
Pesticide: Using SMT to Improve Performance of Pointer-Bug Detection

Jin-Yi Wang, Yen-Shiang Shue, T. N. Vijaykumar, and Saurabh Bagchi

School of Electrical and Computer Engineering, Purdue University

{jywang, shue, vijay, sbagchi}@ecn.purdue.edu

Abstract—Pointer bugs associated with dynamically-allocated

objects resulting in out-of-bounds memory access are an important

class of software bugs. Because such bugs cannot be detected easily via

static-checking techniques, dynamic monitoring schemes have been

proposed. However, the key challenge with dynamic monitoring

schemes is the runtime overhead (slowdowns of the order of 10x are

common). Previous approaches have used thread-level speculation

(TLS) to reduce the overhead. However, the approaches still incur

substantial slowdowns while requiring complex TLS hardware. We

make the key observation that because the monitor code and user code

are largely and unambiguously independent, TLS hardware with all

its complexity to handle speculative parallelism is unnecessary. We

explicitly multithread the monitor code in which a thread checks one

access and use SMT to exploit the parallelism in the monitor code.

Despite multithreading the monitor code on SMT, dynamic moni-

toring slows down the user thread due to two problems: instruction

overhead and insufficient overlap among the monitor threads. To

address instruction overhead, we exploit the natural locality in the

user thread addresses and memoize recent checks in a small table

called the allocation-record-cache (ARC). However, programs making

and accessing many small memory allocations cause many ARC

misses and incur significant runtime overhead. To address this issue,

we make a second key observation that because adjacent memory

objects result in ARC entries with contiguous address ranges, the

entries can be merged into one by simply merging the ranges into one.

This merging increases the effective size of the ARC. Finally, insuffi-

cient overlap among monitor threads occurs because of inefficient syn-

chronization to protect the allocation data structure updated by the

user thread and read by the monitor threads. We make the third key

observation that because monitor-thread reads occur for every check

but user-thread writes occur only in allocations and deallocations,

monitor reads are much more frequent than user writes. We propose a

locking strategy, called biased lock, which puts the locking overhead

on the writer away from the readers. We show that starting from a

runtime overhead of 414% our scheme reduces this overhead to a

respectable 24% running three monitor threads on an SMT using a

256-entry ARC with merging and biased lock.

I. INTRODUCTION

According to the National Institute of Standards (NIST) “soft-

ware developers spend approximately 80% of development costs

on identifying and correcting defects and yet few products of any

type other than software are shipped with so many errors” [1]. To

address this problem, static checking tool, such as [9], [11], [15],

[17] attempt to detect and remove software bugs in the testing and

verification phase. However, NIST reports that more than half of

bugs are not found until “downstream” in the development process

or during post-sale use of software. This figure will worsen as soft-

ware becomes more complex. To address the large percentage of

bugs slipping through static checking, dynamic monitoring

schemes, such as [10], [16], [25], [26], [19] and [8] attempt to

detect bugs at runtime.

A detailed study of software defects in commercial database

management systems and operating systems [21] reports that as

many as half of the “high-impact” bugs are in dynamic memory

allocation and pointer management. The study defines high-impact

bugs as those that often results in system unavailability. The mem-

ory allocation and pointer management bugs cause out-of-bounds

memory access. Accordingly, we target pointer bugs associated

with dynamically-allocated objects resulting in out-of-bounds

memory access. Because static checking cannot detect such bugs

easily, we explore a dynamic monitoring scheme.

While implementing dynamic monitoring is relatively

straightforward, the key difficulty is the runtime overhead. Though

dynamic monitoring is powerful and can catch hard-to-find bugs,

its considerable overhead has limited its applicability to in-house

testing. As such, dynamic monitoring is too slow to be used in pro-

duction runs. For instance, though Purify, which uses software for

monitoring without any support from hardware, has been

extremely successful in catching pointer bugs, 1000% slowdowns

are common. Recent dynamic-monitoring schemes, such as [16],

iWatcher [26], and AccMon [25], propose to address this perfor-

mance problem by leveraging thread-level speculation (TLS).

These schemes use TLS to overlap speculative threads spawned

from the user computation as well as the monitoring code. [16]

uses Dynamic Multi Threading (DMT) [2] as its TLS architecture,

and iWatcher and AccMon use [20] as their TLS architectures.

