
 

  
Abstract— Leakage power dissipation becomes a dominant 

component in operation power in nanometer devices. This paper 
describes a design methodology to implement runtime power 
gating in a fine-grained manner. We propose an approach to use 
sleep signals that are not off-chip but are extracted locally within 
the design. By utilizing enable signals in a gated clock design, we 
automatically partition the design into domains. We then choose 
the domains that will achieve the gain in energy savings by 
considering dynamic energy overhead due to turning on/off power 
switches. To help this decision we derive analytical formulas that 
estimate the break-even point. For the domains chosen, we create 
power gating structure by adding power switches and generating 
control logic to the switches. We experimentally built a design 
flow and evaluated with a synthesizable RTL code for a 
microprocessor and a 90nm CMOS device model both used in 
industry. Results from applying to a datapath showed that the 
break-even point that achieves the gain exists in the number of 
enables controlling the power switch. By applying the domains 
controlled by up to 3 enables achieved the active leakage savings 
by 83% at the area penalty by 20%. 
 

Index Terms— Leakage currents, Integrated circuit design, 
Design methodology, Microprocessors 

I. INTRODUCTION 
S the scaling of MOS transistors proceeds, leakage power 
of LSI chips increases dramatically. So far, leakage power 

has been a major concern in portable devices because it wastes 
energy at standby mode and leads to shortening the battery life. 
One of the effective techniques to reduce standby leakage 
current is "power gating" [1], in which a power switch is 
inserted between logic circuits and the ground. In the standby 
mode, the power switch is turned off to electrically disconnect 
the logic circuits from the ground, resulting in cutting off the 
leakage. By using a power switch with high-Vth and thicker tox, 
both subthreshold leakage and gate leakage are reduced. In 
further scaled devices, leakage is a problem not only in standby 
mode but also in operation mode because it becomes a visible 
component in power consumption. In [2], the authors report 
that the leakage power at room temperature becomes 
comparable to dynamic power at 20nm node, while at 100C the 
leakage becomes comparable to dynamic power at 50nm node. 

Thus, to reduce operation-time power dissipation in nanometer 
devices, minimizing active leakage power is required in 
addition to minimizing dynamic power. 

One of the techniques to minimize active leakage power is 
Run-Time Power Gating (RTPG). In LSI chips, all the circuit 
components are not always required to be active even in the 
operation mode. RTPG is a technique to detect the idle periods 
of circuit components in run time and to dynamically turn 
on/off the power switches for the components. Papers on RTPG 
techniques at various design levels have been published. Hu, et 
al [3] studied RTPG at the architecture level and proposed a 
course-grained technique to put the execution units of a 
microprocessor into sleep. The execution units are put into 
sleep after observing a predetermined number of idle cycles. 
They also proposed an approach to put the execution units into 
sleep when a branch misprediction is detected. Tschanz, et al 
[4] and Miyazaki, et al [5] discussed circuit-level techniques to 
dynamically control the power switches for adders with fast 
time constants for entering and exiting the idle mode. In 
contrast, in paper [6] the authors proposed logic-level RTPG 
for finite state machine (FSM) circuits. When state transitions 
do not occur, the state flip-flops keep the data and 
combinational logic gates to load data to the state flip-flops do 
not need to be active. By dynamically detecting this condition, 
the power switch for the combinational logic gates is turned off. 
Experimental results on active leakage power savings with 
MCNC benchmark circuits have been also reported in [6]. 

However, these papers do not address a methodology to 
perform an RTPG design from RTL to layout. Again, an 
implementation technique to apply fine-grained RTPG to a real 
block in a microprocessor has not been reported either. 

In this paper, we present a top-down design methodology to 
implement fine-grained RTPG. The primary contributions of 
this work are two-fold: a proposal for a design flow to use 
locally extracted sleep signals for fine-grained RTPG, and an 
analytical model to estimate the break-even point for applying 
the RTPG to fine-grained domains. The rest of this paper is 
organized as follows: Section II presents the structure for the 
fine-grained RTPG and an algorithm to build the structure. 
Section III presents an analytical model for application of 
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power gating. Section IV presents the implementation 
methodology and Section V discusses the results.  

