

Abstract— Leakage power dissipation becomes a dominant

component in operation power in nanometer devices. This paper
describes a design methodology to implement runtime power
gating in a fine-grained manner. We propose an approach to use
sleep signals that are not off-chip but are extracted locally within
the design. By utilizing enable signals in a gated clock design, we
automatically partition the design into domains. We then choose
the domains that will achieve the gain in energy savings by
considering dynamic energy overhead due to turning on/off power
switches. To help this decision we derive analytical formulas that
estimate the break-even point. For the domains chosen, we create
power gating structure by adding power switches and generating
control logic to the switches. We experimentally built a design
flow and evaluated with a synthesizable RTL code for a
microprocessor and a 90nm CMOS device model both used in
industry. Results from applying to a datapath showed that the
break-even point that achieves the gain exists in the number of
enables controlling the power switch. By applying the domains
controlled by up to 3 enables achieved the active leakage savings
by 83% at the area penalty by 20%.

Index Terms— Leakage currents, Integrated circuit design,
Design methodology, Microprocessors

I. INTRODUCTION
S the scaling of MOS transistors proceeds, leakage power
of LSI chips increases dramatically. So far, leakage power

has been a major concern in portable devices because it wastes
energy at standby mode and leads to shortening the battery life.
One of the effective techniques to reduce standby leakage
current is "power gating" [1], in which a power switch is
inserted between logic circuits and the ground. In the standby
mode, the power switch is turned off to electrically disconnect
the logic circuits from the ground, resulting in cutting off the
leakage. By using a power switch with high-Vth and thicker tox,
both subthreshold leakage and gate leakage are reduced. In
further scaled devices, leakage is a problem not only in standby
mode but also in operation mode because it becomes a visible
component in power consumption. In [2], the authors report
that the leakage power at room temperature becomes
comparable to dynamic power at 20nm node, while at 100C the
leakage becomes comparable to dynamic power at 50nm node.

Thus, to reduce operation-time power dissipation in nanometer
devices, minimizing active leakage power is required in
addition to minimizing dynamic power.

One of the techniques to minimize active leakage power is
Run-Time Power Gating (RTPG). In LSI chips, all the circuit
components are not always required to be active even in the
operation mode. RTPG is a technique to detect the idle periods
of circuit components in run time and to dynamically turn
on/off the power switches for the components. Papers on RTPG
techniques at various design levels have been published. Hu, et
al [3] studied RTPG at the architecture level and proposed a
course-grained technique to put the execution units of a
microprocessor into sleep. The execution units are put into
sleep after observing a predetermined number of idle cycles.
They also proposed an approach to put the execution units into
sleep when a branch misprediction is detected. Tschanz, et al
[4] and Miyazaki, et al [5] discussed circuit-level techniques to
dynamically control the power switches for adders with fast
time constants for entering and exiting the idle mode. In
contrast, in paper [6] the authors proposed logic-level RTPG
for finite state machine (FSM) circuits. When state transitions
do not occur, the state flip-flops keep the data and
combinational logic gates to load data to the state flip-flops do
not need to be active. By dynamically detecting this condition,
the power switch for the combinational logic gates is turned off.
Experimental results on active leakage power savings with
MCNC benchmark circuits have been also reported in [6].

However, these papers do not address a methodology to
perform an RTPG design from RTL to layout. Again, an
implementation technique to apply fine-grained RTPG to a real
block in a microprocessor has not been reported either.

In this paper, we present a top-down design methodology to
implement fine-grained RTPG. The primary contributions of
this work are two-fold: a proposal for a design flow to use
locally extracted sleep signals for fine-grained RTPG, and an
analytical model to estimate the break-even point for applying
the RTPG to fine-grained domains. The rest of this paper is
organized as follows: Section II presents the structure for the
fine-grained RTPG and an algorithm to build the structure.
Section III presents an analytical model for application of

A Design Approach for Fine-grained Run-Time
Power Gating using Locally Extracted Sleep

Signals
Kimiyoshi Usami and Naoaki Ohkubo

Shibaura Institute of Technology
3-7-5 Toyosu, Kohtoh-ku, Tokyo 135-8548, Japan

{usami, m105021}@sic.shibaura-it.ac.jp

A

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

power gating. Section IV presents the implementation
methodology and Section V discusses the results.

