
Clustering-Based Microcode Compression

Edson Borin∗, Mauricio Breternitz Jr.†, Youfeg Wu† and Guido Araujo∗

∗Institute of Computing

University of Campinas - Campinas, SP – Brazil

Email: {borin,guido}@ic.unicamp.br
†Programming System Lab

Intel Corporation - Santa Clara, CA – USA

Email: {mauricio.breternitz.jr,youfeng.wu}@intel.com

Abstract— Microcode enables programmability of (micro) ar-
chitectural structures to enhance functionality and to apply
patches to an existing design. As more features get added to
a CPU core, the area and power costs associated with microcode
increase. A recent Intel internal design targeted at low power and
small footprint has estimated the costs of the microcode ROM
to approach 20% of the total die area (and associated power
consumption). Therefore, it is desirable to apply compression
techniques to microcode.

Microcode poses unique challenges for compression due to the
long instruction format, the hand-coded nature of the programs
and the stringent performance requirements that require fast
decompression. This paper describes techniques for microcode
compression that achieve significant area and power savings,
while presenting a streamlined architecture that enables high
throughput within the constraints of a high performance CPU.
The paper presents results for microcode compression on several
commercial CPU designs which demonstrates compression ratios
ranging from 50% to 62%.

I. INTRODUCTION

Recent trends have migrated more and more advanced

functionality to the microcoded portion of a CPU core, such

as protection, virtualization and management assistance. Mi-

crocode growth causes increased costs in terms of die area and

associated power consumption.

The cost of microcode ROM storage (µROM) is particularly

critical in cores for applications requiring small footprint dies

and reduced power consumption, like embedded processors

and CPUs that contain arrays of cores on the same die.

A recent Intel internal design targeted at low power and

small footprint has estimated the microcode area costs (and

associated power consumption) to approach 20% of the die.

One solution to address microcode size issues is to apply

code compression techniques [2], [4], [19]. The idea is to store

the microcode in a transformed representation (compressed)

and decompress it during execution. This enables savings in

µROM static size. By judicious design of the decompression

mechanism, it is possible to minimize the performance impact

of such approach.

Microcode uses a long instruction format comprised of

multiple operations and fields. The number of alternative

encodings of the operations and fields grows combinatorially.

This makes techniques like Instruction-Based Compression [1]

less likely to succeed. Second, microcode is usually hand-

coded and crafted for performance. As such, it is less likely to

contain repeated code patterns such as found in code generated

by compilers. Moreover, in high-performance processors, it is

necessary to provide a steady stream of instructions to the

micro engine. So, the decompression engine must have low

latency and enable high throughput instruction flow. For such

reasons, it is desirable to avoid variable-length encoding com-

pression techniques [1], [14], [19], [20], as these approaches

require a more complex decoder, incurring costs in area and

power, in addition to longer design and verification times.

The contributions of this paper are summarized as follows:

• Techniques to compress microcode by identifying sub

instruction fields suitable for compression;

• A pipelined decompression architecture that reduces the

performance impact of microcode compression and en-

ables its application to a high performance CPU;

• A technique to reduce the µROM loading, that takes

advantage of the compression mechanism.

The rest of the paper is organized as follows. Section

II outlines related work. Section III discusses microcode

compression. Section IV presents a set of clustering-based

microcode compression algorithms. Section V shows the ex-

perimental results. Section VI discusses area savings. Section

VII presents the pipelined decompression engine. Section VIII

describes a technique to reduce the µROM loading and Section

IX concludes the paper.

II. RELATED WORK

There have been several efforts to reduce code size via

code compression. As the microcode is mostly hand-coded,

we may assume that the best effort to remove redundancy by

means of software has already been applied. These range from

the use of classical compiler optimizations such as strength

reduction, dead code elimination, tail merging, and common

sub-expression elimination [6] to more elaborated techniques,

like Procedural Abstraction [8], [16].

