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Abstract—This paper investigates implementation tech-
niques for tile-based chip multiprocessors with Glob-
ally Asynchronous Locally Synchronous (GALS) clocking
styles. These architectures can simplify the physical design
flow since they allow focusing on a single processor when
designing an entire chip. However, they also introduce
challenges to maintain system robustness and scalability.
We propose a physical design flow for these architectures,
investigate timing issues for robust implementations, and
propose methods to take full advantage of their potential
scalability. As a design example, we present data from
a recently implemented single-chip 6×6 tile-based GALS
processing array.

I. INTRODUCTION
It has become increasingly difficult to continue scaling

system performance by increasing clock frequencies using
modern deep submicron fabrication technologies. However,
the recent appearance of chips with multiple processors [1]
shows the promise of combining greater integration with
tile-based chip multiprocessor architectures due to their high
performance, high scalability, and potentially high energy
efficiency. Some recent tile-based chip multiprocessors include
RAW [2], TRIPS [3], Smart Memories [4], and AsAP [5].
The globally synchronous clocking style is encountering

challenges although it is still widely used in most IC systems.
The clocking system is increasingly difficult to design with
larger chip sizes, higher clock rates, larger relative wire delays,
and larger parameter variations [6]. Additionally, high speed
global clocks consume a significant portion of many power
budgets.
Tile-based synchronous chip multiprocessor architectures,

as shown in Fig. 1 (a), have difficulty in taking full advantage
of scalability benefits since the clock tree must be redesigned
when the number of processors in the chip changes—which
can result in a large effort in high performance systems.
Also, clock skew in globally synchronous chips is expected
to increase as the number of processors increases.
The Globally Asynchronous Locally Synchronous (GALS)

clocking style separates processing blocks such that each part
is clocked by an independent clock domain. This approach is
a promising strategy to address many clock design challenges
and can also reduce power consumption by adaptive clock
frequency scaling [7]. Furthermore, when using the GALS
clocking style with a tile-based chip multiprocessor as shown

(a) Globally synchronous

chip multiprocessor with

H-tree clock distribution

(b) GALS chip

multiprocessor

Fig. 1. Block diagrams of (a) Synchronous and (b) GALS tile-based chip
multiprocessors; the small boxes in the right figure are the local oscillators
for each processor

in Fig. 1 (b), scalability is dramatically increased and the
physical design flow is greatly simplified, since a single
processor can be designed and the entire chip can be generated
easily by duplicating a single processor design.
While tile-based chip multiprocessors with GALS clocking

styles provide great benefits, they impose some design chal-
lenges regarding the robust handling of timing issues and limits
in taking full advantage of system scalability.
This paper investigates key issues with the implementation

of tile-based GALS chip multiprocessors. Most of the tech-
niques investigated in the paper have been implemented and
verified in a recent fabrication [5] that is the first tile-based
GALS chip multiprocessor to the best of our knowledge.

A. Physical design flow for a tile-based GALS chip multipro-
cessor

Since each processor including its clock tree can be exactly
the same in a GALS tile-based chip multiprocessor, it provides
near-perfect scalability and greatly simplifies the physical
design flow. One processor design can be easily duplicated
to generate an array processor.
Fig. 2 shows the hierarchical physical design flow for a

tile-based chip multiprocessor with a GALS clocking style.
We assume a local oscillator is used to provide the clock for
each processor, and it is designed separately for more robust
operation. The right column of Fig. 2 shows the physical
design flow for a single processor, and a similar flow also
applies for the oscillator and the entire chip.
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Fig. 2. Hierarchical physical design flow of a tile-based GALS chip
multiprocessor, with details specific to a synthesized standard cell design.
A single processor tile can be replicated across the chip.