II. FINE-GRAINED RUN-TIME POWER GATING STRUCTURE AND
GENERATION

A. Exploiting Enable Signals of Gated Clock
Gated clock is a technique to reduce dynamic power of clock

network. When data stored in flip-flops (F/F's) are not updated,
clock toggling to the F/F's is stopped to reduce dynamic power.
During this period, combinational logic gates located at the
transitive fan-in of the F/F's are not required to compute new
data to the F/F's. If outputs of the combinational logic gates are
not used at anywhere else, the logic gates are considered as
"idle". By detecting this idle period, we turn off the power
switch provided to the combinational logic gates. This results in
reducing active leakage power of the combinational logic gates.
Figure 1 shows the basic structure that we use for fine-grained
RTPG. We fully exploit the enable signals of gated clock
design to control both power switches provided to the
combinational logic gates and holders. The holder is composed
of low leakage transistors (e.g. high-Vth and thicker gate oxide)
and inserted between power-gated and non-power-gated
circuits. When the enable signal is 0, the power switch is turned
off and active leakage current is cut off at the power-gated logic
circuits. The holders keep the input voltage of the
non-power-gated circuits to avoid signal floating. When the
enable signal is 1, the power switch is turned on and updated
data are loaded into the F/F.

B. Power Gating Domain
In actual clock-gated designs, it is likely that more than one

enable signals exist. To perform fine-grained RTPG for these
designs, we propose an idea of "power gating domain"
(PG-domain). The PG-domain is defined as a group of circuits
that are power gated with a unique enable signal. We describe
the PG-domain by using an example shown in Fig. 2. In this
circuit there are two enable signals EN_A and EN_B,
controlling clock-gating for multi-bit registers regA and regB,
respectively. Combinational logic gates enclosed with a dotted
line and indicated as "Group_A" perform computation only for
the register regA. In other words, the logic gates in Group_A
become idle if regA is not updated. This allows us to power

gate the combinational logic gates in Group_A with the enable
signal EN_A. Hence, we refer to Group_A as the "PG-domain
A". Similarly, logic gates indicated as "Group_B" can be
power-gated using the enable signal EN_B. We hence refer to
Group_B as the "PG-domain B".

In contrast, combinational logic gates indicated as
"Group_X" influence not only regA but also regB. These logic
gates become idle only when neither regA nor regB are updated.
Therefore, we refer to Group_X as the "PG-domain AB" and
power gate the domain using both EN_A and EN_B.

Logic gates indicated as "Group_Y" are not power gated
because their transitive fanouts are connected to the output pins.
Data at the output pins may be used outside of this circuit, and
hence should be kept updated. Due to this, we do not power
gate the logic gates in Group_Y. They do not belong to any
PG-domain. As an extension, if this scheme is applied to the
coarse-grained RTPG where the entire circuit is put into sleep,
we put the gates in Group_Y into an independent PG-domain.
The PG-domain is controlled by a power switch which is turned
off only when the entire circuit becomes idle.

C. Algorithm to Partition into Power Gating Domains
We describe an algorithm to partition into PG-domains for a

given circuit. Let us assume a circuit depicted in Fig. 3 is given.
First, we focus on an F/F and find an enable signal controlling
the F/F. In Fig. 3, the flip-flop FF1 is controlled by the enable
signal EN_A. Next, from the data-input terminal of the F/F we
traverse combinational logic network backward until reaching
input pins of the given circuit or an output terminal of an F/F.
We put a label "A" to all the combinational logic gates that we
meet during the traversal. Thus we extract combinational logic
gates located at transitive fan-in of FF1. Then we move to the
next flip-flop FF2 and find an enable signal of the flip-flop. In
this case, the enable signal is identified as EN_A again. Hence,
the label "A" is also put to logic gates located at transitive
fan-in of FF2.