II. FINE-GRAINED RUN-TIME POWER GATING STRUCTURE AND 
GENERATION 

A. Exploiting Enable Signals of Gated Clock 
Gated clock is a technique to reduce dynamic power of clock 

network. When data stored in flip-flops (F/F's) are not updated, 
clock toggling to the F/F's is stopped to reduce dynamic power. 
During this period, combinational logic gates located at the 
transitive fan-in of the F/F's are not required to compute new 
data to the F/F's. If outputs of the combinational logic gates are 
not used at anywhere else, the logic gates are considered as 
"idle". By detecting this idle period, we turn off the power 
switch provided to the combinational logic gates. This results in 
reducing active leakage power of the combinational logic gates. 
Figure 1 shows the basic structure that we use for fine-grained 
RTPG. We fully exploit the enable signals of gated clock 
design to control both power switches provided to the 
combinational logic gates and holders. The holder is composed 
of low leakage transistors (e.g. high-Vth and thicker gate oxide) 
and inserted between power-gated and non-power-gated 
circuits. When the enable signal is 0, the power switch is turned 
off and active leakage current is cut off at the power-gated logic 
circuits. The holders keep the input voltage of the 
non-power-gated circuits to avoid signal floating. When the 
enable signal is 1, the power switch is turned on and updated 
data are loaded into the F/F. 

B. Power Gating Domain 
In actual clock-gated designs, it is likely that more than one 

enable signals exist. To perform fine-grained RTPG for these 
designs, we propose an idea of "power gating domain" 
(PG-domain). The PG-domain is defined as a group of circuits 
that are power gated with a unique enable signal. We describe 
the PG-domain by using an example shown in Fig. 2. In this 
circuit there are two enable signals EN_A and EN_B, 
controlling clock-gating for multi-bit registers regA and regB, 
respectively. Combinational logic gates enclosed with a dotted 
line and indicated as "Group_A" perform computation only for 
the register regA. In other words, the logic gates in Group_A 
become idle if regA is not updated. This allows us to power 

gate the combinational logic gates in Group_A with the enable 
signal EN_A. Hence, we refer to Group_A as the "PG-domain 
A". Similarly, logic gates indicated as "Group_B" can be 
power-gated using the enable signal EN_B. We hence refer to 
Group_B as the "PG-domain B". 

In contrast, combinational logic gates indicated as 
"Group_X" influence not only regA but also regB. These logic 
gates become idle only when neither regA nor regB are updated. 
Therefore, we refer to Group_X as the "PG-domain AB" and 
power gate the domain using both EN_A and EN_B. 

Logic gates indicated as "Group_Y" are not power gated 
because their transitive fanouts are connected to the output pins. 
Data at the output pins may be used outside of this circuit, and 
hence should be kept updated. Due to this, we do not power 
gate the logic gates in Group_Y. They do not belong to any 
PG-domain. As an extension, if this scheme is applied to the 
coarse-grained RTPG where the entire circuit is put into sleep, 
we put the gates in Group_Y into an independent PG-domain. 
The PG-domain is controlled by a power switch which is turned 
off only when the entire circuit becomes idle.  

C. Algorithm to Partition into Power Gating Domains 
We describe an algorithm to partition into PG-domains for a 

given circuit. Let us assume a circuit depicted in Fig. 3 is given. 
First, we focus on an F/F and find an enable signal controlling 
the F/F. In Fig. 3, the flip-flop FF1 is controlled by the enable 
signal EN_A. Next, from the data-input terminal of the F/F we 
traverse combinational logic network backward until reaching 
input pins of the given circuit or an output terminal of an F/F. 
We put a label "A" to all the combinational logic gates that we 
meet during the traversal. Thus we extract combinational logic 
gates located at transitive fan-in of FF1. Then we move to the 
next flip-flop FF2 and find an enable signal of the flip-flop. In 
this case, the enable signal is identified as EN_A again. Hence, 
the label "A" is also put to logic gates located at transitive 
fan-in of FF2. 
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Fig. 1.  Basic structure used for fine-grained Run-Time Power Gating.  
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Fig. 2.  Power Gating domain.  