II. TIMING ISSUES OF GALS CHIP MULTIPROCESSORS
Although the key features of GALS chip multiprocessors

simplify the physical design flow, they introduce challenges
in handling the timing of signals, including signals within
a single processor, signals between processors, and signals
between chips.
Signals that cross GALS clock domains clearly require

special care. We can classify methods for guaranteeing safe
domain crossing into one of two categories:

• Single transaction handshaking where each data word is
acknowledged before a subsequent word can be trans-
ferred, and a corresponding latency exists for each data
transfer.

• Coarse grain flow control where data words are transmit-
ted without individual acknowledgments. This technique
generally requires larger buffers but can normally sustain
higher throughputs, especially for links with latency that
is significant with respect to the clock cycle time.

In this work, we consider only the second approach due to
its higher throughput and because the larger buffer does not
present a significant penalty when compared to the area of a
coarse block such as a processor.
Figure 3 contains an overview of important timing issues in

GALS chip multiprocessors using coarse grain flow control.
All signals in such interfaces can be classified into three
categories for an example with processor A sending data to
processor B:

• A → B clock: the clock synchronizes the source syn-
chronous signals traveling from A to B. This scheme
requires an extra clock tree to be inserted at processor
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Fig. 3. An overview of timing issues in GALS chip multiprocessors; each
clock domain covers multiple processors and each processor contains multiple
clock domains
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Fig. 4. Configurable logic at the asynchronous boundary in a FIFO; two
clock domains exist within a single processor

B which brings additional timing concerns for inter-
processor communication.

• A→ B signals: includes the data to be sent, and can also
include other signals such as a “valid” signal.

• B → A signals: processor B can send information back
to the source; for example, a flow control signal such as
“ready” or “hold” falls into this category.

Besides this inter-processor communication, there is also the
issue of transferring data across clock domains. A dual clock
FIFO [8] can reliably handle this asynchronous interface, and
is briefly described in the following section.

A. Multiple clock domains within one processor
Figure 4 is a high-level diagram of one dual clock FIFO [8]

with a processor. The FIFO read clock (clk dnstrm) and FIFO
write clock (clk upstrm) are totally unrelated and synchro-
nization logic is necessary at the clock domain boundary
to handle rate matching and the asynchronous metastability
problem. Other methods are possible, but a synchronizer using
multiple flip-flops is most widely used. Although it can not
drive the mean time-to-failure (MTTF) to infinity, it can
make it arbitrarily high [9]. The number of synchronization
registers used is a tradeoff between the synchronizer’s ro-
bustness and the system performance overhead due to the
synchronizer’s latency. The latency to communicate across
the asynchronous boundary is approximately 4 clock cycles
in this example, which is made up of the write logic latency
(1 cycle), synchronization latency (2 cycles if two registers



TABLE I
GALS SYSTEM PERFORMANCE REDUCTION COMPARED TO A

SYNCHRONOUS SYSTEM USING DIFFERENT NUMBERS OF

SYNCHRONIZATION REGISTERS FOR 4 APPLICATIONS

1 reg. 2 reg. 3 reg. 4 reg.
8 × 8 DCT 0.7% 1.4% 2.1% 2.8%
Mergesort 0% 0% 0% 0%
JPEG encoder 0.15% 0.3% 0.45% 0.6%
802.11a/g tx 0.65% 1.3% 1.95% 2.6%
Average 0.37% 0.75% 1.1% 1.5%
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Fig. 5. Three methods for inter-processor communication: (a) sends clock
only when there is valid data; (b) sends clock one cycle earlier and one cycle
later than the valid data; (c) always sends clock

are used), and the read logic latency (1 cycle). Since the
coarse grain source synchronization method is used instead
of the single transaction handshaking method, the throughput
of the asynchronous boundary communication can achieve 1
data word per cycle when the FIFO is not full or empty.
In a relevant example [9], it was estimated that the MTTF

when using one register is measured in years and it will
increase to millions of years for two registers, so a small
number of synchronization registers is sufficient.
Table I shows that the system performance (throughput)

overhead is always quite small for even the case of four
synchronization registers. The applications are simulated on
the AsAP GALS chip multiprocessor with 32-word FIFOs [5].