F/F

CLK

in_1

in_2

Enable

Power
Switch

Virtual GND

Holder

Fig. 1. Basic structure used for fine-grained Run-Time Power Gating.

CLK

in_1

EN_A

EN_B

F/F

F/F

F/F

F/F

F/F

in_3
in_2

F/F

F/F

F/F

out

regA

regB

Group_A (PG-domain A)

Group_B

Group_X

Group_Y

Fig. 2. Power Gating domain.

Since the flip-flop FF3 is controlled by the enable signal
EN_B, a label "B" is put to logic gates located at transitive
fan-in of FF3 if unlabeled. It should be noted that we do not put
the label "B" to the gates G1 and G2 since they are already
labeled "A". Instead, we put a new label "AB" to G1 and G2 by
ripping off the old label. Next, we focus on FF4 controlled by
EN_C and put a label "C" to the extracted logic gates in the
same way. Because a label "AB" is already put to the gate G2,
we update the label into "ABC" at this gate. After we finish
labeling logic gates located at transitive fan-in of all the F/F's,
we focus on the output pins of the circuit and perform a similar
backward traversal. We put a label "N/A" to the extracted logic
gates because they are not power gated in the fine-grained
RTPG. If the extracted gate is already labeled, we updated the
label into "N/A".

After we complete labeling all the combinational logic gates,
we create PG-domains according to the labels. Logic gates
labeled "A" are put into the PG-domain A, while those labeled
"AB" are put into the PG-domain AB. To each PG-domain, a
power switch is connected. Logic gates labeled "N/A" are not
put into any PG-domain because they are not power gated.

D. Generation of Control Logic for Power Switches
Since the PG-domains are built based on the labels, each

power switch connected to the PG-domain is controlled by the
enable signal corresponding to the label. For example, the
power switch to the PG-domain A is controlled by the enable
signal EN_A. In contrast, the power switch connected to the
PG-domain AB has to be controlled by both EN_A and EN_B.
Since logic gates in the PG-domain AB are idle when EN_A
and EN_B are both "Low", EN_A and EN_B are OR-ed and
used to control the power switch. For the power switch to the
PG-domain ABC, a 3-input OR gate whose inputs are EN_A,
EN_B and EN_C is added. The output of the OR gate is
connected to the power switch.

III. ANALYTICAL MODEL FOR POWER GATING
For each PG-domain a decision is required whether we really

apply power gating. This is because the power gating comes
with dynamic energy overhead due to turning on and off power

switches. We extend the equations presented in [3] to a new
analytical model enabling to estimate leakage energy savings
for the PG-domain controlled by more than one enable signal.
We also derive an analytical formula to give the break-even
point at which the leakage energy savings equal to the dynamic
energy overhead for the power switches.

First we model leakage energy savings in a PG-domain
controlled by n-enables. In this model we assume that there is
no leakage flowing through the power switch while it is off.
However, after turning off the power switch, leakage still
continues to flow through logic transistors to charge up the
capacitance at the virtual ground CVGND and the capacitance at
internal nodes Cint that are in logical “zero” state. After these
capacitances are fully charged, the leakage stops. Let us assume
that the power switch is turned off at t0, the capacitances CVGND
and Cint are charged up at t1 and the power switch is turned on
at t2. There are two intervals we need to consider: the number
of cycles Nsleep between t0 and t2, and the number of cycles m
between t0 and t1. For Nsleep and m, two potential cases exist:
(i) Nsleep ≥ m and (ii) Nsleep < m. First we describe an
analytical model for Nsleep ≥ m. At each sleep event, during the
first m cycles the leakage gradually decreases and during the
remaining (Nsleep-m) cycles no leakage flows. Leakage energy
savings for a PG-domain per a sleep event is expressed as

