
Reduction of Crosstalk Pessimism Using Tendency
Graph Approach

Murthy Palla∗, Klaus Koch∗, Jens Bargfrede∗, Manfred Glesner†, Walter Anheier‡

∗Future Design Systems Group, Infineon Technologies AG, Munich
{murthy.palla, klaus.koch, jens.bargfrede}@infineon.com

†Institute of Microelectronic Systems, Darmstadt University of Technology, Darmstadt, glesner@mes.tu-darmstadt.de
‡ ITEM, University of Bremen, Bremen, anheier@item.uni-bremen.de

Abstract— Accurate estimation of worst-case crosstalk effects
is critical for a realistic estimation of the worst-case behavior
of deep sub-micron circuits. Crosstalk analysis models usually
assume that the worst-case crosstalk occurs with all the aggres-
sors of a victim (net or path) simultaneously inducing crosstalk
even though this may not be possible at all. This overestimated
crosstalk is called false noise. Logic correlations have been
explored to reduce false noise in [3], which also used branch and
bound method to solve the problem. In this paper, we propose a
novel approach, named Tendency Graph Approach (TGA), which
preprocesses the logic constraints of the circuit to drastically
speed up the fundamental branch and bound algorithm. The
new approach has been implemented in C++ and tested on an
industrial circuit in a current 90 nm technology, demonstrating
that TGA considerably accelerates the solution to the false noise
problem, and makes in many cases branch and bound feasible
in the first place.

I. INTRODUCTION

Ever since crosstalk has been considered in synthesizing
deep sub-micron (DSM) circuits, designers kept wondering if
the crosstalk predicted by the algorithms is that likely or even
possible at all. As it turns out, indeed, quite a lot of crosstalk
is not possible [3] [4] [5] [6] [7]. Such impossible crosstalk
and its excess noise, or delay and slew change is called false
noise.

The source of overall pessimism in crosstalk analysis stems
from the independent accounting of each aggressor and victim
net coupling. Timing or logic correlations which could render
certain switching scenarios impossible are simply ignored.
Industrial strength crosstalk analysis tools try to avoid the
most obvious blunders by filtering out the most primitive logic
correlations of single inverter and buffer cells. Yet, this is
far from being sufficient. For this, consider the example in
figure 1 consisting of a victim V and three aggressors a1,
a2 and a3. In case of V switching from logic zero to one,
the aggressors will increase the victim’s delay, if they switch
from logic one to zero in the vicinity of V ’s switching time.
Conventional crosstalk analysis algorithms consider that the
worst-case would occur with all the three aggressors switching
in the same direction at the same time without considering
whether this switching scenario is possible at all. However,
a brief check of the circuit rules out this scenario as not all
aggressors can simultaneously assume logic ‘1’ or logic ‘0’,
which implies that they cannot simultaneously switch in the

same direction. So a constraint should be laid pruning such
unrealistic scenarios for crosstalk analysis.

False noise not only distorts the crosstalk analysis of the
net where it originates, but also that of subsequent circuit
elements. The impact of this error propagation depends on
the crosstalk effect considered. While crosstalk noise could be
attenuated by subsequent cells, crosstalk delay never vanishes
but sums up in the overall path delay and slack [3]. False
calculated slew change due to crosstalk even distorts the
analysis of subsequent cells in the path and finally the timing-
check calculation.

a1
a2

a3

v

Fig. 1. False noise example with impossible aggressor combination a1, a2
and a3 of victim v.

Recently, new algorithms have been proposed to take into
account more complicated logic and timing correlations for
finding false noise and selecting the max. (worst) realizable
aggressor set (MRAS) [3] [4] [5]. What keeps them from
entering mainstream is the NP-complete nature of the problem
itself, thus a great need exists for heuristics which could
accelerate the solution with tolerable pessimism. We propose
such an algorithm which we name Tendency Graph Approach
(TGA). It utilizes logic correlations of the involved cells in
order to find a quantitative measure for the probability of
switching constellations. This measure is then applied to sort
and bipartition the graph for the branch and bound algorithm
used to get the exact solution of false noise.

