
Customizable Fault Tolerant Caches for
Embedded Processors

Subramanian Ramaswamy and Sudhakar Yalamanchili
Center for Research on Embedded Systems and Technology

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, GA 30332

ramaswamy@gatech.edu, sudha@ece.gatech.edu

Abstract— The continuing divergence of processor and mem-
ory speeds has led to the increasing reliance on larger caches
which have become major consumers of area and power in
embedded processors. Concurrently, intra-die and inter-die pro-
cess variation at future technology nodes will cause defect-free
yield to drop sharply unless mitigated. This paper focuses on an
architectural technique to configure cache designs to be resilient
to memory cell failures brought on by the effects of process
variation. Profile-driven re-mapping of memory lines to cache
lines is proposed to tolerate failures while minimizing degradation
in average memory access time (AMAT) and thereby significantly
boosting performance-based die yield beyond that which can be
achieved with current techniques. For example, with 50% of the
number of cache lines faulty, the performance drop quantified
by increase in AMAT using our technique is 12.5% compared to
60% increase in AMAT using existing techniques.

I. INTRODUCTION

This paper addresses the confluence of two challenges

facing the design of embedded processors as the industry

enters the deep sub-micron region of semiconductor design.

The first challenge is posed by process variation (both inter-die

and intra-die) at future technology nodes that will cause defect-

free yield to drop sharply. The causes of process variation

continue to be the focus of many studies (for example see [1]–

[3]) and significant effort is being devoted to innovations

in manufacturing and circuit technologies(e.g., adaptive body

biasing [4], [5]) to reduce its impact. The second challenge is

the continuing divergence of processor and memory speeds.

This has led to the increasing reliance on larger caches which

have become dominant consumers of area and power [6].

This paper proposes architectural techniques for the design

of robust cache architectures that can complement and utilize

existing and anticipated circuit and manufacturing advances to

combat process variation.

Intra-die process variations cause access time and read/write

stability failures for SRAM memory cells [7]. Lowering supply

voltages to reduce energy requirements exacerbates these

failure modes [8]. Our goal is to make the cache resilient to

cell failures by using the available fault-free area of the cache

while minimizing additional investments in area and power.

Further, the manner in which the available fault-free area is

utilized attempts to minimize the performance degradation due

to faulty memory cells. The challenges lay in the interactions

between competing goals. The AMAT delivered by the cache

is a function the number of non-faulty cache lines. Lower

supply voltages to lower the power demands will reduce the

number of non-faulty lines. Adopting larger caches to increase

the average number of non-faulty lines increases both area

and power requirements - particularly undesirable in embedded

processors.

This paper proposes a micro-architecture level technique for

improving the yield of cache memory designs in a manner

that is transparent to application software. Yield refers to

the number of die that can meet target performance goals

- in this paper we define performance yield based on the

AMAT. The approach builds on a key idea proposed in [9]

and [10] where cache placement policy is modified to map

main memory lines to non-faulty cache lines. Our approach

extends and differs from these prior efforts in several ways.

First, we treat the problem as an optimization problem -

the assignment of main memory lines to cache lines/sets is

driven by an application memory reference profile. Profiles

are analyzed to extract temporal usage information for each

cache line. This information is used to make global decisions

about how memory addresses map to cache lines and produce a

placement function that is customized to the memory reference

profile and distribution of faulty cells. The result is a tighter

control of AMAT as the number of faulty cells vary and

an effective greater improvement in the yield. Second, the

placement is under compiler control and can be varied across

applications or phases within an application, or even regions

within an application, e.g., loop nests or functions/procedures.

In general, one can conceive of the use of powerful program

analysis techniques based on the analysis of dependences and

data-flows to produce customized placement information. This

generalization is not treated in this paper and is the subject of

ongoing work.

Section II provides an overview of related research to date,

concluding with an assessment of the state of the practice

motivating the proposed approach. Section III, provides a

description of the fault tolerant cache (FTC) design and the

associated methodology for configuring the cache placement

based on application profiles. The remainder of the paper sum-

marizes the results of a quantitative design space exploration

to quantify the effectiveness of the design methodology and

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

establish directions for future work. The evaluation reports in

an exploration of a design space of AMAT, miss rates, failure

rates, and cache sizes to quantify the improvement in yield and

the corresponding degradation in performance, the latter being

surprisingly low for even a modest number of non-functional

cache lines. Section VI provides some concluding remarks and

a discussion of ongoing and future work specifically pointing

out the opportunities for using the proposed technique to

impact cache power dissipation.