In 1992, Wolfe proposed the Compressed Code RISC Pro-

cessor (CCRP) [19] using Huffman encoding to compress

MIPS R2000 instructions. It achieved a 70% compression

ratio with minor performance loss. To fetch the (variable-

sized) compressed words from memory, a translation table

“Line Address Table (LAT)” is used. Breternitz and Smith [4]

enhances on this architecture by pre-processing the program

such that I-cache miss address points to the fetch address of the

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

compressed program, avoiding the need for a LAT. The use of

variable-sized codewords complicates the decoding hardware

and makes this technique less desirable for microcode com-

pression. Note: we define compression ratio as the fraction of

the compressed program over the original program, taking into

account the cost of auxiliary tables and structures. Thus the

smaller the compression ratio the better.

Lefurgy [14] uses a dictionary to store repeated sequences

of instructions in the code. It assigns codewords to these

sequences and mixes codewords with uncompressed instruc-

tions in the program. The compression ratio ranged from 60%

to 70% for the PowerPC, ARM and i386 architectures. For

microcode, repeated sequences of instructions are less likely

due to the many possible long-instruction variants, and the

fact that size-conscious microcode programmers combine such

sequences in small subroutines.

CodePack [9], [12], [15] was designed by IBM for the

PowerPC processor using two dictionaries, one for each half

(16 bits) of the instructions. The instructions are encoded as

two indexes and two tags to specify the index size. They have

to translate the fetch addresses using a Compression Index

Table since the code offset change after the compression.

Decompression happens for blocks of 16 instructions at a time,

to fill an I-cache line. Their final compression ratio ranges

from 60% to 65% and performance from 10% of slowdown

to 10% of speedup.

Araujo et al. [1] presented three methods for code com-

pression: Pattern Based, Tree Based and Instruction Based

Compression, achieving a compression ratio of 61.3%, 60.7%

and 53.6% respectively. Again, the complexity of decoding

hardware hinders application of this technique to microcode.

All techniques above are used to compress 32-bit program

code. Microcode compression has been studied in the early

’80s, when ROM encoding techniques and design tricks were

used to reduce microprogram size [11]. Another approach to

the problem, in those days, was to design algorithms that

could efficiently compact operations into microinstructions [7].

These techniques evolved to what is nowadays a set of com-

piling methods used in code generation for VLIW machines.

Only recently, due to stringent processor design constraints,

has microcode compression been revisited as a way to reduce

µROM size. Unfortunately, not much work has been dedicated

to compress µROM code, when compared to its VLIW coun-

terpart. Ishiura and Yamagucchi [13] split VLIW instruction up

into fields that are optimally compressed, producing a 46%-

60% code reduction. Nam et al. [17] divide the instruction

stream into opcode and operand fields which are mapped into

two dictionaries. This approach delivers compression ratios

in the range of 63%-71% for a 4-12 issue VLIW architec-

ture. Xie et al. [20] proposed an arithmetic encoding based

VLIW compression technique, capable of compressing flexible

instruction formats. Their approach results in compression

ratios in the range of 70%-80%. In another paper, Xie et

al. [21] use Markov-based Variable-to-Fixed (V2F) encoding

to compresses IA-64 and TMS320C6X code to 56% and 70%

of its original size.

Most of the work above demands expensive multi-cycle de-

compression engines and/or control-logic, and in many cases,

the decompression engine is placed between the cache and

the main memory, so that the performance overhead is hidden

on the cache miss penalty [15]. Since the microcode storage

system does not have a cache memory, such approaches are

less desirable when decompressing the critical microcode from

the µROM.

III. MICROCODE COMPRESSION

The basic idea behind microcode compression is to identify

a set of unique bit patterns that compose the microinstructions

and to store them into a “dictionary” of unique patterns.

The original microinstructions are replaced by pointers to

the patterns in the “dictionary” as shown in Fig. 1. In this

figure, uaddr is the address of a microinstruction. In the

uncompressed form, the uaddr directly access the µROM to

fetch a microinstruction. In the compressed form, the unique

microinstructions are stored into the “dictionary” (DIC) and,

only the index to the pattern in the “dictionary” is stored

into the “pointer array”. Assume the original µROM has N
microinstructions each with L bits, and there are a total of M
unique microinstructions. The original µROM takes N×L bits

and the compressed µROM takes only N ×⌈log2M⌉+M×L
bits (where N×⌈log2M⌉ is the “pointer array” size and M×L
is the “dictionary” size). For N = 20 000, M = 12 000, and

L = 70 the compressed µROM uses 1 140 000 bits while

the original µROM uses 1 400 000 bits. This is about 19%

reduction in bits. Note: in this discussion we use the number

of bits in the µROM as an estimate for its area requirements.