Contrary to the approximate heuristics proposed in [3], our
approach does not require to ignore ‘some’ logic correlations
among different subsets of aggressors and thus trade feasibility
with pessimism and accuracy. Instead, all correlations can be
taken into account and the exact solution is found. However,
TGA could be combined with those heuristics, leading to even
further accelerated computation.

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

The proposed technique has been tested on a 90 nm indus-
trial design, considering false noise in crosstalk delay, speed-
up, high noise and low noise. It is shown that of the inves-
tigated cases, about fifty percent couldn’t have been solved
exactly without TGA in reasonable time. TGA makes such
cases not only feasible, but leads to an overall acceleration of
about 63.7 % on average and of up to 98.4 %. Further, of the
potential aggressors, about 31 % on average were pruned out.

As mentioned earlier, false noise could arise due to the
negligence of timing correlations and/or logic constraints of
the circuit while estimating worst-case crosstalk. In this paper,
we consider only false noise arising due to the negligence of
logic constraints assuming zero delay. However, the proposed
technique is independent on how logic constraints are gener-
ated and could be used with any other technique. Even though
only digital gates are discussed, the proposed approach can be
used on CMOS transistors as well.

The remaining part of the paper is organized as follows.
Section II briefly discusses state of the art in false noise
analysis. Section III describes the Tendency Graph Approach
and its derivation. Section IV presents results for an industrial
90 nm design, followed by conclusions in V.

II. STATE OF THE ART

A. Logic Constraints

Logic constraints are impossible combinations of signals.
They indicate whether a particular combination of signals of
a circuit is logically possible or not. Mathematically, a logic
constraint is a boolean term with one or more literals, either
inverted or uninverted, in a conjunctive form. The literals
indicate the signal values on the corresponding nets of the
circuit. If the signal values are such that the term (logic
constraint) gives a logic ‘1’, then the signal combination is
logically impossible.

At the first step, logic constraints of the entire circuit are
generated. We followed the methods described in [4] and [3]
for this purpose. We consider an example here to explain the
generation of logic constraints. However, the reader is referred
to the original papers for detailed descriptions.

a1=1.0
a2=1.0

a3=1.5

v

n1

Fig. 2. Sample circuit for deduction of logic constraints. Nets a1, a2 and
a3 are the potential aggressors of victim v with the numbers near them
representing their strengths.

Figure 2 depicts a simple circuit with a ‘NAND’ gate and
an inverter, and its logic constraints. The nets a1, a2 and a3
are aggressors to the net v. The numbers near the aggressors
are the strengths with which they impair the victim (they are

used in the example of TGA in section III-G). In the logic
constraint generation process, first the logic constraints for the
primitive gates are generated. The logic constraints for the
‘NAND’ gate are a1 ·a3, n1 ·a3 and a1 ·n1 ·a3. Similarly, the
logic constraints for the inverter are a2 ·n1 and a2 ·n1. As n1 is
not an aggressor of v, the constraints consisting of the literal n1
have to be dropped. However, we can avoid the loss of logical
information resulting from the dropping of these constraints
by using resolution principle, according to which, if A and B
are two arbitrary logical expressions and a is a literal, then

a ·B = 0, a ·C = 0 → B ·C = 0

Applying resolution principle to the logic constraints con-
taining n1: n1 · a3, a1 · n1 · a3, a2 · n1 and a2 · n1 results in the
new logic constraints a2 · a3 and a1 · a2 · a3. Thus, the final
logic constraints for the aggressors a1, a2 and a3 are a1 · a3,
a1 ·a2 ·a3 and a2 ·a3.

B. MWIS Representation

Finding the actual worst-case set of aggressors and its
induced crosstalk can be represented as a maximum weight in-
dependent set (MWIS) problem [3][4][5]. The logic constraints
of the problem are translated into a hypergraph with logic
constraints as hyper-edges and the aggressors as its vertices.
Each vertex is weighted by the impact of its corresponding
aggressor, turning the false noise problem into the problem
of finding a maximal set of vertices of the hypergraph such
that all the vertices of any of the hyper-edges are not selected
simultaneously.