However, there are two shortcomings with these TLS-based

schemes: (1) TLS schemes introduce considerable complexity:

DMT uses associative searches through large trace buffers for

dependence tracking and flash copying of register values. [20]

pushes speculative state into the cache hierarchy and requires com-

plicated dependence tracking through the cache hierarchy. (2)

Despite using TLS, dynamic monitoring still inflicts considerable

performance loss. [16] reports 700% runtime overhead over no

monitoring, and [25] incurs 200% for three SPEC2000 programs.

While [16] targets dynamic monitoring during production runs,

[25] targets the debugging phase of software development. Irre-

spective of the intended target, their high performance degradation

coupled with their reliance on complex TLS hardware makes it

hard to deploy them in production runs.

In this paper we address these shortcomings in the context of

monitoring out-of-bounds memory access due to pointer bugs

based on the following key observations: (1) The main computa-

tion and the monitoring code are unambiguously and truly inde-

pendent except that the addresses of the main computation’s

memory accesses need to be passed to the monitoring code. More

importantly, each dynamic instance of the monitoring code meant

to check one memory access is unambiguously and truly indepen-

dent of other instances. (2) Exploiting ambiguous, speculative par-

allelism and incurring its complexity is unnecessary when explicit,

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

unambiguous parallelism exists. Accordingly, we propose to multi-

thread the monitoring code in which a thread checks one memory

access, and to use SMT [23] to exploit the explicit parallelism in

our monitoring code. Because SMT exploits explicit parallelism

instead of speculative parallelism, SMT is considerably simpler

than TLS.

Another choice to exploit explicit parallelism would be chip

multiprocessors (CMPs), as [19] does. However, memory

addresses need to be passed from the user thread to the monitor

threads. In CMPs, the user and monitor threads would run on dif-

ferent cores, requiring high-bandwidth (potentially specialized)

communication paths between the cores. To avoid this problem, we

choose SMT where the user and monitor threads run within one

core and can communicate easily.

Despite running multiple monitor threads overlapped with the

user thread, dynamic monitoring slows down the user thread due to

two problems: instruction overhead and insufficient overlap among

the monitor threads.

Because each check involves tens of instructions, monitoring

incurs the first the problem of instruction overhead. Though user

and monitor threads are independent, because all threads run on

one SMT core the monitor threads compete with the user thread for

execution resources causing substantial performance degradation.

To reduce the volume of monitor instructions, we exploit the natu-

ral locality in the user addresses and memoize recent checks in a

small table called the allocation-record-cache (ARC). When a user

address hits in the ARC, the hardware checks the access without

invoking a monitor thread, avoiding extra instructions.

This locality was also exploited by AccMon in its check-

lookaside-buffer (CLB). However, because each entry in CLB (and

ARC) correspond to a memory object, programs allocating and

accessing many objects need a large CLB (and ARC). In an

attempt to reduce the size of the CLB, AccMon implements a

bloom filter which results in false positives. However, while Acc-

Mon is used for debugging where the false positives will not reach

the user, pesticide is for production user runs where users will not

tolerate false positives unnecessarily terminating their program.

Consequently, we propose a scheme without false positives. We

make the key observation that because adjacent memory objects

result in ARC entries with contiguous address ranges, the entries

can be merged into one by simply merging the ranges into one.

Because the set of valid address ranges are derived from memory

allocation functions in software, we perform this merging in soft-

ware in the monitoring code. Merging enables ARC to cover more

memory objects with fewer entries.

The second performance problem is the insufficient overlap

among the monitor threads. Although monitor threads are largely

independent of the user program there still exists some synchroni-

zation. The monitor threads have to read the data structure holding

the current set of valid memory allocations where as the user

thread writes to the structure when allocating or deallocating mem-

ory (e.g., malloc and free). Using the standard reader-writer-lock

[6] for this synchronization causes inordinate contention among

the monitor threads. To address this issue, we make the key obser-

vation that because monitor-thread reads occur for every check but

user-thread writes occur only in malloc and free, monitor reads are

much more frequent than user writes. Accordingly, we employ a

novel locking strategy, called biased lock, in which each monitor

thread has its own lock for reading whereas the user thread has to

obtain all the monitor-thread locks before writing. This biased

strategy makes readers fast at the cost of the writer which fits our

context of frequent monitor reads and infrequent user writes.