Section VI presents experimental results from layout estimates

showing that reductions in actual µROM size are in line with

this estimate.

µInstr

Before

DIC

P
o
in

te
r

A
rr

ay

After

µROM
µAddr µAddr µInstr

Fig. 1. Basic microcode compression idea.

Notice that the “pointer array” and the original µROM have

the same number of entries (N). It means that the original and

the compressed microinstructions have the same address space.

Therefore, different from other code compression techniques,

the decompressor does not require an address translation

mechanism [2], [19], [20] and the microcode does not have to

be patched [4], [14].

An improvement of the above idea is to split the microin-

struction into a number of fields such that the number of

unique patterns for each field is minimized. The intuition

behind this idea is to take advantage of the entropy within

each field. For example, even though a microinstruction may

have, say, upwards of 70 bits, there are fields such as ‘opcode’

(about 8 bits), in which there is not much variation and in

which a few values are dominant. Fig. 2 shows an example

where each microinstruction is split into two roughly equal-

sized fields. Assume M1 and M2 are the number of unique

patterns for the two halves. The original µROM takes N × L
bits and the compressed µROM takes only N × (⌈log2M1⌉+
⌈log2M2⌉) + M1 × L/2 + M2 × L/2 bits. For N = 20 000,

M1 = 5 000, M2 = 5 000, and L = 70 the compressed µROM

uses 20 000∗26+10 000∗35 = 870 000 bits while the original

µROM uses 1 400 000 bits. This is about 38% reduction in

number of bits.

µInstr

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

N

L/2

D
IC

2
D

IC
1

L/2

M1

M2

µAddr

⌈log2M2⌉

⌈log2M1⌉

N

Fig. 2. Partitioned compression.

The key observation from the above approach is that with

a proper partitioning of the µROM into subsets of columns,

the number of unique patterns in the partitions is reduced and

thus the total area will be reduced.

The clustering-based compression selectively groups similar

columns into clusters, and goes beyond the simple partitioning

of the microinstructions into fields composed of adjacent bits.

For example, Fig. 3 shows a simple partitioning of each

microinstruction into two fields. With this partitioning, the two

partitions each have three different patterns and require two

bits to index the unique patterns. Therefore, the compressed

form needs 10 × (2 + 2) + 3 × 3 + 3 × 3 = 58, less than 4%

reduction from the original 60 bits size.

Col 1 Col 2 Col 6Col 3 Col 4 Col 5
1
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
1

1
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
1

1
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
1

Fig. 3. Simple partitioning method.

The clustering-based compression groups columns that are

similar to each other into clusters. For example, the sample

microcode columns in Fig. 3 may be grouped into the two

clusters shown in Fig. 4, where columns 1, 3, and 5 are

grouped into the first cluster and the columns 2, 4, and 6

are grouped into the second cluster. With this new clustering,

both clusters have only two unique patterns and need only a

single bit index. As a result, the compressed form requires

only 10 × (1 + 1) + 2 × 3 + 2 × 3 = 32 bits, nearly 50%

reduction and a significant reduction when comparing to the

basic partitioning method.

Col 3
1
0
1
0
0
1
0
0
1
0

Col 1
1
0
1
0
0
1
0
0
1
0

Col 5
1
0
1
0
0
1
0
0
1
0

0
0
1
0
0
1
0
1

Col 2
0
1

Col 4
0
1
0
0
1
0
0
1
0
1

Col 6
0
1
0
0
1
0
0
1
0
1

Fig. 4. Clustering method.

Fig. 5 shows how to access the microinstruction in the clus-

tering method. In this case, there is a new component called

“spreader” for each cluster that spreads the dictionary output

bits into the appropriate position in the final microinstruction.

The spreader is simply a rewiring of the original path that

connects the output to the microinstruction and should not

cost any additional die area or power. Notice that this method

is not limited by the number of clusters, and sometimes 3 or

more clusters are possible.