II. RELATED WORK

Our approach extends the techniques proposed in [9], [10]

where faulty cache lines/blocks are mapped to neighboring

cache lines/blocks. This assignment is performed once and

remains fixed. The goal of those efforts was fault tolerance

while performance optimization was not addressed. The scope

of their techniques is limited by the block size (not the same as

cache line size). Traditional techniques of column/row redun-

dancy are limited, for example in the number and distribution

of faulty cells that can be tolerated, and as described in [10],

are improved upon by approaches that utilize re-mapping.

Other approaches include avoiding faulty ways in a set

associative cache [11] or placing code intelligently in faulty set

associative caches to minimize misses [12]. An early proposal

treated accesses to a faulty cache line as a miss [13], i.e.

memory lines which mapped to faulty cache lines were never

brought into the cache. This technique predictably causes rapid

degradation of cache performance as the number of faults

increase. Adding redundant blocks [14], [15] and using error

correcting codes [16] also provide a certain degree of fault

tolerance but remain limited in the number of faults that can be

tolerated. As industry moves into the deep sub-micron region,

an approach that accommodates graceful degradation across a

wider range of process parameters is desirable. In particular,

concurrent optimization of performance and fault tolerance is

desired. Such an approach is described in this paper.

III. FAULT TOLERANT CACHE (FTC) ARCHITECTURE

The operation of the fault tolerant cache is based on a

simple principle - main memory lines which are mapped

to faulty cache lines are mapped to non-faulty cache lines.

The determination of this mapping or placement is driven by

application reference profiles and is under compiler control.

This paper addresses the implementation of fault tolerant direct

mapped caches. Their small hardware footprint and fast hit

times make them attractive for embedded processors. However,

it will be evident that the techniques have natural extensions

to set associative caches.

A. Placement Model

We target embedded processors that typically have a single

level cache and where servicing a miss from off-chip memory

is typically two orders of magnitude slower, e.g., 300 cycles

in the IXP 2800 [17]. In a traditional cache architecture

(Figure 1) the placement policy assigns memory line L to

cache line L mod S where there are S lines in the cache.

CS – Conflict Set

Main Memory
4-line direct mapped

cache
CS0 = {L0,L4}

CS1 = {L1,L5}

CS2 = {L2,L6}

CS3 = {L3,L7}

L0
L1

L7

L2
L3
L4
L5
L6

Fig. 1. Cache with Traditional Placement

L0
L1

Main Memory
4-line direct mapped

cache

L7

CS0 = {L0,L4}

CS1 = {L1,L3,L5,L7}

CS2 = {L2,L6}

CS3 = {}

L2
L3
L4
L5
L6

Faulty Line

CS – Conflict Set

Fig. 2. Cache with Customized Placement

Based on this placement policy, main memory can be viewed

as being partitioned into conflict sets. Each conflict set is the

set of all memory lines that are mapped to the same line in

the cache. In traditional caches, all conflict sets have the same

cardinality.

Now consider a direct mapped cache, a specific operating

supply voltage, and consequently the failure of some memory

cells (as defined in [10]). Assuming a RAM Tag implemen-

tation, tags and lines with failed cells are marked as faulty

lines. Now consider a direct mapped cache where there are f
such faulty lines. If a tag is faulty, the corresponding line is

treated as faulty. The optimization problem is to find a new

assignment of the S conflict sets to the S−f non-faulty cache

lines. The assignment is computed with the goal of minimizing

conflict misses. Conflict sets from the non-faulty cache that are

mapped to the same cache line in the faulty cache are merged.

Thus, we now have S − f conflict sets in the fault tolerant

cache. An example of profile-driven customized placement is

illustrated in Figure 2. The challenges are i) the development

of algorithms to determine the most effective placement policy,

and ii) the efficient implementation of address translation

mechanisms for the customized placement policy. The former

is driven by the locality properties of the reference profile

measured as described in the following section.