The key novelty of this paper are the range merging ARC and

biased lock. Our simulation results show that starting from an aver-

age runtime overhead of 414% incurred by monitoring over no

monitoring, pesticide reduces this overhead to a respectable 24%

using a 256-entry ARC and three monitor threads. This 24% over-

head compares well with [16]’s 700% and [25]’s 200% and also

with the fact the Java which performs bounds-checks in-line in the

user code incurs about 100% runtime overhead [4], [24]. Because

pesticide checks all heap accesses, it covers all out-of-bounds heap

accesses without any false positives.

The roadmap for the rest of the paper is as follows. In

Section II we describe our software and hardware architecture. In

Section III, we describe the ARC, the biased locks and the merging

scheme. We present our evaluation methodology in Section IV and

our results in Section V. Section VI describes related work and we

conclude in Section VII.

II. OUR SCHEME

In general, pointer bugs can be associated with heap, stack, or

static objects, However, because the study on commercial soft-

ware, mentioned in Section I, shows that heap objects account for

about half of all the “high-impact” bugs [21], we monitor only

heap objects and not the stack or static objects. Moreover, there are

efficient schemes to monitor the stack (e.g., [7] protects against

buffer overflow with minimal performance degradation). As we

explain later, pesticide can apply to static objects.

 A. Overview

To achieve our goal of monitoring user-thread heap accesses,

we need to track user-thread heap allocations and deallocations,

and check whether user-thread accesses fall within a valid alloca-

tion. We track the memory allocations and deallocations in a hash

table called the book-keeping-structure (BKS). To perform the

checking, our monitor threads run concurrently with the user

thread on a SMT processor. Upon a load or store instruction in the

user thread, pesticide triggers a monitor thread to check the address

and the length of the access. Multiple instances of the monitor

thread run on the SMT processor to check multiple accesses in par-

allel (the number of monitor threads is fixed). Each monitoring

thread matches the address and length of the access against the

BKS entries. A match (i.e., access is to a valid address and access

length is within allocated size) indicates that the access is legal. A

mismatch indicates a pointer bug. Figure 1 shows a block diagram

of pesticide.

We now give the details of our software in Section II-B and

hardware structures in Section II-C.

 B. Software support

In order for application programmers not having to worry

about monitoring routines, we propose that library functions be

instrumented with monitoring capabilities. We augment library

calls to memory-management routines (e.g., malloc, calloc, real-

loc, and free) with code to maintain the BKS.

The BKS is a hash table that tracks valid memory address

ranges by recording memory allocations and deallocations (the

addresses are virtual addresses annotated with process ID to allow

for multiple concurrent user processes). Every allocation creates a

new BKS entry which is removed at the corresponding dealloca-

tion. Each entry contains the start address and the length of the

allocation.

The BKS is fundamentally different from conventional hash

tables. In a conventional hash table, an object that is hashed into

the hash table is found by using the same object as the key. In BKS,

while we hash in allocations’ address ranges, accesses to a specific

address probe the BKS to determine if a given address falls within

a valid range. Thus there is a disparity between what is stored (i.e.,

address ranges) and what is used to probe (i.e., a specific address).

This disparity implies that if we hash in a long address range using

the range’s start address, and an access far from the start but within

the range occurs, then the range and the access may fall into differ-

ent hash buckets resulting in the access not finding the range

though the access is valid. One way to solve this problem is that we

could repeatedly hash each byte of the whole range of the

allocation and store all of them in the BKS. However, this

approach would result in inordinately many copies of the same

range and blow up the hash table size. Instead, we break the origi-

nal allocation’s address range into many small ranges called hash-

blocks (e.g, 512-byte ranges). We hash all the hash-blocks of the

original allocation into the BKS using the hash-block’s start

address. Consecutive hash-blocks fall into consecutive buckets,

and a BKS entry corresponds to one hash-block. Upon an access,

we use the hash-block number part of the access’s address (e.g.,

hash-block of 512 bytes and a 32-bit address mean that the upper

23 bits of the address are the hash-block numbers) to probe the

BKS. Because the addresses within a hash-block have the same

hash-block number as the hash-block’s start address, accesses to a

hash-block map to the same bucket as that holding the hash-block.

