace can also be invalidated if its confidence is too low.

We use a confidence mechanism to decide if an s-trace or
n-trace is to be used when finding both in the trace cache, and
to avoid s-trace blocks with poor confidence. There are two
reasons that trace-level confidence is necessary, even though
all specialized loads are highly confident at trace creation.
First, the cumulative effect of multiple stable loads may still

Original Trace Specialized Trace
1 LDQU R4, 0(R9)
2 EXTQH R4, R0, R0
3 SRA R0, 56, R0
4 S4ADDQ R0, R5, R0
5 LDL R0, 0(R0)
6 ...

1 LDQU R4, 0(R9)
;
;
;

5 LDL R0, 0(R5)
6 ...

TABLE I

A VALUE SPECIALIZATION EXAMPLE FROM parser.

create a trace with low confidence. Second, trace accuracy can
degrade over time as value biases change.

The confidence counter is a saturating up and down counter,
incrementing the value when all speculated values are correct,
and decrementing the counter if there is at least one incorrectly
speculated load value. An s-trace is set to the maximum value
upon insertion into the trace cache. When the confidence
counter drops below the confidence threshold, then the s-trace
is marked as invalid and will be used next for replacement.

C. Fill Unit Value Specialization

We now describe how we extend the trace cache fill unit
to create specialized value traces, starting with a real code
example.

1) A Value Specialization Example: We show a value
specialization example from parser in Table I. The left side of
the table is a portion of the instruction trace from the function
match in parse.c. The value specialized trace is shown in the
right side of the table.

The load in line 1 produces zero with very high accuracy.
Constant propagation is performed with the constant zero,
followed by copy propagation and then dead move elimination.
Dead move elimination is only performed if the register is
redefined (we can prove that it is dead) in the same trace
we are forming. Therefore, instructions 2 - 4 can then be
eliminated because their destination register R0 is redefined
in the same basic block. After the specialization, the serial
dependencies in the original instructions 1 - 5 are removed.
In fact, we’ve decreased instruction overhead, increased ILP,
and increased memory level parallelism (load 5 can now be
executed in parallel with the load in line 1).

2) Trace specialization implementation: When a new trace
is being constructed in the fill unit, it is initially created as
an n-trace, with no specialization. Later, when a trace line is
fetched to the core execution engine, it may also be forwarded
to a trace specialization engine for potential optimization if it
has not yet been specialized. The optimization engine takes
the following steps to construct a specialized trace (s-trace):
(1) Scan the instructions in the trace to identify any load whose
confidence counter is above a given predictability threshold.
This indicates that the load has a semi-invariant, predictable
value. If none of the loads do, the trace is not specialized. (2)
If one or more semi-invariant loads exist, the engine constructs
a def-use chain on the trace. Values from these loads are
then propagated using the dependence chain. Instructions are
strength reduced, if possible, and any new constants generated

during the propagation are further propagated. (3) After the
copy propagation is done, a MOV instruction may be removed
if its destination register is redefined inside the same basic
block of the trace. (4) After the specialization is finished, all
counters and flags are set properly inside the s-trace. Then the
trace is inserted into the trace cache.

The trace specialization steps above are similar to [23],
except our approach does not have to insert software checks
to verify predicted values. Since trace specialization only per-
forms linear scanning and optimization on the short trace (16
instructions or less), we expect the implementation of the value
specialization engine to be relatively simple, e.g., with pattern-
matching state machines. The engine can be implemented
using hardwired logic or even slow programmable logic, since
we found that the performance is not very sensitive to the
trace specialization delay, as in [10]. In this study, we assume
a conservative delay of 1000 cycles from the specialization
engine. At the same time, we found that adding a queue to the
specialization engine to buffer any incoming traces has very
little performance improvement. Therefore, we only allow one
trace to be specialized at any time. A non-specialized trace will
not be forwarded to the specialization engine unless it is idle.