B. Capturing Reference Locality

Program execution has been observed to evolve through

phases [18] with each phase being characterized by a working

set of memory references. Within a phase, program refer-

ence behavior exhibits spatial and temporal reference locality

around a set of memory locations. Group temporal locality

has been defined as behavior wherein memory references in

a phase that are not spatially local, are temporally local, i.e.,

they are clustered in time [19]. For example, when access to a

data element allocated on the heap is strongly correlated (i.e.,

invariably followed by) an access to a local variable allocated

on the stack. Studies have proposed various metrics [19]–[21]

for capturing group temporal locality.

In the presence of faulty cache lines, multiple conflict sets

are mapped to a non-faulty cache line. In doing so, we expect

that the number of conflict misses to this cache line will

increase. The optimization problem is to find an assignment

of conflict sets to cache lines that will minimize the increase

in conflict misses in the FTC. Conflict sets that exhibit group

temporal locality are poor candidates for sharing a cache line.

To identify good candidates for sharing a cache line, we define

an affinity metric called interference potential as a measure of

group temporal locality between conflict sets.

A memory reference trace is partitioned into contiguous

segments of references called windows where each window

represents a program execution phase. For window w the

number of references to cache line i is defined as r(w, i).
In this study, the interference potential between conflict sets i
and j is min(r(w, i), r(w, j)) - representative of the potential

increase in the number of conflict misses in window w if

conflict sets i and j are mapped to the same cache line in

that window. The interference potential between two conflict

sets for the application is the sum of the interference potential

between the conflict sets across all windows.

C. Fault Tolerant Placement Policies

We evaluate two placement policies for fault tolerant direct

mapped caches. The first is a profile-agnostic policy that

is representative of existing approaches to handle faulty

cache sets [9], [10]. The second is a proposed profile-driven

placement policy customized from a reference stream.

1) Modulo Placement: Modulo placement is employed

in existing fault-free caches and is representative of fixed

alternatives realized by existing proposals for by-passing faulty

cache sets or lines [9], [10]. Consider a cache with f faulty

lines and S−f non faulty lines that are addressed contiguously

0 through (S − f). Main memory line L is mapped to

L mod (S−f). The practical difficulty is performing modulo

(S − f) arithmetic on every cache access. Since the fault

pattern is not known a priori, address translation must be pro-

grammable. Thus, the decoder has to be programmed such that

faulty sets in the cache are bypassed. Similar implementations

are described in [9], [10]. For comparison purposes we use the

implementation of address translation for custom placement to

also implement modulo placement. This is shown in Figure 3,

where a lookup table is used to perform the modulo function

and bypass faulty lines.

Depending on the fault pattern, two lines with the same tag

can now map to the same non-faulty cache line. Therefore to

ensure unique tags across all memory lines that map to cache

line, the new tags are comprised of the old tags concatenated

with the index bits. For example, in Figure 2, if the line size

was 16 bytes, memory addresses 0x00000010 and 0x00000070

map to the same line in the faulty cache (line 1), but the

original higher order tag bits (0x000000 in both cases) are

not sufficient to identify the memory location uniquely. If the

index bits are concatenated with the old tag, the tags are now

0x0000001 and 0x0000007 respectively, which can be used to

differentiate the memory lines.

2) Customized Placement: The goal of customized place-

ment is to map conflict sets to non-faulty lines so as to

minimize conflict misses. The algorithm for determining such

a placement is outlined in Algorithm 1. The number of conflict

sets in the original cache is S, which is equal to the number

of cache lines in a direct-mapped cache and the total number

of windows is W . The input to the algorithm consists of the

reference count per cache line per window for all cache lines,

r[S][W], the interference potential matrix, ip[S][S] and the

number of faulty lines f . Algorithm lines 1-3 initialize the

placement, by mapping each conflict set in the original fault-

free cache to the corresponding cache line. This if followed

by an iterative traversal of the interference potential matrix to

i) select the conflict set pair with the minimum interference

potential, ii) merge them to form a new conflict set (lines 5-6)

and iii) update the interference potential matrix and reference

counts (lines 7-8). The algorithm terminates after f merges,

i.e. the number of new conflict sets have been made equal

to the number of fault-free cache lines. At this point the S
conflict sets in the fault-free cache have been assigned to the

