
FPGA Implementation of High Speed FIR Filters
Using Add and Shift Method

Shahnam Mirzaei, Anup Hosangadi, Ryan Kastner
University Of California, Santa Barbara, CA 93106

E-mail: shahnam@umail.ucsb.edu, anup@ece.ucsb.edu, kastner@ece.ucsb.edu

Abstract-We present a method for implementing high speed

Finite Impulse Response (FIR) filters using just registered adders
and hardwired shifts. We extensively use a modified common
subexpression elimination algorithm to reduce the number of
adders. We target our optimizations to Xilinx Virtex II devices
where we compare our implementations with those produced by
Xilinx CoregenTM using Distributed Arithmetic. We observe up
to 50% reduction in the number of slices and up to 75%
reduction in the number of LUTs for fully parallel
implementations. We also observed up to 50% reduction in the
total dynamic power consumption of the filters. Our designs
perform significantly faster than the MAC filters, which use
embedded multipliers.

I. INTRODUCTION

FPGAs are being increasingly used for a variety of
computationally intensive applications, mainly in the realm of
Digital Signal Processing (DSP) and communications [1-7].
Due to rapid increases in the technology, current generation of
FPGAs contain a very high number of Configurable Logic
Blocks (CLBs), and are becoming more feasible for
implementing a wide range of applications. The high non-
recurring engineering (NRE) costs and long development time
for ASICs are making FPGAs more attractive for application
specific DSP solutions. DSP functions such as FIR filters
and transforms are used in a number of applications such as
communication and multimedia. These functions are major
determinants of the performance and power consumption of
the whole system. Therefore it is important to have good tools
for optimizing these functions.

Equation (I) represents the output of an L tap FIR filter,
which is the convolution of the latest L input samples. L is the
number of coefficients h(k) of the filter, and x(n) represents
the input time series.

y[n] = ∑ h[k] x[n-k] k= 0, 1, ..., L-1 (I)

The conventional tapped delay line realization of this inner
product is shown in Figure 1. This implementation translates
to L multiplications and L-1 additions per sample to compute
the result. This can be implemented using a single Multiply
Accumulate (MAC) engine, but it would require L MAC
cycles, before the next input sample can be processed. Using a
parallel implementation with L MACs can speed up the
performance L times. A general purpose multiplier occupies a
large area on FPGAs. Since all the multiplications are with
constants, the full flexibility of a general purpose multiplier is
not required, and the area can be vastly reduced using
techniques developed for constant multiplication. Though

most of the current generation FPGAs such as Virtex IITM
have embedded multipliers to handle these multiplications, the
number of
these multipliers is typically limited. Furthermore, the size of
these multipliers is limited to only 18 bits, which limits the
precision of the computations for high speed requirements.
The ideal implementation would involve a sharing of the
Combinational Logic Blocks (CLBs) and these multipliers. In
this paper, we present a technique that is better than
conventional techniques for implementation on the CLBs.

+

x

z-1 +

x

z-1 +

x

z-1+

x

z-1

x

z-1

X [n]

y [n]

h0hL-1 hL-2 hL-3 h1

. . .
Figure 1. A MAC FIR filter block diagram

 An alternative to the above approach is Distributed
Arithmetic (DA) which is a well known method to save
resources. Using DA method, the filter can be implemented
either in bit serial or fully parallel mode to trade bandwidth for
area utilization. Assuming coefficients c[n] are known
constants, equation (I) can be rewritten as follows:

 y[n] = ∑ c[n] · x[n] n = 0, 1, …, N-1 (II)

Variable x[n] can be represented by:

x [n] = ∑ xb [n] · 2b b=0, 1, …, B-1 (III)
 xb [n] € [0, 1]

where xb [n] is the bth bit of x[n] and B is the input width.
Finally, the inner product can be rewritten as follows:

y = ∑ c[n] ∑ xb [k] · 2b
 = c[0] (xB-1 [0]2B-1 + xB-2 [0]2B-2 + … + x0 [0]20)
 + c[1] (xB-1 [1]2B-1 + xB-2 [1]2B-2 + … + x0 [1]20)
 + …
 + c[N-1] (xB-1 [N-1]2B-1 + xB-2 [0]2B-2 + … + x0 [N-
 1]20)