C. Exact Solution Approach

An exact solution approach to detect false noise should
essentially use the branch and bound technique as proposed
in [3]. The bounding strategy is based on the currently optimal
solution and the upper bound on the noise from the unexplored
subtree. If the upper bound obtained by considering all the
elements of the unexplored subtree is less than the currently
optimal solution, the subtree is dropped and the search is
continued. Avoiding unnecessary branching using the bound
strategy helps a lot in increasing the speed of the algorithm.
However, the worst-case complexity of the algorithm is still
O(2n), where n is the number of potential aggressors. Even
though the worst-case complexity may seldom be reached,
the problem could often get infeasible or just too costly for
problems with a large number of potential aggressors. Hence,
increasing the speed of the algorithm using heuristics without
trading off its accuracy is mandatory. This can be achieved by
using the proposed Tendency Graph Approach.

III. TENDENCY GRAPH APPROACH

Tendency Graph Approach is based on the branching heuris-
tic ‘fail first’ which states: “To succeed, try first where you
are most likely to fail” [1][2]. Fail first suggests the ordering
of the elements fed to the branch and bound algorithm in a
way that unnecessary branches are dropped out at an earlier
stage, thus saving unnecessary explorations.

Tendency Graph Approach increases the speed of branch
and bound algorithm by trying to minimize the effort required
to determine whether an insoluble subtree is indeed insoluble.
However, since branch and bound has an exponential worst-
case complexity, for problems with a very large number of
elements (typically greater than 50), the algorithm may not
be feasible even after applying the heuristic. In such cases,
additional, yet approximate solutions which aim at partitioning
the set of aggressors into smaller sub-sets are discussed in [3].

A. What is Aggressor Tendency?

‘Aggressor Tendency’ or simply ‘Tendency’ of two aggres-
sors is a quantitative measure of the probability with which
they switch in the same or opposite direction (relative to
each other) obtained from the logic constraints of the circuit.
A negative tendency between two aggressors indicates that
they tend to switch in opposite directions and similarly, a
positive tendency indicates that they tend to switch in the same
direction.

To make the idea of ‘tendency’ clearer, let us consider
the simple example of a NAND gate with signals a and b
at inputs and z at output. One of the three logic constraints
of the NAND gate is a · z avoiding the combination of the
signals a = 0 and z = 0. In other words, the logic constraint
a · z invalidates one of the four possible combinations of the
signals a and z. Out of the remaining three valid combinations
of a and z, two combinations are with a and z having opposite
values indicating that the probability that a and z are opposite
in their values is greater than the probability that they are equal
in their values. Said differently, a and z have the ‘tendency’
to switch in opposite directions.

B. Derivation of Aggressor Tendencies

A quantitative measure of ‘tendency’ is necessary to algo-
rithmically use aggressor tendencies for the fail-first ordering
of aggressors. For this purpose, let us consider a logic con-
straint with n literals l1 · l2 · · · ln. Please note that the literals
could either be inverted or uninverted, i.e., a literal li could,
in general, be inverted or uninverted. Let N(predicate) be
a function determining the number of possible combinations
of the values of the n literals of {l1, l2 · · · ln} satisfying the
predicate. Without the consideration of the logic constraint,
for any two literals li, l j from the literal set {l1, l2 · · · ln}, we
have:

N(1) = 2n, (1)

N(li = l j) = 2n−1 (2)

and similarly,

N(li 6= l j) = 2n−1 (3)

With the logic constraint invalidating exactly one combination
of the 2n possible combinations of values of the containing
literals, we have:

N(1) = 2n−1 (4)

N(li = l j) =


2n−1−1 if both li and l j are either

inverted or uninverted
2n−1 otherwise

(5)

and similarly,

N(li 6= l j) =


2n−1−1 if exactly one of li

and l j is inverted
2n−1 otherwise

(6)

If P(predicate) is the probability with which the predicate
is true, we have (after the consideration of the logic constraint):

P(li = l j) =


2n−1−1
2n−1

if both li and l j are either
inverted or uninverted

2n−1

2n−1
otherwise

(7)