S−f cache lines. Note that multiple conflict sets in the fault-

free cache can be mapped to a single cache line. The algorithm

returns a placement map[S], which maps conflict sets in the

original cache to fault-free cache line. Note that all conflict
sets are re-mapped - not just those sets that are mapped to
faulty-cache lines! The only requirement is that there are f
merge operations. This enables a tighter control of AMAT as

the number of faulty lines increases. Hence, a final update of

the map[S] array is required (line 9), where the mappings of

the conflict sets are updated such that they point to fault free

lines in the cache.

Address translation is achieved using a lookup table as

shown in Figure 3. Main memory addresses are translated via

a lookup table, which is indexed by the original cache index

(i.e. the index for the fault-free case), the output of which

contains the new cache line to which a memory address is

mapped. The width of the tag array is increased by the size of

the index to differentiate distinct memory lines as in the case

of the modulo fault tolerance scheme. Faulty cache lines are

never activated.

IndexTag Offset

=? Mux

Hit/Miss

Tag Array Data Array

Data

Lookup
Table

(2i Entries)

t+i

i

t+i

i

t

New Tag

D
ec

od
er

i
Faulty
Line

This line is
never activated

i

Fig. 3. Custom Placement Implementation

Algorithm 1 Placement Algorithm for FTC

Input: r[S][W], f, ip[S][S]
Output: map[S]

1: for iter = 0 to S − 1 do
2: map[iter] = iter {Initialize}
3: end for
4: for iter = 1 to f do
5: find i, j s.t. ip[i][j] = min(ip[S][S]) {Find conflict

sets having minimum ip}
6: map[j] = map[i] {Merge the two conflict sets}
7: update(r[S][W]) {Update reference counts}
8: update(ip[S][S]) {Update the ip matrix}
9: end for

10: update(map[S]) {Update to remove mapping to faulty

lines}
11: return map[S]

IV. EVALUATION METHODOLOGY

The probability of a cache line being faulty is assumed to

be normally distributed with mean µ and standard deviation σ.

The following assumptions underly our model. We assume

the fault detection model in [10], where the cache has BIST

circuitry which identifies defects and errors post fabrica-

tion and marks faulty SRAM cells. Access time failures or

read/write failures due to process variation as considered faulty

behavior. If a single bit in a cache line or tag is faulty the entire

line is marked faulty. An S-bit register records the result of the

BIST operation. The contents of this register can be read by

compiler/configuration software. The customized placement is

loaded by the compiler into the lookup table.

The fault tolerant cache placement schemes were simulated

using valgrind [22]. The area, latency and power estimates

were derived using cacti [23]. The kernels that were analyzed

belong to the mibench embedded benchmark suite [24] which

covers a broad domain of embedded system kernels. With a

target of embedded processors, we focus on smaller caches

where the impact of parameter variations is expected to

(relatively) higher and the benefits of the proposed approach

the greatest. The miss penalty used in our analysis was as 100

cycles for a 32-byte cache line predicated on off-chip DRAM

accesses of 100-300 cycles [17]. The miss penalties for 64-byte

and 128-byte cache lines were 108 and 124 cycles respectively,

with the memory bank model used in [25]. We used a fixed

window size in our analysis, 100000 references, which was

about 1% of the trace length for most of the mibench kernels.

V. RESULTS AND ANALYSIS

A. Fault Tolerance

Figure 4 compares the performance of a fault tolerant

cache using a modulo scheme and one using the customized

placement scheme. It is observed that the performance degra-

dation for the customized placement cache in terms of AMAT

is less than 5% with 12.5% of the cache faulty, and the

degradation is only 20% when 50% of the cache is faulty,

compared to degradations of 10% and 60% for the modulo

scheme respectively. As the percentage of cache area that is

faulty nears 100%, the difference between the two schemes

will be less noticeable, as both techniques will yield very

high miss rates. The better performance of the customized

placement cache is due to the more efficient sharing of cache

resources among memory lines. Since, the conflict sets that

are grouped together (equivalently merged) have a relatively

lower interference potential, the impact on miss rates and

hence AMAT and cache performance are reduced.