= (c[0] xB-1 [0] + c[1] xB-1 [1] + … + c[N-1] xB-1 [N-
 1])2B-1 +(c[0] xB-2 [0] + c[1] xB-2 [1] + … + c[N-1] xB-2 [N-
 1])2B-2

 + …
 + (c[0] x0 [0] + c[1] x0 [1] + … + c[N-1] x0 [N-1])20
= ∑ 2b ∑ c[n] · xb [k] (IV)

 where n=0, 1, …, N-1 and b=0, 1, …, B-1

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

The coefficients in most of DSP applications for the
multiply accumulate operation are constants. The partial
products are obtained by multiplying the coefficients ci by
multiplying one bit of data xi at a time in AND operation.
These partial products should be added and the result depend
only on the outputs of the input shift registers. The AND
functions and adders can be replaced by Look Up Tables
(LUTs) that gives the partial product. This is shown in Figure
2. Input sequence is fed into the shift register at the input
sample rate. The serial output is presented to the RAM based
shift registers (registers are not shown in Figure for simplicity)
at the bit clock rate which is n+1 times (n is number of bits in
a data input sample) the sample rate. The RAM based shift
register stores the data in a particular address. The outputs of
registered LUTs are added and loaded to the scaling
accumulator from LSB to MSB and the result which is the
filter output will be accumulated over the time. For an n bit
input, n+1 clock cycles are needed for a symmetrical filter to
generate the output.

In conventional MAC method with a limited number of
MAC engines, as the filter length is increased, the system
sample rate is decreased. This is not the case with serial DA
architectures since the filter sample rate is decoupled from the
filter length. As the filter length is increased, the throughput is
maintained but more logic resources are consumed.

Though the serial DA architecture is efficient by
construction, its performance is limited by the fact that the
next input sample can be processed only after every bit of the
current input samples are processed. Each bit of the current
input samples takes one clock cycle to process.

LUT

LUT

+ +

Q

Q
SET

CLR

D

x0[i]
x1[i]
x2[i]
x3[i]

scaling accumulator

<<

x4[i]
x5[i]
x6[i]
x7[i]

Address Data
0000 0
0001 C0

 0010 C0+C1
… …

1111 C0+C1+C2+C3

Figure 2. A serial DA FIR filter block diagram

Therefore, if the input bitwidth is 12, then a new input can be
sampled every 12 clock cycles. The performance of the circuit
can be improved by modifying the architecture to a parallel
architecture which processes the data bits in groups. Figure 3
shows the block diagram of a 2 bit parallel DA FIR filter. The
tradeoff here is performance for area since increasing the
number of bits sampled has a significant effect on resource
utilization on FPGA. For instance, doubling the number of bits
sampled, doubles the throughput and results in the half the
number of clock cycles.
 This change doubles the number of LUTs as well as the
size of the scaling accumulator. The number of bits being
processed can be increased to its maximum size which is the
input length n. This gives the maximum throughput to the
filter. For a fully parallel implementation of the DA filter
(PDA), the number of LUTs required would be enormous. In
this work we show an alternative to the PDA method for
implementing high speed FIR filters that consumes
significantly lesser area and power.

LUT

LUT

+

x0[i]x1[i]x2[i]
x3[i]

LUT

LUT

+

+

Q

Q
SET

CLR

D

scaling accumulator

<<

+

x4[i]x5[i]x6[i]
x7[i]

x0[i+1]
x1[i+1]
x2[i+1]
x3[i+1]

x4[i+1]
x5[i+1]
x6[i+1]
x7[i+1]

Figure 3. A 2 bit parallel DA FIR filter block diagram

 A popular technique for implementing the transposed

form of FIR filters is the use of a multiplier block, instead of
using multipliers for each constant as shown in Figure 4. The
multiplications with the set of constants {hk} are replaced by
an optimized set of additions and shift operations, involving
computation sharing. Further optimization can be done by
factorizing the expression and finding common
subexpressions. The performance of this filter architecture is
limited by the latency of the biggest adder and is the same as
that of the PDA.