µInstrµAddr
µROM

µAddr

Before

After

Spreader

Spreader

D
IC

2
D

IC
1

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

µInstr

Fig. 5. Accessing a microinstruction in the clustering method.

For easy of understanding, figures 2 and 5 show distinct

memory blocks for each “pointer array”. However, the “pointer

arrays” always fetch data using the same µAddr, therefore,

they can be placed in a single memory block and the output

bits routed to the appropriate “dictionaries”. Other interesting

remark is that uncompressed columns also can be placed in

the single “pointer array”. In this case, the output bits corre-

sponding to the uncompressed columns are routed directly to

the output microinstruction bits. Fig. 12 provides a pipelined

version of the decompressor representing the “pointer arrays”

and the uncompressed columns in a single memory block.

IV. CLUSTERING-BASED COMPRESSION ALGORITHMS

A clustering algorithm groups similar columns of a µROM

into clusters, such that an objective function is minimized. To

describe the objective function, we define the following terms:

• L: the number of columns in the µROM;

• N : the number of bits in each column;

• K: the number of clusters in which the L columns are

grouped into;

• L1, L2, · · · , Lk: the number of columns in each cluster

1, 2, · · · , K;

• M1, M2, · · · , Mk: the number of unique patterns in clus-

ters 1, 2, · · · , K .

The clustering algorithm finds K clusters such that the

following objective function is minimized:

F =
K∑

i=1

[N × ⌈log2Mi⌉
︸ ︷︷ ︸

PointerArrayi

+

Dictionaryi

︷ ︸︸ ︷

Mi ∗ Li] (1)

For the example in Fig. 4, N = 10, K = 2, L1 = 3, L2 = 3,

M1 = 2, M2 = 2, and F = 10× log22+2×3+10× log22+
2 × 3 = 32.

Intuitively the clustering problem is an NP-hard optimiza-

tion problem. In order to address the problem we use heuris-

tics. The next sections show the proposed heuristic approaches

to solve this problem.

A. Sequential Columns

In order to group the columns in clusters, we divide the

problem in two parts:

• Create clusters of columns and attribute to each cluster

i a benefit Bi, where Bi is the number of bits saved if

cluster is selected. Bi = N × (Li−⌈log2Mi⌉)−Mi×Li

• Select the best set of clusters in order to maximize the

total benefit (
∑k

i=1
Bi).

It would be infeasible to enumerate all the possible clus-

ters [18]. Therefore, we decided to explore only the clusters

formed by consecutive columns, an approach we call S.C.

(standing for Sequential Columns).

The total number of possible clusters formed by consecutive

columns is:
∑L

i=1
[L−i] = L2

−L
2

. Thus, for a given microcode

with 75 columns, this approach would generate 2 775 clusters.

To select the best clusters we transform the problem into

a graph problem. Clusters are vertices with weight Bi, and

two vertices have an edge between them if the corresponding

clusters conflict (have common columns). The best solution is

the independent set with the maximum weight.

Searching for the independent set with the maximum weight

in general graphs is a NP-hard problem [10]. However, we can

reduce the sequential columns clusters to interval graphs, and

consequently solve the problem in polynomial time. Therefore,

we can reach the optimum solution when considering only

clusters formed by adjacent columns.

Since the clusters have sequential columns, we can represent

each cluster with three numbers: the initial column, the final

column, and the benefit Bi. The cluster can also be seen as

an “interval” with a cost (Bi). Fig. 6 shows an example of a

set of intervals (clusters).

D

A

B

C

E

F

Ea Ec Ed EfE′ EeEb

Fig. 6. Clusters represented as intervals. Cluster A contains the columns
0, 1, · · · , Ea.

We define V f(Ei) as the first valid interval after column

Ei (e.g.: in Fig. 6, V f(Ea) = D because B and C contains

columns ≤ Ea). v1, v2, · · ·, vn are the clusters that contain

only columns ≥ Ea and conflict with V f(Ei) (e.g.: for

V f(E′) = A, v1 = B, and v2 = C).

best solution = ss(E′) (2)

ss(Ei) =

Max(ps(V f(Ei)),
ps(v1),
ps(v2), for V f(Ei) 6= ∅
· · · ,
ps(vn))

0 for V f(Ei) = ∅

(3)

ps(v) = v.benefit + ss(Ev) (4)

Equation ss(Ei) states that the best sub-solution (from

column Ei to the end) involves only the partial-solution

(ps(v)) of the first valid cluster after Ei (V f(Ei)) and the

clusters that conflict with it (v1, · · ·, vn).