From Figure 6, it is observed that for larger caches using

customized placement, the AMAT remains flat for a higher

percentage of faulty cache area. This is because, the AMAT

will not be affected as long as the number of fault-free lines

in the cache is larger than the application footprint. Thus, the

slope of the curves decrease as the cache size increases. The

AMAT shown in Figures 4 and 6 represent AMAT averaged

over the mibench kernels. Figure 5 captures the performance

variation of the individual mibench kernels with faults. From

Figure 5, it is seen that for certain benchmarks, the perfor-

mance degradation is less than 5% even with 50% of the cache

area being faulty using the customized placement FTC. Thus

customized placement shares cache resources effectively, that

even with the effective cache being halved, there is very little

(< 5%) performance degradation. The trends were found to

be similar with varying cache line sizes.

B. Area, Latency and Power

The area and latency impact of the fault tolerant cache were

measured using cacti [23]. The area impact for a 4K direct

mapped cache with 32 byte lines is a lookup table consisting

of 128 7-bit entries plus an additional 128∗7 bits of increased

tag store and a 128-bit register where the fault status of the

cache lines are stored which together constitute approximately

5% of the overall cache area. For a 16K cache with 128 byte

lines, the increased storage is again 310 bytes, which is less

than 2% of the overall cache area.

 4

 6

 8

 10

 12

80.050.012.53.00.0

A
M

A
T

(c
yc

le
s)

 w
ith

 a
 4

K
 3

2-
by

te
 C

ac
he

Percentage of cache area faulty

Modulo placement scheme
Customized placement scheme

Fig. 4. Modulo Vs Custom Placement

 0

 10

 20

shastrsusanqsortpatricialamejpegdijkstraadpcm

A
ve

ra
ge

 m
em

or
y

la
te

nc
y

(c
yc

le
s)

 w
ith

 a
 4

K
 3

2-
by

te
 F

TC

Benchmarks

No faults
3.0% cache area faulty

12.5% cache area faulty
50% cache area faulty
80% cache area faulty

Fig. 5. AMAT Variation with Faults

 2

 4

 6

 8

 10

 12

 14

-10 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
(c

yc
le

s)
 fo

r F
TC

Percentage area of cache faulty

4KB cache with 32 byte lines
8KB cache with 64 byte lines

16KB cache with 128 byte lines

Fig. 6. AMAT Variation with Faults for Various Cache Configurations

The access time for an 4K direct mapped cache with 32

byte lines is 0.48 ns (0.58 ns for a 16KB, 128 byte line

cache) using 90 nm technology, whereas the added latency

for the lookup is 0.23 ns (comprising mainly of the decoding

latency necessary for indexing the lookup table). Thus, the

combined access time of the variable placement cache is

around 0.7 ns. Though the added latency is significant, for

an embedded processor running at 1.2 GHz, the access can

be performed within one cycle. However, modern embedded

processors typically operate at 250-500 MHz and therefore

the separate lookup stage will not adversely affect the AMAT.

Larger the cache size or higher the associativity, the impact of

the additional latency will be reduced considerably (e.g. for

a 16KB cache, the lookup table increases latency by 30%, as

opposed to nearly 45% for a 4KB cache). Note that for the

modulo fault tolerant scheme, the hardware implementation of

the address translation is also on the critical path, although the

impact is not significant.

Since the lookup table size is very small compared to

the cache size, and additionally, there are no tags or muxes

required, the energy consumed by the lookup table is again

concentrated in the decoding circuitry. This adds about 12%

power increase to a 4K cache, and the impact again diminishes

with larger caches and caches with higher associativity (e.g.

for a 4K 4-way cache, the increase is approximately 2.5%,

and for a 16 KB cache the increase is 8%).

C. Performance Yield

Performance yield recognizes that at the micro-architecture

level yield is measure of the ability to meet performance

goals and it is not a measure of identification of defect-free

substructures. Thus we measure yield as the percentage of

implementations (for convenience we use the term die) that

produce an AMAT that deviate no more than 5% from the

non-faulty die. The simulations were carried out for 1000 dies

and for various µ, σ values of the number of faulty cache lines.