 Figure 4. Replacing constant multiplication by multiplier block

The main contribution in this paper is the development of a
novel algorithm for optimizing the multiplier block for FIR
filters, using a modified algorithm for common subexpression
elimination. The goal of the algorithm is to produce a filter
that can provide the maximum sample rate with the least
amount of hardware. Our algorithm takes into account the
specific features of FPGA slices to reduce the total number of
occupied slices. The reduced number of slices also leads to a
reduction in the total power on the FPGA.

We compare our results with the industry standard Xilinx
CoregenTM, where we compare the total area and power
consumption.

The rest of the paper is organized as follows: Section 2
presents some related work. In Section3, we describe our filter
architecture. In Section 4, we present our optimization
algorithm for reducing the total area of the design. In Section
5, we describe our experimental setup and present our results.
Finally we conclude the paper in Section 6.

II. RELATED WORK

 Multiplications with constants have to be performed in
many signal processing and communication applications such
as FIR filters, audio, video and image processing. Since
implementing a general purpose multiplier is expensive on an
FPGA and since we do not really need such a multiplier, when
one of the operands is a constant, there has been a lot of work

on deriving efficient structures for constant multiplications [8-
13]. All these techniques are based on computing constant
multiplications using table lookups and additions. The method
of Distributed Arithmetic [12, 14] which is the most popular
method for implementing Multiplierless FIR filters, is also
based on table lookup. The XilinxTM CORE Generator has a
highly parameterizable, optimized filter core for implementing
digital FIR filters [12]. based on both Distributed Arithmetic
as well as MAC (Multiply Accumulate) based architectures. It
generates synthesized core that targeting a wide range of
Xilinx devices. The MAC based implementations make use of
the embedded DSP slices on the FPGA devices. In this work,
we primarily compare our technique with the Coregen
implementation of the Distributed Arithmetic, since that also
is a Multiplierless technique. We show that our designs are
much more area efficient than the DA based approach for fully
parallel filters. We also compare our method with MAC based
implementations, where we achieve significantly higher
performance
 Though there has been a lot of work on optimizing
constant multiplications using adders and employing
redundancy elimination [15-19] , they have not been
effectively used for FIR filter design. The closest work to
implementing filters with adders is in [20], FIR filters are
implemented using the Add and Shift method. Canonical
Signed Digit (CSD) encoding is used for the coefficients to
minimize the number of additions. The paper discusses how
high speed implementations can be achieved by registering
each adder, due to which the critical path becomes equal to the
delay of the adder. Registering an adder output comes at no
extra cost on an FPGA because of the presence of a D flip flop
at the output of each LUT. In comparison with [20], we
extensively use common subexpression elimination for
reducing the number of adders and therefore area.
Furthermore, our designs can run with sample rates as high as
252 Msps (Million samples per second), whereas the designs
in [20] can run only at 78.6 Msps.
 In comparison with the other algorithms for common
subexpression elimination [15, 16, 18, 19, 21], our method
takes into account the structure of the FPGA slices (Figure 5)
and takes into account both the cost of adders and registers
when performing the optimization. Furthermore, we provide
comprehensive evidence of the benefits of our technique
through experimental results, where we compare our results
with those produced by industry standard tools.

III. FILTER ARCHITECTURE

 We base our filter architecture on the transposed form of
the FIR filter as shown in Figure 1. The filter can be divided
into two main parts, the multiplier block and the delay block,
and is illustrated in Figure 4. In the multiplier block, the
current input variable x[n] is multiplied by all the coefficients
of the filter to produce the yi outputs. These yi outputs are then
delayed and added in the delay block to produce the filter
output y[n].

We perform all our optimizations in the multiplier block.
The constant multiplications are decomposed into registered
additions and hardwire shifts. The additions are performed
using two input adders, which are arranged in the fastest tree
structure. We use registered adders, so that the performance of
the filter is only limited by the slowest adder. We use common
subexpression elimination extensively, to reduce the number
of adders, which leads to a reduction in the area. To
synchronize all the intermediate values in the computation, we
insert registers in the dataflow, wherever necessary.