We can see that the partial-solution of a cluster that does not

conflict with V f(Ei) could be improved by adding V f(Ei)
to it. This is true because we filtered out the clusters with

negative benefits. Therefore the computation of ss(Ei) only

involves clusters that conflict with V f(Ei).
Every time ss(Ei) is computed, the algorithm updates an

array with the result, so that it does not have to recompute it.

We can see that ss(Ei) is executed only once for each cluster

i. Every time ss(Ei) is executed, the algorithm searches for

V f(Ei) and v1, · · ·, vn. The clusters can be sorted by the

final and initial columns so that this search can be done in

O(logN) (where N is the number of clusters). Therefore the

algorithm execution time is O(N × logN).
An interesting observation is that the final clustering may

not include some of the original microcode columns. It hap-

pens because the heuristic only selects clusters that increases

the total benefit. As stated before, the columns that were not

included into the clusters, or the uncompressed columns, are

placed into the “pointer arrays” and their output bits routed

directly to the microinstruction bits.

Since the S.C. heuristic considers only clusters formed by

consecutive columns, it does not take advantage of similar

columns that are apart from each other. However, we can

reorganize the microcode columns, so that similar columns

are moved together, and then use the S.C. heuristic to group

these columns into clusters. The microcode in Fig. 4 is an

example where the similar columns were moved together.

The next sections introduce two heuristics to move similar

columns together: the linear ordering and the circular ordering

heuristic.

B. Linear Ordering

The linear ordering heuristic reorganizes the microcode

by moving similar columns together. Although the heuristic

itself does not group columns into clusters, it enables the

S.C. heuristic to take advantage of similar columns that were

originally apart.

To determine the new columns order, the heuristic starts

with a work list (WL) containing one column and grows this

list by adding columns to it. The order that the columns are

inserted into the list is the new column ordering. Fig. 7 shows

the pseudo-code for the linear ordering heuristic. The benefit

of WL∪{c} is defined by the number of unique patterns in a

cluster formed by the columns in WL and c. Thus, the column

with the best benefit is the one that increases fewer patterns

when added to WL.

1: Initialize WL with one column

2: while there are not selected columns do

3: for each not selected column c do

4: Compute the benefit of WL ∪ {c}
5: end for

6: Select the column with the best benefit and append it

to the end of WL.

7: end while

8: The columns selection order is the new order.

Fig. 7. Linear ordering pseudo-code.

The proposed framework computational time is reasonably

fast. Therefore, we can explore the heuristic by taking each of

the L columns as the first column in WL.

C. Circular Ordering

The circular ordering approach is based in the linear or-

dering heuristic. The main differences are that in the circular

ordering approach:

• There is a column array that contains the column order-

ing;

• The work list (WL) grows only until a certain limit W ,

then it removes the earliest inserted column for every

column added to WL. In other words, it moves over the

column array;

• The column array is a circle, thus, when WL reaches the

end, it continues through the beginning of the column

array (initial point).

Fig. 8 shows the work list moving over the column array.

WL

(a) (b) (c)

WL WL

Fig. 8. (a) WL growing from the beginning (|WL| < W). (b) WL walking
through the column array (|WL| = W). (c) When WL reaches the end of
the column array it continues selecting columns.

Every time WL crosses the initial point, the algorithm saves

the columns ordering. The work list keeps moving until it

reaches the maximum number of iterations. Consequently, for

each iteration the algorithm generates a new column order-

ing. Fig. 9 shows the pseudo-code for the circular ordering

heuristic.

1: Grows WL until it has W columns

2: for each iteration do

3: for i=0 to L do

4: best col = choose the best col ()

5: Insert best col into the first position in WL and

remove the column in the last position in WL.

6: Place the removed column right behind WL.

7: end for

8: Saves the column array order

9: end for

Fig. 9. Circular ordering pseudo-code.