L
mNsleepsav

L
msav

L
sleepeventpersav EEE −+= ,,, (1)

where L
msavE , and L

NsleepsavE , are the leakage energy savings

during the first m cycles and the remaining (Nsleep-m) cycles,
respectively. The paper [3] reports that L

msavE , can be

expressed as
L
cyc

L
msav EAmE 2

, = (2)

where

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

S

VGND

dd

t

C
C

LV
Vm

DIBLA

2
14

'
α (3)

and L
cycE is the average leakage energy per cycle. In (3), DIBL

is the drain-induced barrier lowering factor which is typically
close to the value of 0.1, Vt = kT/q ≈ 25mV is the thermal
voltage, and m’ ≈ 1.3. Also, α is the average switching activity
of logic gates in the PG-domain, L is a ratio of the average
leakage and switching energy dissipated per cycle, and CS is the
total switching capacitance of logic gates in the PG-domain.
Assuming the typically quoted values for general
microprocessors [3]: α = 0.1, Vdd = 1V, L = 0.5, CVGND/CS = 0.5,
we estimate A in (3) to be 0.04.

On the other hand, since L
mNsleepsavE −, can be expressed as

)(, mNEE sleep
L
cyc

L
mNsleepsav −=− , (1) can be written as

)(2
, mNAmEE sleep

L
cyc

L
sleepeventpersav −+= . (4)

We assume that the power-switch control signal (PSC)
connecting to the gate of the power switch transitions from ‘1’
to ‘0’ at the switching rate αPSC,1→0. Within N cycles, since the

CLK

in_2

FF1

FF2

FF3

F/F

F/F

out

in_1

FF4

EN_A

EN_B

EN_Cin_3
F/F

A

A

A

A

A

A→AB

B
B

C

A→AB→ABC

C→N/A

N/A N/A

G1

G2

G3

G4 G5

Fig. 3. Algorithm to partition into Power Gating domains.

sleep events occur NαPSC,1→0 times, the total leakage energy
savings over N cycles can be expressed as

01,
2)(→−+= PSCsleep

L
dom

L
sav mNAmEE α (5)

where is the total leakage energy of the PG-domain over N
cycles. We define the signal probability for PSC when the
signal is in ‘0’ state as p0PSC. Since the total sleep cycles within
N cycles are p0PSCN and the sleep events occur NαPSC,1→0 times,
the average sleep cycles per sleep event can be written as
Nsleep,ave = p0PSC / αPSC,1→0. Assuming that the duration in
which PSC is in ‘0’ state is randomly distributed, we obtain
Nsleep = Nsleep,ave. From (5) we obtain

{ }01,
2)(0 →−+= PSCPSC

L
dom

L
sav mAmpEE α . (6)

The average switching energy dissipated at logic gates in the
PG-domain is expressed as

α2
ddS

S
dom VCE = (7)

For the following analysis we introduce the leakage ratio RL as
a ratio of the leakage energy and switching energy of the
PG-domain, S

dom
L
domL EER /= . Applying this and (7) to (6),

we obtain
{ }01,

22)(0 →−+= PSCPSCddSL
L
sav mAmpVCRE αα . (8)
The energy overhead that comes with the power gating is the

switching energy dissipated at turning on and off the power
switch, given by

01,
2

10,
2

2
1

2
1

→→ += PSCddPSCPSCddPSC
S
overhead VCVCE αα

where CPSC is the switching capacitance containing the gate
capacitance of the power switch, wire capacitance of the PSC
line, and the switching capacitances of the OR gate to generate
the PSC and buffers. Since αPSC,0→1 = αPSC,1→0, S

overheadE can
be written as

01,
2

→= PSCddPSC
S
overhead VCE α (9)

We introduce the gain function G given by
S
overhead

L
sav EEG /= . From (8) and (9), G is expressed as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+=
→

mAm
p

C
C

RG
PSC

PSC

PSC

S
L

2

01,

0
α

α . (10)

As described in Section II, the power switch control signal is
the output of an n-input OR gate when the PG-domain is
controlled by n enables. Hence p0PSC is given by

∏
=

=
n

i
iPSC pp

1

00 (11)

where p0i is the signal probability of the enable signal ENi
when the signal is in ‘0’ state. For simplicity we assume

021 0...00 pppp n ==== .
From (11) we obtain

n
PSC pp 00 = . (12)

According to the relationship between the signal probability
and the switching activity [7],

nn
PSCPSCPSC pppp 0001,)1(0)01(−=−=→α . (13)

Applying (12) and (13) to (10), G is expressed as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+
−

= mAm
pC

C
RG n

oPSC

S
L

2

1
1α . (14)

Notice that increase of n reduces G since p0<1. By setting G = 1
in (14), the number of enables that gives the break-even point is
derived as

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+
−=−

21
11log

0

Amm
C

C
R

n

S

PSC

L

pevenbreak

α

. (15)

Since the number of enables is an integer, the maximum
number of enables that achieves the gain is given by the floor
function ⎣ ⎦evenbreakn − .