LUT

Q

Q
SET

CLR

D

Logic Block 2

X1
y1LUT

Q

Q
SET

CLR

D

Logic Block 2

X1
y1

LUT

Q

Q
SET

CLR

D

Logic Block 1

X0
y0 LUT

Q

Q
SET

CLR

D

Logic Block 1

X0
y0 s'0

s'1

s0

s1

+ + z-1s s'X

y

X

y

carry carry

 (a) (b)

Figure 5. Registered adder at no additional cost

 Performing subexpression elimination can sometimes
increase the number of registers substantially, and the overall
area could possibly increase. Consider the two expressions F1
and F2 which could be part of the multiplier block.

Figure 6 shows the original unoptimized expression trees.
Both the expressions have a minimum critical path of two
addition cycles. These expressions require a total of six
registered adders for the fastest implementation, and no extra
registers are required. From the expressions we can see that
the computation A + B + C is common to both the
expressions. If we extract this subexpression, we get the
structure shown in Figure 7. Since both D and E need to wait
for two addition cycles to be added to (A + B + C), we need to
use two registers each for D and E, such that new values for
A,B,C,D and E can be read in at each clock cycle. Assuming
that the cost of an adder and a register with the same bitwidth
are the same, the structure shown in Figure 7 occupies more
area than the one shown in Figure 6. A more careful
subexpression elimination algorithm would only extract the
common subexpression A + B (or A+C or B + C). The number
of adders is decreased by one from the original, and no
additional registers are added. This is illustrated in Figure 8.
The algorithm for performing this kind of optimization is
described in the next section.

Figure 6. Unoptimized expression trees

Figure 7. Extracting common expression (A + B + C)

F1 = A + B + C + D
F2 = A + B + C + E

Figure 8. Extracting common subexpression (A+B)

IV. OPTIMIZATION ALGORITHM

 The goal of our optimization is to reduce the area of the
multiplier block by reducing the number of adders and any
additional registers required for the fastest implementation of
the FIR filter. We first give a brief overview of the common
subexpression elimination methods. A detailed description can
be found in [22]. We then present the modified optimization
algorithm to be used for our work.

A. Overview of common subexpression elimination
 We use a polynomial transformation of constant
multiplications. Given a representation for the constant C, and
the variable X, the multiplication C*X can be represented as a
summation of terms denoting the decomposition of the
multiplication into shifts and additions as

C*X = ∑±
i

iXL (V)

The terms can be either positive or negative when the
constants are represented using signed digit representations
such as the Canonical Signed Digit (CSD) representation. The
exponent of L represents the magnitude of the left shift and the
i’s represent the digit positions of the non-zero digits of the
constants. For example the multiplication 7*X = (100-1)CSD*X
= X<<3 – X = XL3 – X, using the polynomial transformation.
 We use the divisors to represent all possible common
subexpressions. Divisors are obtained from an expression by
looking at every pair of terms in the expression and dividing
the terms by the minimum exponent of L. For example in the
expression F = XL2 + XL3 + XL5, consider the pair of terms
(+XL2 + XL3). The minimum exponent of L in the two terms
is L2. Dividing by L2, we get the divisor (X + XL). From the
other two pairs of terms (XL2 + XL5) and (XL3 + XL5), we get
the divisors (X + XL3) and (X + XL2) respectively.
 These divisors are significant, because every common
subexpression in the set of expressions can be detected by
performing intersections among the set of divisors.

B. Optimization algorithm

 We first calculate the minimum number of registers
required for our design. We calculate this by arranging the
original expressions in the fastest possible tree structure, and
then inserting registers. For example, for the six term
expression F = A + B + C + D + E + F, we have the fastest
tree structure with three addition steps, and we require one
register to synchronize the intermediate values, such that new
values for A,B,C,D,E,F can be read in every clock cycle. This
is illustrated in Figure 9.
We first generate all the divisors for the set of expressions
describing the multiplier block. We then use an iterative
algorithm, where we extract the divisor that has the greatest

Figure 9. Calculating registers required for fastest evaluation

value. To calculate the value of the divisor, we assume that the
cost of a registered adder and a register is the same. We
calculate the value of a divisor as the number of additions
saved by extracting it minus the number of registers that have
to be added. After selecting the best divisor, we rewrite the
expressions using it. We then generate new divisors from the
new terms that have been generated due to rewriting, and add
them to the dynamic list of divisors. The iteration stops when
there is no valuable divisor remaining in the set of divisors.