V. MICROCODE COMPRESSION RESULTS

We have applied the clustering algorithms to four different

microcodes from production processors. The first microcode

is from a Netburst-class architecture and contains 22 528
microinstructions with 75 bits each. The second one is from

a Pentium-M-class architecture, and the last two were ex-

tracted from mobile-class processors. Table I summarizes the

microcodes used in our experiments.

TABLE I

MICROCODES DESCRIPTIONS.

µCode # Cols # Lines Size in bits Class

A 75 22 528 1 689 600 Netburst

B 234 6 656 1 557 504 Pentium-M

C 236 5 632 1 329 152
Mobile

D 240 5 632 1 351 680

In order to evaluate the heuristics, we used the following

criteria:

• Single Cluster: The microcode is compressed by grouping

all the columns in a single cluster, such as depicted in

Fig. 1.

• Sequential Columns: We apply the sequential columns

heuristic to the original microcode.

• Linear Ordering: For a given microcode with L columns,

we execute the linear ordering heuristic starting the work

list (WL) with each one of the L columns. Consequently,

we generate L columns orderings. For each ordering,

the microcode is reorganized and the sequential columns

algorithm is used to group the new microcode columns.

• Circular Ordering: Like in the linear ordering approach,

we use the sequential columns heuristic to group the

reorganized microcode columns. In addition to starting

WL with each one of the L columns, we vary the

parameter W (the maximum size of WL) and fix the

number of iterations in L.

Fig. 10 shows the best compression ratios for each clus-

tering approach. Notice that the sequential columns heuristic

significantly improves the single cluster approach results. For

microcode B, the compression ratio dropped from 93.69% to

54.40%, while in the other microcodes the reduction was about

25%. In fact, it happens because the sequential columns groups

the columns in multiple clusters. Moreover, the heuristic is

able to identify non-similar columns and place them directly

into the “pointer array” as uncompressed columns.

C
o
m

p
re

ss
io

n
 R

at
io

µCode D

Single Cluster
Circular Ordering
Linear Ordering

80%

60%

40%

20%

0%

100%

µCode A µCode B µCode C

Sequential Columns

Fig. 10. Compression ratios for the clustering approaches.

The linear ordering approach improved the sequential col-

umns results from 2 to 4%. The circular ordering heuristic

also achieved better results, but in this case, the improvement

was not significant (less than 0.5%) and the circular ordering

execution time was too high.

VI. DIE AREA REDUCTION

So far we have discussed compression ratio in terms of the

reduction in number of bits stored in the µROM. However on

the final layout, actual area reduction may differ from reduc-

tion in the number of bits. This is because the memory arrays

require a rectangular, regular layout. Imagine, for example, a

reduction in a single bit. This may not cause any area reduction

because the rectangle area is the same. Unless the reduction

in number of bits is enough to change the array dimensions,

there may be no noticeable area reduction. Moreover, there

may be several such arrays and their arrangements affect the

layout. Finally, control logic, address decoding structures and

the drivers also affect ROM size and do not scale linearly

with the number of bits. Fig. 11 illustrates a ROM layout

organization.

ROM Core

Column Mux & Driver

Address

Clk

Data output

D
ec

o
d
er

Control

··
·

· · ·

Fig. 11. ROM layout organization.

We modeled the area of the final layout for the µROM

containing the microcode A with help from circuit design en-

gineers. Three cases were considered (the die area is measured

in “units” of space):

• The original µROM structure contains one array with

dimensions 711×800 units, with total area 568 800 units;

• The single cluster organization, with one “pointer array”

and one “dictionary” (Fig. 1), is created. This organiza-

tion has two ROM arrays; the first array has dimensions

484 × 214 units and the second array has dimensions

291 × 1034 units. The total area is 404 470 units;

• An organization similar to Fig. 2, with K = 2 in

which the microinstruction is broken in two parts. This

organization has three arrays, respectively with areas

484 × 349, 155 × 286 and 277 × 634 for a total area

of 388 864 units.