P(li 6= l j) =


2n−1−1
2n−1

if exactly one of li
and l j is inverted

2n−1

2n−1
otherwise

(8)

Let si store the information of whether the literal li is
inverted or not, such that

si =

{
1 if li is inverted
0 otherwise

where i ∈ {1, 2, · · · , n}. We can then define the tendency,
Tli,l j of two literals li and l j as

Tli,l j = P(li = l j)−P(li 6= l j)

= (−1)si+s j+1 · 1
2n−1

(9)

To summarize, tendency of two literals is the difference
between the probabilities with which they are equal or different
in their values. This information is useful in identifying
aggressor pairs which tend to switch in the same direction
or opposite directions.

C. What is a Tendency Graph?

A tendency graph is a graph that gives the switching
tendencies of aggressors with respect to other aggressors.
The vertices of a tendency graph represent the aggressors,
and the weights of its edges represent the tendencies of
the corresponding aggressors they connect. As explained in
sections III-A and III-B, tendency is a probabilistic measure.
If the weight of an edge is negative, it indicates that the two
aggressors it connects tend to switch in opposite directions.
Similarly, if the weight of an edge is positive, it indicates
that the two aggressors it connects tend to switch in the same
direction. In general, the edge weights of a tendency graph
can either be negative or positive. A subgraph of a tendency
graph with all its positive weighted edges removed is called its
negative tendency graph. Similarly, a subgraph of a tendency
graph with all its negative weighted edges removed is called
its positive tendency graph.

D. Building a Tendency Graph

In order to build a tendency graph, the tendencies of various
aggressor pairs are obtained from the logic constraints. If
an aggressor pair is present in different logic constraints,
the tendencies obtained from all these logic constraints are
summed up to find its overall tendency. The tendency graph
is build using this information as described in procedure 1.

Procedure 1 BUILD_TENDENCY_GRAPH
Input: Logic constraint set, lCS
Output: Tendency graph, tG

1: Create an empty graph tG
2: for each logic constraint lC of lCS do
3: for each pair of literals li and l j of lC do
4: Calculate tendency Tli,l j using formula (9)
5: if li and l j are not vertices of tG then
6: add them to tG
7: if edge (li, l j) does not exist in tG then
8: create edge (li, l j) with weight Tli,l j

9: else
10: add Tli,l j to the weight of the existing edge
11: return tG

E. Bipartition of Tendency Graph

The aim of TGA is to partition the potential aggressors into
two sets such that the aggressors of any set switch with a
high probability in the opposite direction to the aggressors of
the other set. This is achieved by bipartitioning the tendency
graph. The tendency graph consists of information on which
aggressors tend to switch in opposite directions and which tend
to switch in the same. Further, the graph contains quantitative
information on strength of the tendency. In the best case,
bipartition can be done in such a way that the two aggressors
of all the aggressor pairs connected by a negative tendency
edge are in opposite partitions and the two aggressors of all
aggressor pairs connected by a positive tendency edge are in
the same partition. In other words, the best case is when any
two aggressors connected by a negative weighted edge fall in
opposite sets and any two aggressors connected by a positive
weighted edge fall in the same set after bipartition. However,
this is not achievable if the negative tendency graph is not
bipartite and certain tendencies of the positive tendency graph
contradict the negative tendency graph. In such cases, it is
inevitable to lose some information by dropping some edges
of the negative tendency graph to make it bipartite.

A bipartite graph, also called a bigraph, is a set of graph
vertices that can be decomposed into two disjoint sets such
that no two vertices in the same set are adjacent [9]. A graph
is bipartite if and only if all its cycles are of even length [8].
In order to make the negative tendency graph bipartite, cycles
with odd lengths have to be broken. This could be achieved
as described in procedure 2.