 

Since the flip-flop FF3 is controlled by the enable signal 
EN_B, a label "B" is put to logic gates located at transitive 
fan-in of FF3 if unlabeled. It should be noted that we do not put 
the label "B" to the gates G1 and G2 since they are already 
labeled "A". Instead, we put a new label "AB" to G1 and G2 by 
ripping off the old label. Next, we focus on FF4 controlled by 
EN_C and put a label "C" to the extracted logic gates in the 
same way. Because a label "AB" is already put to the gate G2, 
we update the label into "ABC" at this gate. After we finish 
labeling logic gates located at transitive fan-in of all the F/F's, 
we focus on the output pins of the circuit and perform a similar 
backward traversal. We put a label "N/A" to the extracted logic 
gates because they are not power gated in the fine-grained 
RTPG. If the extracted gate is already labeled, we updated the 
label into "N/A". 

After we complete labeling all the combinational logic gates, 
we create PG-domains according to the labels. Logic gates 
labeled "A" are put into the PG-domain A, while those labeled 
"AB" are put into the PG-domain AB. To each PG-domain, a 
power switch is connected. Logic gates labeled "N/A" are not 
put into any PG-domain because they are not power gated. 

D. Generation of Control Logic for Power Switches 
Since the PG-domains are built based on the labels, each 

power switch connected to the PG-domain is controlled by the 
enable signal corresponding to the label. For example, the 
power switch to the PG-domain A is controlled by the enable 
signal EN_A. In contrast, the power switch connected to the 
PG-domain AB has to be controlled by both EN_A and EN_B. 
Since logic gates in the PG-domain AB are idle when EN_A 
and EN_B are both "Low", EN_A and EN_B are OR-ed and 
used to control the power switch. For the power switch to the 
PG-domain ABC, a 3-input OR gate whose inputs are EN_A, 
EN_B and EN_C is added. The output of the OR gate is 
connected to the power switch. 

III. ANALYTICAL MODEL FOR POWER GATING 
For each PG-domain a decision is required whether we really 

apply power gating. This is because the power gating comes 
with dynamic energy overhead due to turning on and off power 

switches. We extend the equations presented in [3] to a new 
analytical model enabling to estimate leakage energy savings 
for the PG-domain controlled by more than one enable signal. 
We also derive an analytical formula to give the break-even 
point at which the leakage energy savings equal to the dynamic 
energy overhead for the power switches. 

First we model leakage energy savings in a PG-domain 
controlled by n-enables. In this model we assume that there is 
no leakage flowing through the power switch while it is off. 
However, after turning off the power switch, leakage still 
continues to flow through logic transistors to charge up the 
capacitance at the virtual ground CVGND and the capacitance at 
internal nodes Cint that are in logical “zero” state. After these 
capacitances are fully charged, the leakage stops. Let us assume 
that the power switch is turned off at t0, the capacitances CVGND 
and Cint are charged up at t1 and the power switch is turned on 
at t2. There are two intervals we need to consider: the number 
of cycles Nsleep between t0 and t2, and the number of cycles m 
between t0 and t1. For Nsleep and m, two potential cases exist: 
(i) Nsleep ≥ m and (ii) Nsleep < m. First we describe an 
analytical model for Nsleep ≥ m. At each sleep event, during the 
first m cycles the leakage gradually decreases and during the 
remaining (Nsleep-m) cycles no leakage flows. Leakage energy 
savings for a PG-domain per a sleep event is expressed as 

L
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L
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where L
msavE ,  and L

NsleepsavE ,  are the leakage energy savings 

during the first m cycles and the remaining (Nsleep-m) cycles, 
respectively. The paper [3] reports that L
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and L
cycE  is the average leakage energy per cycle. In (3), DIBL 

is the drain-induced barrier lowering factor which is typically 
close to the value of 0.1, Vt = kT/q ≈ 25mV is the thermal 
voltage, and m’ ≈ 1.3. Also, α is the average switching activity 
of logic gates in the PG-domain, L is a ratio of the average 
leakage and switching energy dissipated per cycle, and CS is the 
total switching capacitance of logic gates in the PG-domain. 
Assuming the typically quoted values for general 
microprocessors [3]: α = 0.1, Vdd = 1V, L = 0.5, CVGND/CS = 0.5, 
we estimate A in (3) to be 0.04. 