The above experiment found an area reduction to 68% of the

original area, whereas the reduction in the number of µROM

bits for this microprogram was to 57% (when the non-similar

columns are included into the clusters). This difference is not

unusual, as we discussed above, due to the rectangular form of

the arrays and the extra structures that does not scale linearly

with the bits reduction. It also demonstrates that our estimates

based on bit counts are a good approximation of the actual

area savings.

VII. PIPELINED EXECUTION

The microcode decompression must be efficient enough to

comply with the throughput constraints of a high performance

CPU. Compared to the original µROM, the decompression

engine implements a two level memory access indirection. It

loads the indices from the “pointer arrays”, and uses these

indices to access the “dictionary” arrays. Notice that this

organization may have higher latency than the original µROM,

depending on the sizes of the arrays. If the new memory arrays

are smaller than the original µROM the new latency should

not be as large as twice the original latency.

If the new latency is enough to keep the µROM access out

of the cycle time critical path, then the decompression engine

is as simple as the organization in Fig. 5 (right). However,

if the new latency does increase the CPU critical path, we

introduce a pipelined decompression engine.

Fig. 12 depicts the layout organization of the pipelined

decompression engine. The structure is divided in two pipeline

stages. In the first stage, the indices to access the “dictionary”

arrays and the uncompressed columns are fetched from the

“pointer arrays”. As soon as these arrays are smaller than the

original µROM, this stage does not increase the cycle time.

In the second stage, the µInstr bits are fetched from

“dictionary” arrays and assembled into the microinstruction.

The uncompressed bits are routed directly from the pipeline

register to the microinstruction. Again the “dictionary” arrays

are smaller than the original µROM, and consequently the time

required to fetch the µInstr bits. Notice that the spreaders are

basically rewiring, therefore they do not require extra time to

reorganize the microcode bits.

µAddr

2
nd Stage1

st Stage

D
IC

2
D

IC
1

µInstr

U
n
co

m
p
re

ss
ed

C
o
ls

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

Fig. 12. Pipelined decompression engine layout organization.

The two stage pipelined organization adds only one cycle

(to fill the pipeline) when executing a microcode sequence.

For very short microcode sequences, this extra cycle may

be a compromising overhead. However, most microcode se-

quences are long, as they correspond to complex instructions.

Such instructions are also less frequent, thus being relegated

to microcode. In our experiments, adding one cycle to the

microcode sequence had negligible performance impact to

application programs.

VIII. REDUCING µROM LOADING

In addition to reducing power due to die area reduction,

microcode compression can also be extended to further reduce

power consumption of the compressed µROM. The µROM

power consumption is determined, in part, by the number of

bits set to ‘1’ in the µROM [3], [5]. Thus, a transformation

technique that reduces the number of µROM bits that are set

to ‘1’ potentially reduces its power consumption. Microcode

compression may be thought of as a transformation technique.

Notice that it is possible to choose the “dictionary” position

where a given pattern is placed. As a consequence, the “pointer

array” indices are also changed. For instance, if a given pattern

is placed into the first position of the “dictionary” (address

0x00h), the “pointer array” entries that points to this pattern

will contain the value 0x00h. Therefore, we can assign the

most frequent patterns to the “dictionary” addresses with fewer

bits to reduce the number of ‘1’ bits in the “pointer arrays”.

A simple algorithm to reduce the compressed µROM load-

ing is as follows: first, sort the dictionary patterns in descend-

ing order of frequency and then assign dictionary positions

such that the most frequent patterns have the least number

of ‘1’ bits in its address. So, the first position, assigned to

the highest-occurring pattern is all zeros. Next, all addresses

containing one bit set are assigned, and so on.

We achieved about 60% reduction on the number of ‘1’

bits when applying this algorithm to the microcodes from

Section V. Note that these microcodes have been hand-coded

and take into consideration µROM loading by reducing the

number of bits set to ‘1’ wherever possible.

As an example, the microcode A contains 273 264 bits

set to ‘1’. Using the µROM loading reduction algorithm, the

compressed organization for the same microcode contains only

114 549 bits set. For this microcode sequence, our technique

is able to further reduce the total number of bits set to ‘1’ by

58%, considering all ROM arrays.