The measured AMAT was a averaged across all of the kernels.

Those die whose AMAT was within 5% of the averaged

AMAT for non-faulty designs were classified as usable die.

The results are summarized in Table I.

From Table I, it is observed that the number of usable dies

is substantially higher for the customized placement scheme

over the modulo placement scheme. For a distribution with

σ = 8 and µ = 8, it is seen that die yield is over 85%

for the customized placement scheme compared to 27% for

the modulo placement scheme. The difference in the number

of usable dies is noticed to be significant irrespective of the

fault distribution. If the application footprint fit into the set

of fault free lines, the difference in yield is not expected

to be significant. However, in practice we expect this to be

rarely the case. Further, the results suggest a strategy of using

smaller caches to save area and power with minimal sacrifice

is performance. This performance loss may well be recovered

by putting the recovered silicon area to good use, e.g., larger

register file.

Note the importance of the definition of yield - it includes a

measure of performance. This is a more stringent requirement

than simply requiring that the design tolerate faults and enable

the die to be functional. Therefore, if a weaker definition of

yield sufficed, the number of usable die would be higher.

Finally, a better definition of yield would include binning by

µ, σ Dies usable with Dies usable with
Mod. Placement Cust. Placement

1,2 921 998
1,8 380 958
2,2 820 990
4,4 604 984
4,8 355 925
8,8 279 859

16,16 130 612

TABLE I

PERFORMANCE YIELD COMPARISON

frequency and power (leakage). That is the subject of current

efforts.

VI. FUTURE EXTENSIONS & CONCLUDING REMARKS

While this paper centered around direct mapped caches,

the extensions to set-associative caches are straight-forward -

merging conflict sets to share fault free sets and to share sets

where some lines may be faulty. An unexplored dimension is

to consider finer granularity of optimization by splitting and

re-composing conflict sets. Thus a heavily used conflict set

may be assigned multiple lines in the cache or multiple sets in

a set associative cache. Further once the placement function is

placed under compiler control, optimization may span program

regions and become subject to run-time manipulation and

improvement. It remains to be seen whether such fine grained

management will be productive.

From Figure 6, it is noted that the average AMAT across the

benchmark kernels degrades by 20% when 50% of the cache

lines in a direct mapped cache are faulty and this envelope

is pushed further for larger caches. The AMAT degradation is

negligible when 15% of the cache area is faulty. For many indi-

vidual kernels (e.g. sha, qsort, lame, susan etc.), it is observed

that the degradation is very low even with 50% of the cache

area being faulty. Lowering Vdd, produces power savings,

but increases error rate and thus adversely affect performance

(AMAT). Since the customized placement scheme mitigates

the effect of errors on AMAT, we hypothesize that this can

be used to further lower Vdd. A separate branch of our work

is focussed on adaptive power management built on accurate

models of devices that incorporate failure modes, leakage

power, short circuit power etc. The goal is to adaptively trade-

off bit error rate, power, and performance inspired by the work

with microprocessor datapaths [26]. A convergence of these

techniques with the datapath techniques can produce robust

single chip embedded processor power management strategies

for deep sub-micron implementations.

REFERENCES

[1] X. Tang, D. V.K., and M. J.D, “Intrinsic MOSFET parameter fluctuations
due to random dopant placement,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 5, no. 4, pp. 369–376, December
1997.

[2] J. Tschanz, K. A. Bowman, and V. De, “Variation-tolerant circuits:
circuit solutions and techniques.” in DAC, 2005, pp. 762–763.

[3] D. E. Hocevar, P. F. Cox, and P. Yang, “Parametric yield optimization
for MOS circuit blocks,” IEEE Transactions on Computer Aided Design,
vol. 7, no. 6, pp. 645–658, 1988.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture.” in
DAC, 2003, pp. 338–342.

[5] S. Narendra, D. Antoniadis, and V. De, “Impact of using adaptive
body bias to compensate die-to-die variation on within-die variation,”
in ISLPED, 1999, pp. 229–232.

[6] M. Zhang and K. Asanovi, “Fine-grain CAM-tag cache resizing using
miss tags,” in ISLPED, 2002, pp. 130–135.