IV. METHODOLOGY

We model the baseline architecture as a 20-stage Pentium 4-
like superscalar architecture with no L1 instruction cache. We
heavily modified the SimpleScalar 3.0 tool set [25] to include
memory hierarchy timing and add the value specialization
support. We implement the baseline trace cache fill unit
with optimizations proposed in [10]: constant propagation, re-
association, and MOVE elimination at the renaming stage. A
trace can hold up to 16 instructions or three basic blocks. The
trace specialization engine is modeled with the conservative
assumption that it takes 1000 cycles to finish the specialization,
and the fill unit is unavailable for other optimization during
this time. More careful modeling of this unit was found to be
unnecessary, because even this very conservative assumption
was found to have little impact on performance. Table II (top
portion) shows the configuration of our baseline architecture.

We also implement an efficient hardware value profiler
whose base configuration is shown in the bottom portion
of table II. The profiler is indexed by the load PC. The
replacement policy is described in section III-A. Loads are
continuously profiled throughout the program’s execution.

Our architecture is evaluated using SPEC2000 integer
benchmarks. Each program is simulated for 100 million in-
structions starting at the early single simulation points from
SimPoint [26].

V. RESULTS

In this section, we evaluate the performance of the value
specialization architecture, and compare the results with re-
lated techniques, conventional value prediction, and data
prefetching. All performances are compared against the base-
line Trace Cache architecture (which includes a trace cache,

Trace cache 256-set,4-way associative; latency 1 cyc;
Confidence 2-bit; s-flag 1-bit; 4 predicted values

L1 D-cache 256-set,4-way associative,32KB;latency 1 cyc
Unified L2 2 MBytes, latency 15 cyc
Memory latency 300 cyc
Processor ROB size 64, load queue size 16
core fetch, decode, issue bandwidth 4
Branch 2-level, 2K entry meta-chooser; RAS size 16
predictor BTB 512 entry 4-way associative

Value 256-set,4-way associative; Per entry: usage 6-bit,
profiler 6 <value,confidence> pairs(confidence 5-bit)

TABLE II

THE BASELINE ARCHITECTURE CONFIGURATION

0

0.5

1

1.5

2

2.5

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

in
st

ru
ct

io
n

s
p

er
 c

yc
le

Fig. 2. The performance of the baseline architecture

and several previously proposed trace cache fill unit opti-
mizations), as shown in Figure 2. To gauge the performance
potential from our value specialization architecture, we first
assume that the size of the value profiler is unlimited. This
allows us to profile all load instructions. From section V-C
onward we will evaluate how the size of the profiler affects
the specialization performance.

A. Value Confidence and Trace Confidence

We evaluate the performance of value specialization with
a two-level confidence scheme: value confidence and trace
confidence. Value confidence is used in the creation of spe-
cialized traces, and trace confidence is used to select traces
for execution.

We evaluate the value confidence tuple <threshold, penalty,
bonus> in section III-A with these three configurations:
<7,3,1>, <15,7,1>, and <31,15,1>. The first number is both
the maximum value of the confidence counter and the confi-
dence threshold to be considered as predictable for that value
entry. A value’s confidence is incremented (decremented) by
the bonus (penalty) if the same (different) value occurs during
profiling. Only loads with a confidence counter equal to the
threshold are candidates for value specialization. The trace
confidence is a 2-bit saturating counter with initial value of
3. It is decremented if the trace is specialized incorrectly.
Otherwise, it is incremented. A specialized trace with a
confidence below the threshold is not selected for fetch. In
fact, it is also marked as invalid in the trace cache for future
replacement.

Figure 3 shows the average speedups for different value and
trace confidence thresholds, over a system with the baseline
trace cache, but no value specialization. In the first bar group,
we use trace confidence 0 to indicate that a specialized trace
will never be invalidated due to miss-peculation. As we can see