Next we describe an analytical model for Nsleep < m. In this
case the sleep event ends before the virtual-ground capacitance
is fully charged up. Hence the leakage energy savings for a
PG-domain per a sleep event is expressed as

L
cycsleep

L
sleepeventpersav ENAE 2

, = .

The leakage energy savings over N cycles is written as

01,
22

→= PSCsleepddSL
L
sav NAVCRE αα .

The gain function is written as

2
sleep

PSC

S
LS

overhead

L
sav NA

C
C

R
E

E
G α== . (16)

Since Nsleep can be expressed using p0 in the same manner as
described above, G can be finally given as

2
0)1(

1
nPSC

S
L

p
A

C
C

RG
−

= α (17)

By setting G = 1, the number of enables that gives the
break-even point is derived as

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=− A

C
C

Rn
PSC

S
Lpevenbreak α1log

0
 (18)

IV. IMPLEMENTATION METHODOLOGY

A. Local Virtual Ground Scheme
To implement the fine-grained RTPG the conventional

global virtual-ground rail is not effective because partitioning
the global rail is extremely difficult. Instead we use a local
virtual ground scheme in which logic cells and power switch
cells within a PG-domain are connected with a local virtual
ground line [8]. To implement this scheme, we modified the
existing technology library for logic cells such that within the
cell the source of the nMOS transistor is disconnected from the
real ground rail and instead is connected to a newly created
virtual ground pin. Power switch cells with varieties of sizes are
also provided in the library. The power switch cell contains an
NMOS power switch transistor whose drain and gate are
connected to a virtual ground pin and an enable pin,
respectively. The virtual ground pin of logic cells are connected
to those of power switch cells through a local virtual ground

line, which is routed as an inter-cell wire at the routing stage.
We describe a design flow from RTL down to layout utilizing
this scheme to implement the fine-grained RTPG.

B. Design Flow
From RTL description, we synthesize the gate-level Verilog

netlist using the conventional low-Vth standard cell library.
Gated clock design is performed in this synthesis step. For the
clock-gated netlist, we build a fine-grained RTPG structure by
using a technique described in Section II. The clock-gated
design is partitioned into PG domains based on the enable
signals. Then decision for the application of power gating is
made by considering the break-even point. For the PG domains
that achieve the gain, power switches are inserted and control
logic for power switches is generated by adding OR gates. Thus,
a fine-grained power gated netlist is generated. The netlist is
fed to a placement tool and initial placement is performed. The
placement result is given to the power switch optimization
engine where power switch sizing is performed. This task is
executed by CoolPower [9]. Power switches are sized such that
voltage bounce at each virtual ground line may not exceed the
user-specified upper limit. Holder-cell insertion to avoid signal
floating is also performed at this step. The result of this step is
sent to a router and the final layout is generated.

V. EXPERIMENTAL RESULTS

A. Setup for Experiments
We experimentally built the design flow presented in the

previous section by using commercial synthesis and P&R tools.
As a test bench, we used a Verilog RTL model of an SH3-DSP
microprocessor. This processor is a 32-bit RISC embedded
CPU with a scalar pipeline. The RTL model and a Verilog
simulation platform were provided by Renesas Technology
through the VLSI Design and Education center (VDEC), the
University of Tokyo. Fine-grained RTPG was applied to the
datapath module of the microprocessor. We conducted
synthesis, P&R, power-switch optimization, and power
analysis by using Toshiba 90nm device models.

B. Partitioning Results
We synthesized netlist for the entire datapath module from

the RTL code. Then we partitioned the entire module into 66
PG-domains. We investigated the cell count of each
PG-domain and the number of enable signals controlling the
domain. Results are shown in Fig. 4.