On the other hand, since L
mNsleepsavE −,  can be expressed as 

)(, mNEE sleep
L
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L
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We assume that the power-switch control signal (PSC) 
connecting to the gate of the power switch transitions from ‘1’ 
to ‘0’ at the switching rate αPSC,1→0. Within N cycles, since the 
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Fig. 3.  Algorithm to partition into Power Gating domains.  



 

sleep events occur NαPSC,1→0 times, the total leakage energy 
savings over N cycles can be expressed as 

01,
2 )( →−+= PSCsleep

L
dom

L
sav mNAmEE α  (5) 

where is the total leakage energy of the PG-domain over N 
cycles. We define the signal probability for PSC when the 
signal is in ‘0’ state as p0PSC. Since the total sleep cycles within 
N cycles are p0PSCN and the sleep events occur NαPSC,1→0 times, 
the average sleep cycles per sleep event can be written as 
Nsleep,ave = p0PSC / αPSC,1→0. Assuming that the duration in 
which PSC is in ‘0’ state is randomly distributed, we obtain 
Nsleep = Nsleep,ave. From (5) we obtain 
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The average switching energy dissipated at logic gates in the 
PG-domain is expressed as 

α2
ddS

S
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For the following analysis we introduce the leakage ratio RL as 
a ratio of the leakage energy and switching energy of the 
PG-domain, S

dom
L
domL EER /= . Applying this and (7) to (6), 

we obtain 
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The energy overhead that comes with the power gating is the 

switching energy dissipated at turning on and off the power 
switch, given by 
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where CPSC is the switching capacitance containing the gate 
capacitance of the power switch, wire capacitance of the PSC 
line, and the switching capacitances of the OR gate to generate 
the PSC and buffers. Since αPSC,0→1 = αPSC,1→0, S

overheadE  can 
be written as 
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We introduce the gain function G given by 
S
overhead

L
sav EEG /= . From (8) and (9), G is expressed as 
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As described in Section II, the power switch control signal is 
the output of an n-input OR gate when the PG-domain is 
controlled by n enables. Hence p0PSC is given by 
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where p0i is the signal probability of the enable signal ENi 
when the signal is in ‘0’ state. For simplicity we assume 

021 0...00 pppp n ==== . 
From (11) we obtain 

n
PSC pp 00 = . (12) 

According to the relationship between the signal probability 
and the switching activity [7], 

nn
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Applying (12) and (13) to (10), G is expressed as 
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Notice that increase of n reduces G since p0<1. By setting G = 1 
in (14), the number of enables that gives the break-even point is 
derived as 
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Since the number of enables is an integer, the maximum 
number of enables that achieves the gain is given by the floor 
function ⎣ ⎦evenbreakn − . 

Next we describe an analytical model for Nsleep < m. In this 
case the sleep event ends before the virtual-ground capacitance 
is fully charged up. Hence the leakage energy savings for a 
PG-domain per a sleep event is expressed as 

L
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The leakage energy savings over N cycles is written as 
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The gain function is written as 

2
sleep

PSC

S
LS

overhead

L
sav NA

C
C

R
E

E
G α== . (16) 

Since Nsleep can be expressed using p0 in the same manner as 
described above, G can be finally given as 
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By setting G = 1, the number of enables that gives the 
break-even point is derived as 
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IV. IMPLEMENTATION METHODOLOGY 

A. Local Virtual Ground Scheme 
To implement the fine-grained RTPG the conventional 

global virtual-ground rail is not effective because partitioning 
the global rail is extremely difficult. Instead we use a local 
virtual ground scheme in which logic cells and power switch 
cells within a PG-domain are connected with a local virtual 
ground line [8]. To implement this scheme, we modified the 
existing technology library for logic cells such that within the 
cell the source of the nMOS transistor is disconnected from the 
real ground rail and instead is connected to a newly created 
virtual ground pin. Power switch cells with varieties of sizes are 
also provided in the library. The power switch cell contains an 
NMOS power switch transistor whose drain and gate are 
connected to a virtual ground pin and an enable pin, 
respectively. The virtual ground pin of logic cells are connected 
to those of power switch cells through a local virtual ground 



 

line, which is routed as an inter-cell wire at the routing stage. 
We describe a design flow from RTL down to layout utilizing 
this scheme to implement the fine-grained RTPG. 