0%
5%

10%
15%
20%
25%
30%

T-confidence 0 T-confidence 1 T-confidence 2 T-confidence 3

p
er

ce
n

t
sp

ee
d

u
p

s

V-confidence 7
V-confidence 15
V-confidence 31

Fig. 3. Performance of value specialization with different trace and value
confidence thresholds

in this figure, higher value confidence thresholds are important
if the same specialized trace is fetched over and over again.
Significant performance degradation may occur because the
mis-specialized traces could be fetched many times. We could
improve the average performance from 2% to 12% if we
increase the value confidence threshold from 7 to 31. However,
as we increase the trace confidence threshold, high value
confidences still boost performance, but become less critical.
As we reach the highest trace confidence threshold of 3, the
value confidence is completely shadowed. As a matter of
fact, value confidence 7 achieves slightly higher performance
than 31. This is because, (1) at this trace confidence level, a
mis-specialized trace will never be used. So only correctly
specialized traces will be fetched many times, and trace
specialization accuracy is dramatically improved. (2) lower
value confidence thresholds may expose more loads to be
predictable, even if the values are semi-invariant during a short
period of time. We will use the trace confidence threshold of
3 and the value confidence threshold of 7 for the remaining
performance evaluations.

B. Comparison of Value Prediction with Value Specialization

The techniques proposed in this paper benefit from two
factors – value prediction and value specialization. In the fol-
lowing experiment, we attempt to separate these two effects by
comparing our solution with value prediction alone. Figure 4
shows these results. The value predictor we implemented in
this study is the hybrid model [2]. The predictor has a value
history table (VHT) of 4K entries, a pattern history table
(PHT) of 32K entries. PHT counters saturate at 32 with the
threshold of 12.

The first bar shows the speedups if we only apply hardware
value prediction – the code dependent on the load is decoupled
from the load, but the value is not propagated further into
the trace. The second bar gives the performance gain using
our full value specialization, which includes our hardware-
profiler-based value prediction, constant propagation, register
re-association, and code elimination. Our value specialization
significantly outperforms the value predictor by 17% on av-
erage. The performance improvement is most significant with
bzip, gap, gzip, parser, and vpr. This is mainly due to two rea-
sons. First, our two-level confidence scheme tends to improve
the overall trace quality by replacing traces/loads which do
not behave well. Second, our value specialization allows the
propagation of know values, to enable further optimizations.
In this case, we end up benefiting from what amounts to

0%

20%

40%

60%

80%

100%

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg

p
er

ce
n

t
sp

ee
d

u
p

s
H/W value prediction

Value specialization

Fig. 4. Performance of value prediction and value specialization

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r
av

g

p
er

ce
n

t
sp

ee
d

u
p

s

Profiler 64 X 2
Profiler 256 X 2
Profiler - unlimited

Fig. 5. the performance of profiler sizes 128-entry, 512-entry, and unlimited

a very conservative use of predicted values, with resulting
high accuracy. Thus, any time value locality has enough
evidence to make value prediction useful, value specialization
significantly enhances its effectiveness. A similar effect is also
noted in [23], where we do a different form of dynamic value
specialization under very different architectural assumptions.

C. Sensitivity to Value Profiler Size

Results up to this point have assumed unlimited resources
to track load values. The following results examine more real-
istic profiler configurations. In our simulations, crafty, vortex,
parser, perl, and gcc have a relatively large number of static
loads. With the limited profiler size, a profiler replacement
policy is needed to reclaim space used by loads that may
have not exhibited significant locality. We use the replacement
policy via the load’s usage counter as described in Section III-
A.

Figure 5 compares the value specialization performance
with different profiler sizes: 64-set 2-way associative (64X2),
256-set 2-way associative (256X2), and the unlimited size.
We do see some performance drop with the smaller predictor
sizes however, for the most part, performance improvements
are relatively insensitive to the size of the predictor, within
these ranges. This is because our replacement policy attempts
to keep good loads, which most often result in correct value
specialization, in the profiler.

In this study, the value profiler (256X2 configuration) uses
total hardware resource of about 32KB. This calculation also
includes the resources used to augment the trace cache. Instead
of using these resources for our proposed architecture, we
could instead dedicate these resources elsewhere; for example,

to increase the size of the data cache or trace cache. If we
do this, experiments show that we would only experience a
performance improvement of 2.8% (large data cache) or 1.7%
(large trace cache). Thus, our dynamic value specialization
architecture is a more effective use of this hardware for these
benchmarks.