Domains are controlled by 1 to 9 enable signals. The largest
PG-domain containing 1085 cells is controlled by three enable
signals. Looking at next largest PG-domains with more than
200 cells, each of them is controlled only by one or two enable
signals. In contrast, several smaller PG-domains are controlled
by eight or nine enable signals.

C. Break-even Point Analysis
Based on the analytical formulas described in Section III, we

analyzed the break-even point for the number of enable signals.
Among the parameters affecting nbreak-even, p0 is the strong

function of internal architecture of the processor, and m is
strongly dependent upon physical implementation and the
operating frequency. Assuming that RL=0.5, α=0.1,
CPSC/CS=0.1 and A=0.04, we estimated nbreak-even values against
p0 and m. We show the results based on the equation (15) first
and will discuss the results based on (18) next. Figure 5 shows
the results for nbreak-even based on (15). For m=1, when p0=0.9
the nbreak-even value is approximately 3.9. This means that the
PG-domains controlled by less than or equal to 3 enables will
achieve the gain. As p0 gets smaller, the nbreak-even value reduces.
When p0 ≤ 0.6, any PG-domain cannot achieve the gain.
Furthermore, as m increases the nbreak-even value reduces.

In order to decide the number of enables that achieves the
gain in a design, we need to actually know the p0 and m values.

We conducted a gate-level simulation for the netlist to capture
the signal probability for the enable signals. This is because
they are the enable signals for clock gating and hence they
appear on the gate-level netlist. As a test-bench program we
created a bubble sort program in C, compiled and linked with
the Verilog simulation environment for the entire processor
core. From the simulation results we extracted the cycles for the
sorting operation by excluding the initial setting cycles. Results

PG-domain size (in cell count)

En

ab
le

 s
ig

na
ls

 c
on

tro
llin

g
PG

-d
om

ai
n

0
1
2
3
4
5
6
7
8
9

10

0 200 400 600 800 1000 1200

Fig. 4. Results on partitioning into PG-domains.

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p0

n b
re

ak
-e

ve
n

m=1
m=2
m=3

Fig. 5. Results on break-even point analysis.

showed that the p0 value was from 0.9 to 0.97 depending on the
enable signals. Hence we use p0 =0.9 in this experiment.

Since the m value strongly depends on the physical
implementation, we conducted an experiment to implement the
layout by assuming that we apply the power gating to all
PG-domains. We extracted R and C for the virtual ground from
the layout data and conducted SPICE simulations. Results
showed that the time required to charge up the virtual ground to
the voltage of 0.9Vdd is less than one cycle at 200MHz, which
is the typical operating frequency for the embedded processor
we assumed in this experiment. In our implementation
methodology, after the logical partitioning into PG-domains, it
is allowed to physically partition the PG-domain into further
smaller sub-clusters. Logic cells that are placed closely together
and share the same virtual ground are connected to the nearest
power switch cell with a local virtual ground line. This enables
to minimize the virtual ground capacitance, resulting in
minimizing the m value. We decided the maximum number of
enables as 3 based on p0 =0.9 and m=1.

For larger m, there may be a case that Nsleep < m. We also
estimated the nbreak-even value based on the equation (18).
Results showed that when p0=0.9 the nbreak-even value is 1.5. This
means that the PG-domains controlled by only one enable can
achieve the gain. When p0 ≤ 0.8, no PG-domain can achieve the
gain.

D. Power Savings and Area Penalty
We analyzed active leakage power for the datapath with

fine-grained RTPG and compared with the non-power-gated
design. This analysis was performed in two steps. First, we
conducted a Verilog simulation for the entire microprocessor as
in the case of obtaining the signal probability for the power
switch control signal. Then we traced and captured state values
for input and output pins of each logic gate in the datapath.
Next, we conducted leakage power analysis for the
non-power-gated design by using captured state values. The
analysis was performed using PowerCompiler and a library
with state-dependent leakage information. The state-dependent
leakage power was pre-characterized at the best
process/voltage corner and high temperature (85C).