B. Inter-processor timing issues
Figure 5 shows three strategies to send signals from one

processor to another. Subfigure 5 (a) is an aggressive method
where the clock is sent only when there is valid data (here
we assume the clock is sent out one cycle later than the data
although they can also be in the same cycle). This method has
high energy efficiency, but imposes a strict timing requirement
between the delay of data (Ddata), the delay of clock (Dclk)
and the clock period (T ), as shown in Eq. 1.

thold < Ddata − Dclk < T − tsetup − tclk to Q (1)

Subfigure 5 (c) is a conservative method where the clock is
always active. With this method, the delay of data does not
have to satisfy Eq. 1, as long as data and valid reach processor
B within the same clock period, which results in a system
similar to wave pipelined systems [10] with a slightly modified
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Fig. 6. Relative clock active time and communication power consumption
for the three inter-processor communication methods described in Fig. 5 for
a 2-D 8×8 DCT application
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Fig. 7. Circuit for the Fig. 5 (b) inter-processor communication method

set of timing equations and of course additional constraints
on minimum path times. We propose a compromise method
as shown in Subfigure 5 (b), where the clock starts one cycle
before the data and ends one cycle later than the data. This
scheme has high energy efficiency similar to the aggressive
method since it keeps a relatively low clock active time.
Figure 6 compares the communication power of these three
methods for a 2-dimensional 8×8 DCT application using four
processors, assuming the power is zero when there is no active
clock, and the power is reduced by 50% when there is no
inter-processor data transferring but the clock is running. The
second scheme has a much more relaxed timing requirement
compared to the first method, as shown in Eq. 2. Figure 7
shows a circuit to realize this second scheme.

−T < Ddata − Dclk < 2T (2)

Figure 8 shows a generic implementation for inter-processor
communication where processor A sends signals (including
data, valid, and clock) to processor B. Along the path of
data there are delays in processor A (Ddata A), at the inter-
processor wiring (Ddata w), and in processor B (Ddata B). The
path of clk has a similar makeup. Not considering the clock
tree buffer, the data path and clock path have roughly the
same logic and similar delays. To compensate for the clock
tree delay and to meet the timing requirements, configurable
DLY logic is inserted in both processor A and B as shown in
Fig. 8. Equation 1 can then be simplified as follows:

thold < Dinsert − Dclk tree < T − tsetup − tclk to Q (3)

Here Dinsert and Dclk tree are the delays of inserted logic and
clock tree respectively. Normally the thold, tsetup, and tclk to Q
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Fig. 8. Configurable logic at the inter-processor boundary where one clock
domain covers two processors; GALS style brings an additional clock tree at
the consumer processor

can be neglected since they are generally small compared to
the clock period. Equation 4 lists three delay possibilities for
the inserted delay logic, and the optimal delay for each inserted
gate is shown in Eq. 5 and Eq. 6.

Dinsert = 2DMUX + {0,DDLY , 2DDLY } (4)
DMUX = Dclk tree/2 (5)

DDLY = T/2 (6)

As a typical example, if the clock tree delay is 6 Fanout-of-4
(FO4) delays and the clock period is 20 FO4; then the optimal
delays for MUX and DLY gates are: DMUX = 3 FO4, and
DDLY = 10 FO4.
The third type of signal consists of signals that flow in a

direction opposite to the clock signal. As illustrated in Fig. 8,
a common example of such a signal is the FIFO full signal.
Such signals do not need to match delays with others so they
are relatively easy to handle, but they can not be too slow so
they arrive in the correct clock period. The timing constraints
discussed below handle this requirement.
Previously discussed circuits match the delay according to

logic delays, but the real circuit delay is also highly dependent
on wiring and gate loads. Specific input delay and output delay
constraints clearly quantify circuit timing requirements. The
value of input delays and output delays should follow Eqs. 7
and 8 for the architecture shown in Fig. 8.

output delay = T − Ddata A (7)
input delay = T − Ddata B (8)

If T = 20 FO4, DDLY = 10 FO4, DMUX = 3 FO4,
and output logic at processor A is 2 FO4, then Ddata A =
15 FO4 and output delay should be 5 FO4. Input delay can
be calculated similarly. Table II lists delays for one example
case study.