Though our solution allows the access to find its corresponding

range, we break up long address ranges into many hash-blocks,

each of which repeatedly store the original range, increasing the

hash table size.

We use simple open chains to handle collisions. Because

access probes need to traverse the chains to ascertain validity of the

access, the longer the chains the more the monitoring overhead.

Therefore, it is important to keep the chains short. While a good

hash function is necessary for this purpose, it is not sufficient.

Hash-block size has a considerable impact on the chain length.

Both small and large hash-blocks result in long chaining but in dif-

ferent scenarios. Small hash-blocks break up larger allocations into

many BKS entries (albeit in different buckets) resulting in much

chaining. Large hash-blocks imply that many smaller allocations

fall into the same bucket resulting in much chaining. Thus, the

hash-block size has to match the allocation size commonly found

in programs.

One simple optimization we can do is that, upon an check, we

move a hash element to the top of its hash chain in anticipation that

the hash element will be accessed again due to locality. This move

reduces the chain traversal in subsequent accesses.

 C. Hardware support

Because the volume of memory accesses to be checked is high

and the check itself is fairly short especially if the BKS chains are

short (e.g., a few tens of instructions), using software to spawn

monitor threads or to pass the addresses from user to monitor

thread would incur considerable overhead. Instead, we employ

hardware support in the form of the monitor-job-queue (MJQ)

which captures the user thread’s addresses off the pipeline and trig-

gers a monitor thread to check the access.

The MJQ is a FIFO queue built in hardware. The queue buff-

ers address (virtual address and process ID) and the length of the

heap accesses to be monitored. As we mentioned before, we check

only heap accesses, and not stack and static accesses. The MJQ

determines an address to belong to the heap if the address lies

between the heap bottom and heap ceiling. Address and length of

the access whether it is a byte, word, or quadword are then taken

from the load-store queue.

Monitoring could potentially be triggered at any point in the

execution of loads and stores. Monitoring before commit would

include misspeculate loads and stores along with the correct loads

and stores leading to wastage of SMT resources as much of the

monitoring would be unnecessarily triggered. Therefore, we check

at commit. Because loads and stores stay in the load-store queue

until commit, we readily obtain the addresses and the access

lengths from the load-store queue.

While the checking itself is independent of the user thread

once the access address and length are given to the monitor thread,

the decision of whether to allow the access to commit before the

check completes or not impacts the parallelism between the moni-

tor and user threads. While loads does not cause bugs to spread to

other programs, stores may propagate bugs via I/O. Delaying the

commit till the check completes prevents a buggy store from prop-

agating further. Because stores are frequent enough, this option

would curtail the parallelism between user and monitor threads and

would severely slow down the user threads. Instead, to retain the

parallelism, we do not hold up store commits till the check com-

pletes. Thus, accesses may commit before the check completes.

(e.g., a few hundreds of cycles). To prevent bug propagation, we

ensure that all checks pending in the MJQ are complete before any

system call, including I/O call, is committed. Because system calls

are infrequent this delay in commit does not significantly impact

performance.

Apart from system calls, the other point where the user thread

waits for the monitor thread is upon memory deallocations. Deallo-

cating a heap object while there are pending checks of accesses to

the object would cause us to flag a bug incorrectly. Consequently,

we ensure that all pending checks complete before the deallocation

starts. While hardware can easily detect system calls as special

opcodes and trigger the draining of the MJQ, deallocation func-

tions are indistinguishable from other functions in the user thread.

To that end, we use a special NOP to signal the beginning of a

deallocation. Because deallocations are also infrequent, delaying

the deallocation till all pending checks are complete does not sig-

nificantly impact performance.

Program thread

Monitoring threads

MJQ/ARC
Book Keeping
Structure

1. Update book-keeping-structure

2. Put heap accesses into MJQ
for monitoring at commit

3. Monitoring jobs passes to monitoring
threads

4. Monitoring threads consult the
book-keeping-structure. If successful
then do nothing, otherwise report error

Figure 1: Proposed monitoring scheme

We mentioned earlier that we can easily extend pesticide to

static objects. Because static objects’ address ranges are known at

link time, the linker can insert the ranges into the BKS.