IX. CONCLUSION

In this paper we first show potential benefits and chal-

lenges for microcode compression. Then we describe tech-

niques to achieve compression while allowing for a pipelined

high-throughput design. Also described are algorithms for

separating a microinstruction into fields to achieve higher

compression. Then a technique to reduce the µROM loading

for reduced power consumption is presented. The techniques

are illustrated by application to microcode from production

microprocessor designs, achieving compression ratios ranging

from 50% to 62%.

ACKNOWLEDGMENTS

This work was partially supported by a fellowship grant

from FAPESP (02/08139-3) and research awards from

FAPESP (00/15083-9) and CNPq (301731/2003-9). We would

like to thank Herbert Hum and the anonymous reviewers for

their valuable comments and discussions. We also appreciate

the support provided by Jesse Fang at the Programming

System Laboratory at Intel.

REFERENCES

[1] G. Araujo, P. Centoducatte, R. Azevedo, and R. Pannain. Expression-tree-
based algorithms for code compresion on embedded RISC architectures.
IEEE Transactions on VLSI Systems, 8(5):530–533, 2000.

[2] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain. Code compression
based on operand factorization. In Proceedings of MICRO-31, p. 194–
201, 1998.

[3] E. de Angel and J. Earl E. Swartzlander. Survey of low power techniques
for ROMs. In Proceedings of ISLPED’97, p. 7–11, 1997.

[4] M. Breternitz Jr. and R. Smith. Enhanced compression techniques
to simplify program decompression and execution. In Proceedings of

ICCD’97, p. 170–176, 1997.

[5] Y.-S. Chang, B.-I. Park, and C.-M. Kyung. Conforming inverted data
store for low power memory In Proceedings of ISLPED’99, p. 91–93,
1999.

[6] S. K. Debray, W. Evans, R. Muth, and B. D. Sutter. Compiler techniques
for code compaction. ACM Transactions on Programming Languages
and Systems, 22(2):378–415, 2000.

[7] J. A. Fisher. Trace scheduling: A technique for global microcode
compaction. IEEE Transactions on Computers, 30(7):478–490, 1981.

[8] C. W. Fraser, E. W. Myers, and A. L. Wendt. Analyzing and compressing
assembly code. In Proceedings of SIGPLAN’84, p. 117–121, 1984.

[9] M. Game and A. Booker. CodePack: Code compression for PowerPC
processors. MicroNews 5(1), 5(1), 1999. IBM.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[11] K. M. Guttag. Compressing control ROM for VLSI microprogrammed
microprocessors. In Proceedings of MICRO-13, p. 115–121, 1980.

[12] IBM. CodePack PowerPC Code Compression Utility Users Manual

Version 3.0. IBM, 1998.
[13] N. Ishiura and M. Yamaguchi. Instruction code compression for appli-

cation specific VLIW processors based on automatic field partitioning.
In Proceedings of The Workshop on Synthesis and System Integration of
Mixed technologies, p. 105–109, 1997.

[14] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge. Improving code density
using compression techniques. In Proceedings of MICRO-30, p. 194–203,
1997.

[15] C. Lefurgy, E. Piccininni, and T. Mudge. Evaluation of a high
performance code compression method. In Proceedings MICRO-32, p.
93–102, 1999.

[16] S. Y.-H. Liao. Code generation and optimization for embedded digital

signal processors. PhD thesis, MIT, 1996.
[17] S.-J. Nam, I.-C. Park, and C.-M. Kyung. Improving dictionary-based

code compression in VLIW architectures. IEICE Transactions on Fun-

damentals of Electronics, E82-A(11):2318–2324, 1999.
[18] G.-C. Rota. The Number of Partitions of a Set. The American

Mathematical Monthly, 71(5):498–504, 1964.
[19] A. Wolfe and A. Chanin. Executing compressed programs on an

embedded RISC architecture. In SIGMICRO Newsletter , 23(1-2):81–91,
1992.

[20] Y. Xie, W. Wolf, and H. Lekatsas. Compression ratio and decompression
overhead tradeoffs in code compression for VLIW architectures. In
Proceedings of ASIC’01, p. 337–340, 2001.

[21] Y. Xie, W. Wolf, and H. Lekatsas. Code compression for VLIW
processors using variable-to-fixed coding. In Proceedings of ISSS’02,
p. 138–143, 2002.