Once the negative tendency graph is made bipartite, it is a
simple job to bipartition it. In case of more than one connected
component in the negative tendency graph, the question arises

Procedure 2 MAKE_BIPARTITE
Input: Positive tendency graph, posT G
Output: Bipartite negative tendency graph, posT G

1: Find all the odd-length cycles of posT G using depth-first-
search

2: Break the cycles by removing edges of least possible
weight from posT G

3: return posT G

as to which sets the partitions of the individual components
have to go. This can be decided easily by using the positive
tendency graph. We find the most suitable set into which the
aggressors must go based on the positive tendency information.
The process of bipartitioning a tendency graph is described in
procedure 3.

Procedure 3 BIPARTITION_TENDENCY_GRAPH
Input: Tendency graph, tG; Weight function, W ()
Output: Vertex set pair, (As,Aw)

1: Create two graphs posT G and negT G with same vertices
as tG and no edges

2: for each edge e of tG do
3: if W (e) > 0 then
4: add e to posT G
5: else if W (e) < 0 then
6: add e to negT G
7: Create two empty vertex sets As and Aw
8: Make negT G bipartite using procedure 2
9: for each connected component cC of negT G do

10: Bipartition cC into partitions p1 and p2
11: if As is not empty then
12: if p1 has more positive tendency to As than p2

then
13: add p1 to As
14: add p2 to Aw
15: else
16: add p1 to Aw
17: add p2 to As
18: else
19: add p1 to As
20: add p2 to Aw
21: Insert all unconnected vertices in As
22: return pair(As,Aw)

F. Fail-first Ordering of Aggressors

After bipartition, the aggressors are ready for ordering
based on the fail first principle. The overall strengths of the
aggressors of each of the two partitions is then calculated.
The aggressors are then ordered in such a way that the
aggressors from the partition with greatest overall strength are
before the aggressors of the other partition. The aggressors
of each individual partition are again internally ordered in
the descending order of their weights. The ordered aggressor

vector is then fed to the branch and bound algorithm to find
the exact solution with much greater speed.

G. TGA on the Sample Circuit

To give an impression of the advantage of TGA over the
fundamental approach, we solve the false noise problem of
the sample circuit depicted in figure 2 and compare the results.
The logic constraints for this example are a1 ·a3, a1 ·a2 ·a3 and
a2 ·a3, the generation of which was explained in section II-A.
Figure 3(a) depicts the tendency graph obtained by applying
procedure 1 on these logic constraints.

Now, the bipartition of this graph can be achieved by
applying procedure 3. Figure 3(b) depicts the partitions of the
tendency graph obtained after the bipartitioning process.

Fail-first ordering of these aggressors now results in the
aggressor order “a3, a2, a1”. Feeding the aggressors in this
order to the branch and bound algorithm results in 3 calls to the
recursive branch and bound method. Instead, if the aggressors
are fed in the order “a1, a2, a3”, the branch and bound method
is called 7 times. Thus, a drastic speed-up of 57 % is evident
in this simple example. For problems with larger number of
aggressors, fail-first ordering with TGA may be considered as
essential, if not just useful.

IV. RESULTS

The proposed Tendency Graph Approach (TGA) has been
implemented in C++ and tested on a 90 nm technology indus-
trial design with about 70,000 standard cells. TGA is tested
for various crosstalk scenarios (high-noise, low-noise, delay
and speed-up) and the number of calls to the recursive branch
and bound method with and without TGA are compared. Our
TGA prominently dominated the rudimentary exact solution
approach proposed in [3] for all the scenarios. Due to space
constraints, we provide the results only for the crosstalk low-
noise scenario. However, pessimism reduction for various sce-
narios in terms of number of aggressors is depicted in figure 4.
All the nets of the circuit that are parasitically (capacitively)
coupled to the corresponding victim net are considered to be
potential aggressors. Victims with potential aggressors in the
number ranging from 15 to 45 were chosen randomly from
the circuit. Table I gives the reduction in crosstalk pessimism
for low-noise scenario in terms of number of aggressors. A
pessimism reduction of 31.03 % on average and up to 50 % in
terms of the number of aggressors is observed in this case.

Table II shows the number of calls to the recursive branch
and bound method with and without the application of TGA
for the crosstalk low-noise scenario. A reduction of 63.7 % on
average and up to 98.4 % in the number of calls to branch and
bound is observed in this case.