Consider the expressions shown in Figure 6. We need six
registered adders and no additional registers for the fastest
evaluation of F1 and F2. Now consider the selection of the
divisor d1 = (A+B). This divisor saves one addition and does
not increase the number of registers. Divisors (A + C) and (B
+ C) also have the same value, but (A+B) is selected
randomly. The expressions are now rewritten as:

Figure 10. Optimization algorithm to reduce area

ReduceArea({Pi})
{
 {Pi} = Set of expressions in polynomial form;
 {D} = Set o f divisors = ϕ ;

 //Step 1: Creating divisors and calculating minimum
 number of registers required

 for each expression Pi in {Pi}
 {
 {Dnew} = FindDivisors(Pi);
 Update frequency statistics of divisors in {D};
 {D} = {D} ∪ { Dnew};
 Pi->MinRegisters = Calculate Minimum registers required
 for fastest evaluation of Pi ;
 }

 //Step 2: Iterative selection and elimination of best divisor
 while(1)
 {

 Find d = Divisor in {D} with greatest Value;
 // Value = Num Additions reduced – Num Registers Added;

 if(d == NULL) break;
 Rewrite affected expressions in {Pi} using d;

 Remove divisors in {D} that have become invalid;
 Update frequency statistics of affected divisors;

 {Dnew} = Set of new divisors from new terms added

 by division;
 {D} = {D} ∪ {Dnew};

 }
}

d1 = (A + B)
F1 = d1 + C + D
F2 = d1 + C + E

After rewriting the expressions and forming new divisors, the
divisor d2 = (d1 + C) is considered. This divisor saves one
adder, but introduces five additional registers, as can be seen
in Figure 7. Therefore this divisor has a value of - 4. No other
valuable divisors can be found and the iteration stops. We end
up with the expressions shown in Figure 8.

V. EXPERIMENTS

 The goal of our experiments was to compare the number of
resources consumed by our add and shift method with that
produced by the cores generated by the commercial
CoregenTM tool, based on Distributed Arithmetic. Besides the
resources, we also compared the power consumption of the
two implementations, and also measured the performance. For
our experiments, we considered 9 FIR filters of various sizes
(6, 10, 13, 20, 28, 41, 61, 119 and 151 tap filters). We targeted
the Xilinx Virtex II device for our experiments. The constants
were normalized to 17 digit of precision and the input samples
were assumed to be 12 bits wide. For the add and shift
method, we decomposed all the constant multiplications into
additions and shifts and optimized the expressions using the
algorithm explained in Section 4.2. We used the Xilinx
Integrated Software Environment (ISE) for performing
synthesis and implementation of the designs. All the designs
were synthesized for maximum performance.
 Table 1a shows the resources utilized for the various filters
and the performance in terms of Million samples per second
(Msps) for the filters implemented using the add and shift
method. Table 1b, shows the same numbers for the filters
implemented using Xilinx Coregen, using the Parallel
Distributed Arithmetic (PDA) method.

Table 1a. Filter Synthesis using Add Shift method

Figure 11 plots the reduction in the number of resources, in
terms of the number of Slices, Look Up Tables (LUTs) and
the number of Flip Flops (FFs). From the results, we can
observe an average reduction of 58.7% in the number of
LUTs, and about 25% reduction in the number of slices and
FFs. Though our algorithm does not optimize for performance,
the synthesis produces better performance in most of the
cases, and for the 13 and 20 tap filters, we observe about 26%
improvement in performance.