D. Value Specialization and Hardware Prefetching

This research focuses on loads, as performance in modern
systems is often dominated by memory latencies. However,
these techniques represent just one approach to hide or remove
the latency of long-latency loads. Thus, we would like to know
whether these gains are complementary to, or subsumed by,
existing memory latency optimizations. Most modern proces-
sors now include some form of hardware data prefetching; this
section compares our technique with an aggressive memory
prefetcher, and demonstrates that for most programs they
are actually complementary techniques. Prefetching speedup
depends on how accurately the prefetching addresses are
predicted, and how far the prefetching can be done ahead of
the main execution thread. However, prefetching does have the
potential to increase the memory bus contention.

In this section, we implement an aggressive predictor-
based stream prefetching scheme [27]. The stream buffers
are configured with a predictor table of 256 entries, and the
Markov predictor of 2048 entries. There are a total of 8 stream
buffers, each of which can hold 8 blocks.

Figure 6 shows the performance of value specialization
with and without hardware prefetching. The first bar gives
the performance of hardware prefetching alone. Our value
specialization alone (the second bar) outperforms hardware
prefetching by 13%. However, when combining value spe-
cialization with hardware prefetching, we might expect some
of the value specialization benefits will disappear. This is
because if the load used for specialization now hits in the
cache due to prefetching, there is less to be gained from
specialization, and more potentially lost when there is a mis-
speculation. This seems to be true for perl, twolf, and vpr.
But for all other benchmarks, the combination seems to be
constructive. Overall, the combination achieves 24% better
performance than hardware prefetching alone. In particular, the
combination consistently outperforms the prefetching alone.
This demonstrates that our value specialization technique is
still effective even in the presence of hardware prefetching.

VI. CONCLUSION

This paper demonstrates a dynamic code specialization
technique, which exploits value locality in the trace cache.
Value locality is detected with an efficient backend profiler that
identifies invariant or semi-invariant runtime behavior. This
information is used to drive a value specialization engine,
which constructs optimized traces to be placed in the trace
cache. We examine a trace cache architecture that allows
the storing of a trace block in both a non-specialized and
value specialized form. These specialized traces not only
identify opportunities for value prediction, but also specializes

0%

30%

60%

90%

120%

150%

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r
av

g

p
er

ce
n

t
sp

ee
d

u
p

s
Stream prefetching
Value specialization
VS + Stream prefetching

Fig. 6. Performance of value specialization with hardware prefetching

based on the particular values profiled. We show significant
additional speedup from the specialization over the value
prediction alone, particularly in those cases where prediction
itself is effective.

This gain over prediction alone is because we can propagate
the information about the assumed load value throughout the
trace cache line. The specialization optimizations examined
include constant propagation, value propagation, dead move
elimination, and reduction of complex instructions. We restrict
our focus to transformations identified through simple trace
analysis, but other optimizations would be possible with more
hardware devoted to the dynamic specializer.

Overall, we show an average 29% speedup over a conven-
tional trace cache architecture. Value specialization achieves
17% speedup relative to hardware value prediction. This gain
comes from decoupling load uses from long-latency loads,
covering cache misses with value specialization, and in general
reducing the length of dependence chains. Speculative value
specialization has been shown to be a promising technique for
tolerating memory latencies and extending the benefit of value
locality further down the dependence chain. It does so even
in the presence of aggressive hardware prefetching.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful insights. This research was supported in part
by NSF grant CCF-0541434, and grants from Microsoft and
Intel.

REFERENCES

[1] M. Lipasti, C. Wilkerson, and J. Shen, “Value locality and load value
prediction,” in Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. 1996.

[2] K. Wang and M. Franklin, “Highly accurate data value prediction using
hybrid predictors,” in 30th International Symposium on Microarchitec-
ture, Dec. 1997.

[3] H. Zhou, J. Flanagan, and T. Conte, “Detecting global stride locality
in value stream,” in Annual International Symposium on Computer
Architecture, 2003.

[4] B. Calder, G. Reinman, and D. Tullsen, “Selective value prediction,” in
26th Annual International Symposium on Computer Architecture, May
1999.