One case (victim *39681) in table II shows more calls to the
branch & bound with TGA. This can be explained as a case
where the original order of aggressors is better than the fail-
first ordering done by TGA. This has a very small probability
to happen and is the only case where we have seen that.

A linear model for finding crosstalk was used, which means
each aggressor was weighted by the amount of crosstalk

Victim
(net name)

Number of aggressors
potential real reduction [%]

*22423 16 12 25.0
*6539 19 16 15.8
*9686 20 17 15.0
*5030 21 17 19.1

*23576 21 11 47.6
*21769 21 17 19.1
*25396 22 17 22.7
*39681 22 19 13.6
*29713 23 13 43.5

*7904 24 13 45.8
*7903 25 16 36.0
*3026 26 23 11.5

*33973 27 21 22.2
*53716 27 22 18.5

*5931 28 15 46.4
*51853 30 19 36.7

*7900 30 24 20.0
*33042 31 19 38.7

*2574 32 16 50.0
*7893 32 17 46.9

*39390 32 20 37.5
*28763 34 20 41.2

*5870 35 23 34.3
*46710 36 25 30.6
*51714 38 31 18.4

*2038 40 24 40.0
*7906 40 24 40.0

*32991 41 28 31.7
*32991 41 31 24.4

*7892 44 27 38.6
Average 31.03

TABLE I
PESSIMISM REDUCTION FOR CROSSTALK LOW-NOISE IN TERMS OF

NUMBER OF AGGRESSORS. POTENTIAL AGGRESSORS ARE THE NETS THAT

ARE CAPACITIVELY COUPLED TO THE CORRESPONDING VICTIM NETS.
REAL AGGRESSORS ARE THE AGGRESSORS FROM THE MAXIMUM

REALIZABLE AGGRESSOR SET (MRAS) OBTAINED AFTER FALSE NOISE

REDUCTION.

it induces on the victim and the amount of crosstalk that
a set of aggressors can simultaneously induce is the sum
of their weights. For the purpose of testing, all aggressors
were assumed to induce an amount of crosstalk equal to the
capacitance with which they were coupled to their respective
victims. For more realistic and accurate analysis, a more
sophisticated weight function may be used, which could be
easily incorporated into the implemented program and existing
model.

The results indicate that the number of aggressors that can
simultaneously induce crosstalk to make the real worst-case is
up to 50 % smaller than the number of potential aggressors.
The average reduction was about 31 %. This indicates a great
reduction in pessimism in crosstalk analysis, thus leading to a
better utilization of available resources. If timing correlations
are also used in addition to logic constraints, the false noise
could be reduced even further.

Victim
(net name)

Number of calls to branch & bound
w/o TGA with TGA speed inc. [%]

*22423 4 2 50.0
*6539 29 6 79.3
*9686 20 15 25.0
*5030 92 44 52.2

*23576 757 436 42.4
*21769 26 13 50.0
*25396 124 44 64.5
*39681 181 278 −53.6
*29713 1184 339 71.4