III. SUPPORTING EFFICIENT MONITORING

The key reasons for performance degradation in the basic

scheme described so far are instruction overhead and insufficient

overlap among monitor threads. We alleviate these problems via

our optimizations.

 A. Allocation-record-cache (ARC)

To reduce the instruction overhead of monitoring, we exploit

the locality in the user-thread accesses to memoize checks to

recently-accessed heap objects so that future checks to the same

objects are elided completely and the instruction count overhead of

monitoring is reduced. We use a hardware cache, called the alloca-

tion-record-cache (ARC), for this memoization.

Before inserting an access into the MJQ, the address of the

access is first checked in the ARC. Upon a hit, the ARC performs

the check in hardware. Consequently we do not place the access in

the MJQ, saving the instructions of the check. A miss launches a

monitor thread which performs the check in software but also loads

the ARC with the BKS entry used to perform the check.

Each ARC entry holds a BKS entry: the start address and the

length of the allocation. However, there is a key difference between

the BKS and ARC entry. To avoid the danger of an address not

finding its range in the BKS, both the address and range are hashed

by their hash-block number. Consequently, each hash entry can

cover only a hash-block implying that large allocations be broken

up into multiple hash-blocks, introducing repetition in the hash

entries. Because the ARC is a small cache, such repetition would

be wasteful. Instead we use a fully-associative cache so that there

is no indexing into the ARC. Because every access searches

through all of ARC’s entries, there is no danger of an access not

finding its range in the ARC. Consequently, each entry in the ARC

is not restricted to covering one hash-block, implying that an ARC

entry can cover an entire allocation without breaking up the alloca-

tion across multiple ARC entries.

Thus, the address of an access is matched against all the

ARC’s entries in parallel, checking if the address fall within an

entry’s start address and the entry’s allocation length.

Because the ARC is essentially a cache of the BKS, any mod-

ifications to the BKS need to be handled by the ARC for maintain-

ing coherence between the BKS and the ARC. Consequently, the

ARC is flushed upon deallocations which are identified by the spe-

cial NOPs described in Section II-C. As mentioned earlier, deallo-

cations are infrequent, so the flushes do not significantly impact the

ARC.

 B. Range merging

While the ARC works well for many programs, a few pro-

grams make and access many (small) allocations. Because one

ARC entry can hold only one allocation, small allocations imply

that the ARC can reach only a small part of the user thread’s work-

ing set; and many allocations imply that many ARC entries would

be needed. The net effect is many misses in the ARC. Many alloca-

tions also implies long hash collision chains in the BKS. Here

again, the long collision chains is not due to an ineffective hash

function, but rather due to the fact the one hash entry can hold only

one allocation.

We exploit the fact that the BKS entries for adjacent heap

objects can be merged to increase the effective capacity of the

ARC. This merging has the additional benefit of shortening the

hash collision chains.

Because memory allocations and deallocations are tracked by

the BKS, we perform this merging in software in the BKS code. To

implement merging, we keep the BKS entries in the collision

chains in ascending order of starting addresses. Upon new alloca-

tions, an insert into a chain merges entries if two entries contain

contiguous ranges. Upon deallocations, a previously-merged entry

may be broken into two entries. As such, merging increases the

overhead of the BKS code. Because allocations and deallocations

are relatively less frequent than accesses which benefit from the

improved effective ARC size and shorter chain lengths, merging

improves performance (allocations need not be infrequent in the

absolute just fewer than accesses). Also, we do not perform the

locality optimization of moving the hash element to the top of the

hash chain as such moving will violate the ordering of the start

addresses.

There is one difficulty with merging: Because memory alloca-

tors often allocate memory objects padded to a size larger than

requested for reducing memory-management overhead, storing

heap-management-related meta information, and alignment rea-

sons, merging padded ranges would result in letting some bugs go

undetected. If an access falls in the padding which is in the middle

of a merged range then the access is invalid, but we cannot detect it

to be so. To address this problem, we first make the key observa-

tion that same-sized objects are adjacent in the common case. This

observation implies that in the common case padding would

exhibit a repetitious pattern in the merged ranges. Consequently,

recording the padding just once for the entire merged range would

suffice. Therefore, we merge two ranges only if they are adjacent

and they are of the same size and have the same padding. We

record the start address of the first allocation, the size of the alloca-

tion, and end address of the merged entry. The ARC caches these

merged entries.