B. Design Flow 
From RTL description, we synthesize the gate-level Verilog 

netlist using the conventional low-Vth standard cell library. 
Gated clock design is performed in this synthesis step. For the 
clock-gated netlist, we build a fine-grained RTPG structure by 
using a technique described in Section II. The clock-gated 
design is partitioned into PG domains based on the enable 
signals. Then decision for the application of power gating is 
made by considering the break-even point. For the PG domains 
that achieve the gain, power switches are inserted and control 
logic for power switches is generated by adding OR gates. Thus, 
a fine-grained power gated netlist is generated. The netlist is 
fed to a placement tool and initial placement is performed. The 
placement result is given to the power switch optimization 
engine where power switch sizing is performed. This task is 
executed by CoolPower [9]. Power switches are sized such that 
voltage bounce at each virtual ground line may not exceed the 
user-specified upper limit. Holder-cell insertion to avoid signal 
floating is also performed at this step. The result of this step is 
sent to a router and the final layout is generated. 

V. EXPERIMENTAL RESULTS 

A. Setup for Experiments 
We experimentally built the design flow presented in the 

previous section by using commercial synthesis and P&R tools. 
As a test bench, we used a Verilog RTL model of an SH3-DSP 
microprocessor. This processor is a 32-bit RISC embedded 
CPU with a scalar pipeline. The RTL model and a Verilog 
simulation platform were provided by Renesas Technology 
through the VLSI Design and Education center (VDEC), the 
University of Tokyo. Fine-grained RTPG was applied to the 
datapath module of the microprocessor. We conducted 
synthesis, P&R, power-switch optimization, and power 
analysis by using Toshiba 90nm device models. 

B. Partitioning Results 
We synthesized netlist for the entire datapath module from 

the RTL code. Then we partitioned the entire module into 66 
PG-domains. We investigated the cell count of each 
PG-domain and the number of enable signals controlling the 
domain. Results are shown in Fig. 4. 

Domains are controlled by 1 to 9 enable signals. The largest 
PG-domain containing 1085 cells is controlled by three enable 
signals. Looking at next largest PG-domains with more than 
200 cells, each of them is controlled only by one or two enable 
signals. In contrast, several smaller PG-domains are controlled 
by eight or nine enable signals. 

C. Break-even Point Analysis 
Based on the analytical formulas described in Section III, we 

analyzed the break-even point for the number of enable signals. 
Among the parameters affecting nbreak-even, p0 is the strong 

function of internal architecture of the processor, and m is 
strongly dependent upon physical implementation and the 
operating frequency. Assuming that RL=0.5, α=0.1, 
CPSC/CS=0.1 and A=0.04, we estimated nbreak-even values against 
p0 and m. We show the results based on the equation (15) first 
and will discuss the results based on (18) next. Figure 5 shows 
the results for nbreak-even based on (15). For m=1, when p0=0.9 
the nbreak-even value is approximately 3.9. This means that the 
PG-domains controlled by less than or equal to 3 enables will 
achieve the gain. As p0 gets smaller, the nbreak-even value reduces. 
When p0 ≤ 0.6, any PG-domain cannot achieve the gain. 
Furthermore, as m increases the nbreak-even value reduces. 

In order to decide the number of enables that achieves the 
gain in a design, we need to actually know the p0 and m values. 

We conducted a gate-level simulation for the netlist to capture 
the signal probability for the enable signals. This is because 
they are the enable signals for clock gating and hence they 
appear on the gate-level netlist. As a test-bench program we 
created a bubble sort program in C, compiled and linked with 
the Verilog simulation environment for the entire processor 
core. From the simulation results we extracted the cycles for the 
sorting operation by excluding the initial setting cycles. Results 
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Fig. 4.  Results on partitioning into PG-domains. 