[5] A. Peleg and U. Weiser, “Dynamic flow instruction cache memory
organized around trace segments independent of virtual address line,”
in U.S. Patent 5,381,533, January 1995.

[6] E. Rotenberg, S. Bennett, and J. Smith, “Trace cache: a low latency
approach to high bandwidth instruction fetching,” in 29th International
Symposium on Microarchitecture, December 1996.

[7] S. Patel, D. Friendly, and Y. Patt, “Critical issues regarding the trace
cache fetch mechanism,” in University of Michigan Technical Report
CSE–TR-335-97, May 1997.

[8] R. Nair and M. Hopkins, “Exploring instruction level parallelism in
processors by caching scheduled groups,” in 24th Annual International
Symposium on Computer Architecture, 1997.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel, “The microarchitecture of the pentium(r) 4 processor,” in
Intel Technology Journal, 2001.

[10] D. Friendly, S. Patel, and Y. Patt, “Putting the fill unit to work: Dynamic
optimizations for trace cache microprocessor,” in 31st International
Symposium on Microarchitecture, 1998.

[11] Q. Jacobson and J. Smith, “Instruction pre-processing in trace proces-
sors,” in Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture, 1999.

[12] S. Patel and S. Lumetta, “rePlay: A Hardware Framework for Dynamic
Optimization,” in IEEE transactions on computers, Vol 50, No. 6, June
2001.

[13] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. Patel,
and S. Lumetta, “Performance characterization of a hardware mecha-
nism for dynamic optimization,” in 34th International Symposium on
Microarchitecture, 2001.

[14] B. Slechta, D. Crowe, B. Fahs, M. Fertig, G. Muthler, J. Quek,
F. Spadini, S. Patel, and S. Lumetta, “Dynamic optimization of micro-
operations,” in Proceedings of the Nineth International Symposium on
High-Performance Computer Architecture, Feb. 2003.

[15] Y. Almog, R. Rosner, N. Schwartz, and A. Schmorak, “Specialized
dynamic optimizations for high performance energy-efficient microar-
chitecture,” in International Symposium on Code Generation and Opti-
mization, March 2004.

[16] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendelson,
“Power awareness through selective dynamically optimized traces,” in
31th Annual International Symposium on Computer Architecture, June
2004.

[17] B. Fahs, T. Rafacz, S. Patel, and S. Lumetta, “Continuous optimization,”
in 32th Annual International Symposium on Computer Architecture,
2005.

[18] B. Calder, P. Feller, and A. Eustace, “Value profiling and optimiza-
tion,” Journal of Instruction Level Parallelism, vol. 1, Mar. 1999,
(http://www.jilp.org/vol1).

[19] R. Muth, S. A. Watterson, and S. K. Debray, “Code specialization based
on value profiles,” in 7th International Static Analysis Symposium, June
2000.

[20] C. Fu, M. Jennings, S. Larin, and T. Conte, “Value speculation
scheduling for high performance processors,” in Eighth International
Conference on Architectural Support for Programming Languages and
Operating Systems, October 1998.

[21] M. Mock, C. Chambers, and S. Eggers, “DyC: an expressive annotation-
directed dynamic compiler for C,” in 33rd International Symposium on
Microarchitecture, 2000.

[22] Y. Wu, D. Chen, and J. Fang, “Better exploration of region-level value
locality with integrated computation reuse and value prediction,” Annual
International Symposium on Computer Architecture, 2001.

[23] W. Zhang, B. Calder, and D. Tullsen, “An event-driven multithreaded
dynamic optimization framework,” in International Conference on Par-
allel Architectures and Compilation Techniques, September 2005.

[24] A. Shankar, S. Sastry, R. Bodik, and J. E. Smith, “Runtime specialization
with optimistic heap analysis,” in Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages and Applications,
October 2005.

[25] D. C. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
University of Wisconsin, Madison, Technical Report CS-TR-97-1342,
June 1997.

[26] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications.”
in International Conference on Parallel Architectures and Compilation
Techniques, Sept. 2001.

[27] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream buffers,”
in 33rd International Symposium on Microarchitecture, 2000.