Table 1b. Filter Synthesis using Coregen (PDA method)

Reduction in Resources

0

10

20

30

40

50

60

70

80

6 10 13 20 28 41 61 119 152

of Taps

%
 R

ed
uc

tio SLICEs
LUTs
FFs

Figure 11. Reduction in resources

Figure 12 compares power consumption for our add/shift

method versus CoregenTM. From the results we can observe up
to 50% reduction in dynamic power consumption. We did not
include the quiescent power into our calculation since that
value is the same for both methods. The power consumption is
the result of applying the same test stimulus to both designs
and measuring the power using XPower tools provided by
Xilinx ISE software.

Dynamic Power Consumption

0
200
400
600
800

1000
1200
1400
1600

6 10 13 20 28 41 61 119

Filter size (# of taps)

Po
w

er
 (m

w

Add/Shift
Coregen

Figure 12. Power consumption

Comparison with MAC filters using embedded multipliers

CoregenTM can produce FIR filters based on the Multiply
Accumulate (MAC) method, which makes use of the
embedded multipliers and DSP blocks. We implemented the
FIR filters using the MAC method to compare the resource
usage and performance with our add and shift method. Due to
tool limitations we had to do the experiments for Virtex IV
device . We present the synthesis results in terms of number of
slices on the Virtex IV device and the performance in Msps in
Table 2.

Table 2. Comparing with MAC filter on Virtex IV

From the table, it can be seen that the MAC filter uses fewer
number of slices compared to the add-shift method, but it also

Filter
(# taps) Slices LUTs FFs Performance

(Msps)
6 264 213 509 251

10 474 406 916 222
13 386 334 749 252
20 856 705 1650 250
28 1294 1145 2508 227
41 2154 1719 4161 223
61 3264 2591 6303 192
119 6009 4821 11551 203
151 7579 6098 14611 180

Filter
(# taps) Slices LUTs FFs Performance

(Msps)
6 524 774 1012 245

10 781 1103 1480 222
13 929 1311 1775 199
20 1191 1631 2288 199
28 1774 2544 3381 199
41 2475 3642 4748 222
61 3528 5335 6812 199
119 6484 9754 12539 205
151 8274 12525 15988 199

Add Shift
Method

MAC
filter Filter

(# taps) Slices Msps Slices Msps
6 264 296 219 262

10 475 296 418 253
13 387 296 462 253
20 851 271 790 251
28 1303 305 886 251
41 2178 296 1660 243
61 3284 247 1947 242
119 6025 294 3581 241
151 7623 294 7631 215

uses the DSP blocks available on Virtex IV devices. The
number of DSP blocks is equal to the number of taps of the
filter. The results show that we achieve higher performance as
the filter size increases. This is mainly because that critical
path in our design consists of adders while in MAC method,
critical path consists of multipliers and adders. Another
limitation for MAC method is that Xilinx CoregenTM is limited
to input width of 17 bits due to the embedded DSP block input
limitation while our add and shift method can accept inputs of
any width.

VI. CONCLUSION

In this paper we presented a multiplierless technique,
based on the add and shift method and common subexpression
elimination for low area, low power and high speed
implementations of FIR filters. We validated our techniques
on Virtex IITM devices where we observed significant area and
power reductions over traditional Distributed Arithmetic based
techniques. In future, we would like to modify our algorithm
to make use of the limited number of embedded multipliers
available on the FPGA devices.

VII. REFERENCES

 [1] K.D.Underwood and K.S.Hemmert, "Closing the Gap: CPU and

FPGA Trends in Sustainable Floating-Point BLAS Performance,"
presented at International Symposium on Field-Programmable
Custom Computing Machines, California, USA, 2004.

[2] L.Zhuo and V.K.Prasanna, "Sparse Matrix-Vector Multiplication
on FPGAs," presented at International Symposium on Field
Programmable Gate Arrays (FPGA), Monterey, CA, 2005.

[3] Y.Meng, A.P.Brown, R.A.Iltis, T.Sherwood, H.Lee, and
R.Kastner, "MP Core: Algorithm and Design Techniques for
Efficient Channel Estimation in Wireless Applications," presented
at Design Automation Conference (DAC), Anaheim, CA, 2005.

[4] B. L. Hutchings and B. E. Nelson, "Gigaop DSP on FPGA,"
presented at Acoustics, Speech, and Signal Processing, 2001.
Proceedings. (ICASSP '01). 2001 IEEE International Conference
on, 2001.