C. Inter-chip timing issues
Similarly to the case of inter-processor communication,

inter-chip communication presents timing challenges as illus-
trated in Fig. 9. Besides the delay at the producer processor

TABLE II
TYPICAL TIMING CONSTRAINT VALUES FOR PROCESSOR INPUT AND

OUTPUT DELAYS

Constraint Signals Reference clk Value
input delay data in clk dnstrm 5 FO4
input delay valid in clk dnstrm 5 FO4
input delay FIFO full in clk upstrm 10 FO4
output delay data out clk upstrm 5 FO4
output delay valid out clk upstrm 5 FO4
output delay FIFO full out clk dnstrm 10 FO4
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data

clk

Chip 1 Chip 2

DA1 DB1

Fig. 9. Inter-chip communication

(DA1) and consumer processor (DB1), there is also delay at
the chip A boundary (DA2), chip B boundary (DB2), and the
inter-chip delays including pads, package, and printed circuit
board delays (D1→2). The three communication schemes
shown in Fig. 5 also apply to inter-chip communication and the
configurable delay logic embedded into each processor shown
in Fig. 8 is still valuable to adjust the data delay for inter-
chip communication. Due to the more complex environment
with inter-chip communication, Fig. 5 (b) and (c) methods are
preferred.

III. SCALABILITY ISSUES OF GALS CHIP
MULTIPROCESSORS

Tile-based architectures and GALS clocking styles improve
the scalability of systems and allow adding more processors
easily into the chip. But some additional issues must still be
considered to take full advantage of its potential scalability.
The key idea is to try to avoid or isolate all global signals
if possible, so that multiple processors can be directly tiled
without further changes.

A. Clocking and buffering of global signals
The GALS style avoids making the most important signal

a global one: the clock. Signals discussed in previous sec-
tions are all local signals which run within one processor
or travel at the boundary of two processors, so they can be
controlled by a full speed clock. But it is likely that there
are some unavoidable global signals such as configuration
and test signals. These global signals can be pipelined into
multiple segments [11] and still run at full speed; or can
use totally asynchronous communication to avoid clock con-
straints [12]—both of these methods significantly increase
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Fig. 11. An example power distribution scheme with power wires reaching
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design difficulty. We note that many necessarily global signals
are related to functions that are either seldom used in normal
operation, or are typically used at powerup time. Therefore,
making them run at slow speed in many cases does not
strongly affect system performance. A dedicated low-speed
clock can then be used to control these less-critical global
signals. These signals can be fed through each processor with
internal wiring and buffering, to increase their driving strength
and to enable them to be directly connected to an adjacent
processor without any intermediary circuits at all. Figure 10
illustrates this scheme.

B. Power distribution
Power distribution can also be viewed as a global signal and

deserves special consideration. In order to enable processors
to directly abut each other without any further modifications,
a complete power grid for each single processor should be
designed. The width of metal power wires must be carefully
considered to meet the voltage supply requirement, according
to Eq. 9, where V2−Vorig is the allowable voltage drop, I is the
estimated current for the entire chip (not a single processor),
L and w are the length and width of the metal wire, and ρ is

Proc B

Proc A

Fig. 12. Pins connections between two vertical processors; nearly directly
abutting each other enables very short wires

the metal’s resistivity per unit length and width.