*7904 > 10000 540 > 94.6
*7903 > 10000 1697 > 83.0
*3026 211 64 69.7

*33973 2232 779 65.1
*53716 > 10000 3194 > 68.1

*5931 2378 430 81.9
*51853 > 10000 4370 > 56.3

*7900 > 10000 7638 > 23.6
*33042 6970 742 89.4

*2574 455 105 76.9
*7893 1300 51 96.1

*39390 268 103 61.6
*28763 9129 822 91.0

*5870 > 10000 341 > 96.6
*46710 > 10000 160 > 98.4
*51714 > 10000 335 > 96.7

*2038 5019 83 98.3
*7906 > 10000 2302 > 77.0

*32991 > 10000 6804 > 32.0
*32991 > 10000 4336 > 56.6

*7892 > 10000 8438 > 15.6
Average > 63.7

TABLE II
SPEED GAIN IN NUMBER OF CALLS TO BRANCH AND BOUND WITH USE OF

TGA FOR CROSSTALK LOW-NOISE. CASES WITH MORE THAN 10000
CALLS WERE CONSIDERED INFEASIBLE, THUS THE CALCULATION WAS

STOPPED WHEN THIS LIMIT WAS REACHED. ALL SUCH CASES COULD BE

SOLVED WITH LESS THAN 10000 CALLS WHEN TGA WAS APPLIED.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown the need for accelerating
the basic branch and bound algorithm used for computing
false noise in [3] and proposed a novel approach called
‘Tendency Graph Approach’. Contrary to the approximate
heuristics proposed in [3], this approach speeds up the branch
and bound algorithm for finding false noise without trading
off accuracy and increases the applicability of exact solution
approach for problems with aggressor sets of size up to 50. The
new approach has been implemented in C++ and tested on an
industrial 90 nm design. The analysis of randomly chosen nets
from this design was demonstratively accelerated by the pro-
posed approach. The maximum reached run time improvement
was 98 %. In this paper, only false noise due to the negligence
of logic constraints was considered. Still, a significant pruning
of potential aggressors could be accomplished (on average of
about 31 %). Future work could include also the dependency
of signal transitions in regard to timing.

+0.16

+0.49
-0.49

a1=1.0

a2=1.0

a3=1.5

(a)

+0.16

+0.49
-0.49

a1=1.0

a2=1.0

a3=1.5

(b)

Fig. 3. Tendency graph for example in fig. 2: (a) before bipartition, (b) after
bipartition. In (b), the vertices connecting the negative tendency edge are in
opposite partitions. Aggressor a2 falls in the same partition as a3 because its
positive tendency is greater towards a3 than a1.

Reduction in number of aggressors for various crosstalk scenarios

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Victim index

N
o
.
o
f

a
g
g
re

ss
o
rs

No. of potential aggressors No. of realizable aggressors for crosstalk delay

No. of realizable aggressors for crosstalk speed-up No. of realizable aggressors for crosstalk noise-high

No. of realizable aggressors for crosstalk noise-low

Fig. 4. Pessimism reduction for various crosstalk scenarios: high-noise, low-
noise, delay and speed-up.

ACKNOWLEDGMENT

This work has been supported by the German Min-
istry of Education and Research (BMBF) within the project
“LEONIDAS+” (Project ID 01M3074). The content is the sole
responsibility of the authors.

REFERENCES

[1] Haralick R.M. and Elliott G.L., Increasing Tree Search Efficiency for
Constraint Satisfaction Problems, Artificial Intelligence, 1980.

[2] Beck J.C., Prosser P., and Wallace R.J., Trying Again to Fail First, Recent
Advances in Constraints, Lecture Notes in Artificial Intelligence, vol.
3419, Springer, 2005.

[3] A. Glebov, S. Gavrilov, R. Soloviev, V. Zolotov, M. Becer, C. Oh,
and R. Panda., Delay noise pessimism reduction by logic correlations,
International Conference on Computer Aided Design (ICCAD), 2004.

[4] A. Glebov, S. Gavrilov, V. Zolotov, R. Panda, C. Oh, and D. Blaauw,
False-noise analysis using resolution method, International Symposium
on Quality Electronic Design (ISQED), 2002.

[5] A. Glebov, S. Gavrilov, D. Blaauw, S. Sirichotiyakul, C. Oh, and
V. Zolotov, False noise analysis using logic implications, International
Conference on Computer Aided Design (ICCAD), pages 515–521, 2001.

[6] R. Arunachalam, R. D. Blanton, and L. T. Pileggi, False coupling
interactions in static timing analysis, Design Automation Conference
(DAC), 2001.

[7] D. Friedberg and K. Singhal, Removing pessimism from crosstalk
analysis, February 2003. http://www.commsdesign.com.

[8] S. Skiena, Coloring Bipartite Graphs, section §5.5.2 of Implementing Dis-
crete Mathematics: Combinatorics and Graph Theory With Mathematica,
page 213, Addison-Wesley, 1990.

[9] E. W. Weisstein, Bipartite Graphs, from MathWorld, A Wolfram
Resource. http://mathworld.wolfram.com/BipartiteGraph.html.