[5] A.Alsolaim, J.Becker, M.Glesner, and J.Starzyk, "Architecture and
Application of a Dynamically Reconfigurable Hardware Array for
Future Mobile Communication Systems," presented at
International Symposium on Field Programmable Custom
Computing Machines (FCCM), 2000.

[6] S.J.Melnikoff, S.F.Quigley, and M.J.Russell, "Implementing a
Simple Continuous Speech Recognition System on an FPGA,"
presented at International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2002.

[7] T.Yokota, M.Nagafuchi, Y.Mekada, T.Yoshinaga, K.Ootsu, and
T.Baba, "A Scalable FPGA-based Custom Computing Machine for
Medical Image Processing," presented at International Symposium
on Field-Programmable Custom Computing Machines (FCCM),
2002.

[8] K.Chapman, "Constant Coefficient Multipliers for the XC4000E,"
Xilinx Technical Report 1996.

[9] K. Wiatr and E. Jamro, "Constant coefficient multiplication in
FPGA structures," presented at Euromicro Conference, 2000.
Proceedings of the 26th, 2000.

[10] M. J. Wirthlin and B. McMurtrey, "Efficient Constant Coefficient
Multiplication Using Advanced FPGA Architectures," presented at
International Conference on Field Programmable Logic and
Applications (FPL), 2001.

[11] M.J.Wirthlin, "Constant Coefficient Multiplication Using Look-Up
Tables," Journal of VLSI Signal Processing, vol. 36, pp. 7-15,
2004.

[12] "Distributed Arithmetic FIR Filter v9.0," Xilinx Product
Specification 2004.

[13] T. Sasao, Y. Iguchi, and T. Suzuki, "On LUT Cascade Realizations
of FIR Filters," presented at Euromicro Conference on Digital
System Design (DSD), 2005.

[14] G.R.Goslin, "A Guide to Using Field Programmable Gate Arrays
(FPGAs) for Application-Specific Digital Signal Processing
Performance," Xilinx Application Note, San Jose 1995.

[15] M.Potkonjak, M.B.Srivastava, and A.P.Chandrakasan, "Multiple
Constant Multiplications: Efficient and Versatile Framework and
Algorithms for Exploring Common Subexpression Elimination,"
IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 1996.

[16] R.I.Hartley, "Subexpression sharing in filters using canonic signed
digit multipliers," Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on [see also Circuits and
Systems II: Express Briefs, IEEE Transactions on], vol. 43, pp.
677-688, 1996.

[17] H.T.Nguyen and A.Chatterjee, "Number-splitting with shift-and-
add decomposition for power and hardware optimization in linear
DSP synthesis," Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 8, pp. 419-424, 2000.

[18] H.-J. Kang, H. Kim, and I.-C. Park, "FIR filter synthesis
algorithms for minimizing the delay and the number of adders,"
presented at Computer Aided Design, 2000. ICCAD-2000.
IEEE/ACM International Conference on, 2000.

[19] A.Hosangadi, F.Fallah, and R.Kastner, "Reducing Hardware
Compleity of Linear DSP Systems by Iteratively Eliminating Two
Term Common Subexpressions," presented at Asia South Pacific
Design Automation Conference, Shanghai, 2005.

[20] M. Yamada and A. Nishihara, "High-speed FIR digital filter with
CSD coefficients implemented on FPGA," presented at Design
Automation Conference, 2001. Proceedings of the ASP-DAC
2001. Asia and South Pacific, 2001.

[21] H.Safiri, M.Ahmadi, G.A.Jullien, and W.C.Miller, "A new
algorithm for the elimination of common subexpressions in
hardware implementation of digital filters by using genetic
programming," presented at Application-Specific Systems,
Architectures, and Processors, 2000. Proceedings. IEEE
International Conference on, 2000.

[22] A.Hosangadi, F.Fallah, and R.Kastner, "Reducing Hardware
complexity by iteratively eliminating two term common
subexpressions," presented at Asia South Pacific Design
Automation Conference (ASP-DAC), 2005.