In this experiment we applied power gating to the
PG-domains that are controlled by up to 3 enables. As the result,
we applied the power gating to 34 domains (containing 62K
cells in total) from among 66 domains (containing 72K cells).
Results from the analysis leakage analysis showed that the
active leakage power is reduced by 83%.

As stated in the previous section, depending on the p0 and m
values, there may be a case that nbreak-even value is reduced to 2
or 1 instead of 3. We estimated the active leakage reduction for
these cases. Results are shown in Fig. 6.

When the maximum number of enables for application of
power gating is 2, the active leakage power is reduced by 70%.
In contrast, when the PG-domains controlled by only one
enable signal can achieve the gain, the active leakage reduction
decreases to 54%.

E. Area Overhead
We investigated the area penalty for the layout in which the

power gating was applied to the domains controlled by up to 3
enables. The layout result for the datapath with the fine-grained
RTPG is shown in Fig. 7. Power switches are highlighted in
purple in the figure (darker portions in the gray-scale figure).
The cell area for the fine-grained RTPG was increased over the
non-power-gated design by 20%.

VI. CONCLUSIONS
We proposed a top-down design methodology to implement

fine-grained Run-Time Power Gating. Based on existing enable
signals in a gated clock design, we partition the design into
Power-Gating domains. By using the analytical formulas we
derived, decision to which Power-Gating domains we should
apply the power gating was made. Power switches added to the

0
20
40

60

80
100

1 2 3 4 5 6 7 8
Max numb of enables for application of power gating

A
ct

iv
e

le
ak

ag
e

re
du

ct
io

n
(%

)

Fig. 6. Results on leakage power analysis.

Fig. 7. Layout for datapath with fine-grained RTPG.

Power-Gating domains are dynamically controlled by the
enable signals to reduce active leakage power. Results from
applying this scheme to a datapath of a microprocessor showed
that active leakage power was saved effectively at the
reasonable area penalty.

ACKNOWLEDGMENT
The authors would like to thank M. Murakata and T.

Kitahara at Toshiba for their support. They also thank J.
Nishimoto at Renesas Technology for his technical advice.
They are grateful to Sequence Design, Inc. for allowing us to
access their tools. This work was supported by VLSI Design
and Education Center (VDEC), the University of Tokyo in
collaboration with Synopsys, Inc and Cadence Design Systems,
Inc.

REFERENCES
[1] S.Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, J. Yamada,

"1-V Power Supply High-Speed Digital Circuit Technology with
Multithreshold-Voltage CMOS", IEEE J. Solid-State Circuits, vol.30,
no.8, pp.847- 854, Aug. 1995.

[2] D. E. Lackey, P. S. Zuchowski, J. Koehl, "Designing Mega-ASICs in
Nanogate Technologies", Proc. DAC'03, pp.770-775, June 2-6, 2003.

[3] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, P.
Bose, "Microarchitectural Techniques for Power Gating of Execution
Units", Proc. ISLPED'04, pp.32-37, 2004.

[4] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, V. De, "Dynamic
Sleep Transistor and Body Bias for Active Leakage Power Control of
Microprocessors", IEEE J. Solid-State Circuits, vol. 38, no. 11, pp.
1838-1845, Nov. 2003.

[5] T. Miyazaki, T.Q. Canh, H. Kawaguchi, T. Sakurai, "Observation of
one-fifth-of-a-clock wake-up time of power-gated circuit", Proc. CICC'04,
pp.87-90, 2004.

[6] K. Usami, H. Yoshioka, "A Scheme to Reduce Active Leakage Power by
Detecting State Transitions", IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), pp. I493-I496, 2004.

[7] J. Rabaey, A.Chandrakasan, B. Nikolic, "Digital Integrated Circuits", 2nd
ed. pp.257-259, Pearson Education, Inc.

[8] T. Kitahara, N. Kawabe, F. Minami, K. Seta, T. Furusawa, "Area-efficient
Selective Multi-Threshold CMOS design methodology for standby
leakage power reduction," Proc. DATE'05, 2005.

[9] http://www.sequencedesign.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