I × ρL

w
= V2 − Vorig (9)

Figure 11 shows a complete power distribution example for
a single processor using 6 metal layers, which is common in
0.18µm technology. Metal 5 and 6 are used for global power
distribution with wide wires, and Metal 1 and 2 are used to
distribute power to each gate with narrower wires. VIAs are
placed between Metal 6 and 5, Metal 5 and 2, and Metal 2
and 1. Power grids reach out of the core to the tile boundary
and enable processors to directly abut others at the chip level.
A related issue with processor power distribution is the

power plan for the local oscillator, if one exists. To get clean
clock power, the local oscillator should be placed and routed
separately and then inserted into the processor as a hard macro.
The left part of Fig. 11 shows an example implementation for
the oscillator power grid. The oscillator should be placed away
from the noisiest processor circuits to reduce clock jitter—
this is likely at the corner of the processor. A placement
blockage (block halo) should be added around the oscillator
which blocks any logic from being placed at this location, to
simplify the routing of oscillator signals and also to reduce
effects from other logic. Finally, the oscillator in this example
has a separated power ring and power grid which are not
connected to the main processor power grid to get a clean
power supply.

C. Position of IO pins
The position of IO pins for each processor is also important

for scalability since they must connect with other processors.
Figure 12 shows an example connection of two vertical
processors, where IO pins directly abut each other with very
short connecting wires.

IV. A DESIGN EXAMPLE

We have designed and implemented a single-chip tile-based
6×6 GALS multiprocessor in 0.18µm CMOS technology [5].
The processor targets computationally intensive DSP appli-
cations as well as some scientific applications. The inher-
ent features of those applications make it efficient to adopt
several architectural features which distinguish it from other
processors, such as a simple architecture, small memories for
each single processor, and nearest neighbor communication
between processors. No cache is used in this processor system
so no cache related concerns such as data consistency are
needed. The chip utilizes the Artisan standard cell library
and was auto placed and routed. Figure 13 shows the die
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Fig. 13. Chip micrograph of a 6×6 GALS array processor [5]

micrograph. The chip is fully functional at a clock rate of
475 MHz under typical conditions at 1.8 V, and achieves a
peak performance of 17 GOPS with a power consumption of
approximately 3 W. The size of each processor is 0.66 mm2.
Each processor dedicates approximately 8% of its area to
communication circuits, and less than 1% to each local clock
oscillator. In order to provide a flexible and safe solution, from
0 to 4 synchronization registers are selectable by configuration
at each asynchronous boundary.
The physical design flow shown in Fig. 2 was used. Verilog

was used as the front end design language and was synthesized
using Synopsys Design Compiler. The synthesized netlist was
then imported into the automatic placement and routing tool,
Cadence Encounter to do floorplanning, placement, clock tree
insertion, routing, and in-place optimization to change the size
of gates and optimize logic to alleviate wire delay effects.
The result from the place and routing tool was imported into
another custom layout tool (icfb) to do final layout editing such
as pad bounding, IO pin labeling, and layout layer checking.
Intensive verification methods were used throughout the

design process including: gate level dynamic simulation using
NC-Verilog, static timing analysis using Primetime, DRC/LVS
using Calibre, spice level simulation using Nanosim, and
formal verification using Tuxedo. The entire back end design
flow took approximately 4 person-months including setup of
tools and standard cell libraries.
The final 6×6 chip design was extended from a 3×3 design

a few days before tapeout from Verilog to GDS II in a total
of 10 hours—clearly demonstrating the excellent scalability of
this architecture and approach.

V. SUMMARY
Implementation techniques for a tile-based GALS chip mul-

tiprocessor are discussed. This architecture improves system
scalability and simplifies the physical design flow. At the same
time, it imposes some design challenges. These include several
timing issues related to inter-processor communication, inter-
chip communication, and asynchronous boundaries within
single processors. By carefully addressing these timing issues,
it is possible to take full advantage of its scalability, and
the processor architecture makes it possible to design a high
performance system with a small design group within a short
time period.
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