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p0

n b
re

ak
-e

ve
n

m=1
m=2
m=3

 
 
Fig. 5.  Results on break-even point analysis. 



 

showed that the p0 value was from 0.9 to 0.97 depending on the 
enable signals. Hence we use p0 =0.9 in this experiment. 

Since the m value strongly depends on the physical 
implementation, we conducted an experiment to implement the 
layout by assuming that we apply the power gating to all 
PG-domains. We extracted R and C for the virtual ground from 
the layout data and conducted SPICE simulations. Results 
showed that the time required to charge up the virtual ground to 
the voltage of 0.9Vdd is less than one cycle at 200MHz, which 
is the typical operating frequency for the embedded processor 
we assumed in this experiment. In our implementation 
methodology, after the logical partitioning into PG-domains, it 
is allowed to physically partition the PG-domain into further 
smaller sub-clusters. Logic cells that are placed closely together 
and share the same virtual ground are connected to the nearest 
power switch cell with a local virtual ground line. This enables 
to minimize the virtual ground capacitance, resulting in 
minimizing the m value. We decided the maximum number of 
enables as 3 based on p0 =0.9 and m=1. 

For larger m, there may be a case that Nsleep < m. We also 
estimated the nbreak-even value based on the equation (18). 
Results showed that when p0=0.9 the nbreak-even value is 1.5. This 
means that the PG-domains controlled by only one enable can 
achieve the gain. When p0 ≤ 0.8, no PG-domain can achieve the 
gain. 

D. Power Savings and Area Penalty 
We analyzed active leakage power for the datapath with 

fine-grained RTPG and compared with the non-power-gated 
design. This analysis was performed in two steps. First, we 
conducted a Verilog simulation for the entire microprocessor as 
in the case of obtaining the signal probability for the power 
switch control signal. Then we traced and captured state values 
for input and output pins of each logic gate in the datapath. 
Next, we conducted leakage power analysis for the 
non-power-gated design by using captured state values. The 
analysis was performed using PowerCompiler and a library 
with state-dependent leakage information. The state-dependent 
leakage power was pre-characterized at the best 
process/voltage corner and high temperature (85C). 

In this experiment we applied power gating to the 
PG-domains that are controlled by up to 3 enables. As the result, 
we applied the power gating to 34 domains (containing 62K 
cells in total) from among 66 domains (containing 72K cells). 
Results from the analysis leakage analysis showed that the 
active leakage power is reduced by 83%. 

As stated in the previous section, depending on the p0 and m 
values, there may be a case that nbreak-even value is reduced to 2 
or 1 instead of 3. We estimated the active leakage reduction for 
these cases. Results are shown in Fig. 6. 

When the maximum number of enables for application of 
power gating is 2, the active leakage power is reduced by 70%. 
In contrast, when the PG-domains controlled by only one 
enable signal can achieve the gain, the active leakage reduction 
decreases to 54%. 

E. Area Overhead 
We investigated the area penalty for the layout in which the 

power gating was applied to the domains controlled by up to 3 
enables. The layout result for the datapath with the fine-grained 
RTPG is shown in Fig. 7. Power switches are highlighted in 
purple in the figure (darker portions in the gray-scale figure). 
The cell area for the fine-grained RTPG was increased over the 
non-power-gated design by 20%. 

 

VI. CONCLUSIONS 
We proposed a top-down design methodology to implement 

fine-grained Run-Time Power Gating. Based on existing enable 
signals in a gated clock design, we partition the design into 
Power-Gating domains. By using the analytical formulas we 
derived, decision to which Power-Gating domains we should 
apply the power gating was made. Power switches added to the 

0
20
40

60

80
100

1 2 3 4 5 6 7 8
Max numb of enables for application of power gating

A
ct

iv
e 

le
ak

ag
e 

re
du

ct
io

n 
(%

)

 
 
Fig. 6.  Results on leakage power analysis. 

 
 
Fig. 7.  Layout for datapath with fine-grained RTPG. 



 

Power-Gating domains are dynamically controlled by the 
enable signals to reduce active leakage power. Results from 
applying this scheme to a datapath of a microprocessor showed 
that active leakage power was saved effectively at the 
reasonable area penalty. 
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