[7] S. Mukhopadhyay, H. Mahmoodi-Meimand, and K. Roy, “Modeling
of failure probability and statistical design of SRAM array for yield
enhancement in nanoscaled CMOS.” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 24, no. 12, pp. 1859–1880, 2005.

[8] P. Ndai, A. Agarwal, Q. Chen, and K. Roy, “A soft error monitor using
switching current detection,” in ICCD, 2005.

[9] P. P. Shirvani and E. J. McCluskey, “PADded cache: A new fault-
tolerance technique for cache memories,” VTS, vol. 00, p. 440, 1999.

[10] A. Agarwal, B. C. Paul, and K. Roy, “A novel fault tolerant cache to
improve yield in nanometer technologies.” in IOLTS, 2004, pp. 149–154.

[11] O. Y., M. Kashimura, H. Takeuchi, and E. Kawamura, “Fault-tolerant
architecture in a cache memory control LSI,” IEEE Journal on Solid-
State Circuits, vol. 27, no. 4, pp. 507–514, April 1992.

[12] H. R. Zarandi, S. G. Miremadi, and H. Sarbazi-Azad, “Fault detection
enhancement in cache memories using a high performance placement
algorithm,” IOLTS, vol. 00, p. 101, 2004.

[13] D. A. Patterson, P. Garrison, M. Hill, D. Lioupis, C. Nyberg, T. Sippel,
and K. V. Dyke, “Architecture of a VLSI instruction cache for a RISC,”
in ISCA. IEEE Computer Society Press, 1983, pp. 108–116.

[14] P. R. Turgeon, A. R. Steel, and M. R. Charlebois, “Two approaches
to array fault tolerance in the IBM enterprise system/9000 type 9121
processor,” IBM J. Res. Dev., vol. 35, no. 3, pp. 382–389, 1991.

[15] D. Nokolos, “Performance recovery in direct-mapped faulty caches via
the use of a very small fully associative spare cache,” in IPDS. IEEE
Computer Society, 1995, p. 326.

[16] H. L. Kalter, C. H. Stapper, J. E. B. Jr., J. DiLorenzo, C. E. Drake,
J. A. Fifield, G. A. K. Jr., S. C. Lewis, W. B. van der Hoeven, and
J. A. Yankosky, “A 50-ns 16-mb DRAM with a 10-ns data rate and
on-chip ECC,” IEEE Journal on Solid-State Circuits, vol. 25, no. 5, pp.
1118–1128, October 1990.

[17] IXP2800 Network Processor Hardware Reference Manual, Intel Corpo-
ration, November 2002.

[18] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro, vol. 23, no. 6,
pp. 84–93, 2003.

[19] P. Petrov and A. Orailoglu, “Towards effective embedded processors
in codesigns: customizable partitioned caches.” in CODES, 2001, pp.
79–84.

[20] R. M. Rabbah and K. V. Palem, “Data remapping for design space
optimization of embedded memory systems.” ACM Transactions in
Embedded Computing Systems, vol. 2, no. 2, pp. 186–218, 2003.

[21] K. Hazelwood, M. C. Toburen, and T. M. Conte, “A case for exploiting
memory-access persistence,” in Workshop on Memory Performance
Issues, June 2001.

[22] “Valgrind tool suite version - 2.1.2.” [Online]. Available: http:
//www.valgrind.org

[23] “CACTI, HP-Compaq Western Research Lab.” [Online]. Available:
http://research.compaq.com/wrl/people/jouppi/CACTI.html

[24] D. E. Matthew R Guthaus, Jeffrey S Ringenberg, “Mibench: A free,
commercially representative embedded benchmark suite,” in IEEE 4th
Annual Workshop on Workload Characterization, 2001, pp. 1–12.

[25] Hannessy and Patterson, Computer Architecture - A Quantitative Ap-
proach, 3rd Edition. Morgan Kauffman, May 2002.

[26] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler,
D. Blaauw, T. Austin, and T. Mudge, “Razor: A low-power pipeline
based on circuit-level timing speculation,” in IEEE Micro, December
2003. [Online]. Available: http://www.gigascale.org/pubs/426.html