Ignoring the above observation and merging different-sized

objects would mean recording all the paddings within the merged

range. This recording even if done via bit vectors would add sub-

stantial space overhead, defeating merging’s purpose.

 C. Biased Locks

Because checking of one access is independent of checking of

other accesses, we employ multiple monitor threads in parallel.

However, because memory allocation and deallocation routines in

the user thread share the BKS with the monitor threads, it is neces-

sary to protect the shared data via proper synchronization. Specifi-

cally, the user thread writes and the monitor threads read. However,

the two commonly-used locking strategies lead to heavy conten-

tion among the monitor threads. The first strategy, called the basic

lock, uses one global lock contended by all threads (i.e., user

thread and multiple monitor threads), as shown in Figure 2a. There

is heavy contention among the multiple monitor threads leading to

complete serialization.

The second strategy, called RW, is for multiple readers and

writers involved in producer-consumer scenarios (user thread is the

producer and the monitor threads are the consumers). As shown in

Figure 2b, RW also has a global lock between the reader and the

writer. RW attempts to reduce the overhead on the readers by

requiring only the first reader to grab the global lock, allowing later

readers to avoid grabbing the global lock. However, the readers

among themselves have to grab a local lock to identify the first

reader. Because the local lock protects just an increment operation,

the local lock does not serialize the readers much. If the original

critical section to be protected from the writer is long, the local

lock overhead is amortized. Unfortunately, because our monitor

threads are very short, the local lock overhead is not amortized.

We make the key observation that our writer (i.e., user thread)

is much less frequent than readers (i.e., monitor thread). Therefore

we bias the overhead away from the readers and towards the writer

in the lock called biased-lock, as shown in Figure 2c. In the biased-

lock each reader is given its own lock. So there is no contention

among the readers. The writer on the other hand needs to grab the

locks of all the readers. This ensure mutual exclusion and at the

same time allows the monitors to be accessed without too much

overhead. With biased lock, we do not perform the locality optimi-

zation of moving the hash element to the top of the hash chain as

such moving will make monitor threads also writers of BKS,

breaking our assumption that monitor threads can execute in paral-

lel completely.

In SMT, resources are shared across threads. It is wasteful for

a thread to be spin-waiting on a lock because instructions which go

repeatedly into the pipeline will only confirm that the lock is still

not available. We want the thread waiting for this lock to stall so

the thread will not eat up resources which would be allocated to

other threads which may make progress. Such a stalling scheme is

implemented in Lock-box [22] which we use. The lock-box stalls a

thread on a busy bit when the lock is already taken. Upon the

unlock instruction, the bit is cleared and the waiting thread is sig-

naled to go ahead.

IV. EVALUATION METHODOLOGY

We use a SMT simulator based on the Simplescalar 3.0c [5]

running the Alpha instruction set to simulate pesticide. Our simula-

tion parameters are shown in Table I.

We use SPEC2000CPU benchmark set. Because we focus on

heap accesses, we do not consider Fortran-77 benchmarks which

does not have dynamic allocations. Due to time constraint, we sim-

ulate only C benchmarks and not C++. We create benchmark bina-

ries with and without monitoring incorporated into the memory

management libraries. To ensure that both versions have the same

level of compiler optimizations, we compile the benchmarks using

gcc2.97 on a DEC Alpha running OSF.

The key software parameters are hash-table size and hash-

block size. We use a hash-table with 64K buckets which are suffi-

cient for our benchmarks. We found that the best hash-block size is

512 bytes which we use in all experiments except while varying

the hash-block size.

We incorporate early SimPoints [18] in our simulations.

Because of the instruction-count overhead of monitoring, the no-

monitoring and monitoring versions of the benchmarks execute

different total number of instructions for the same Simpoints. We

ensured that the two versions run the same user instructions as

intended by SimPoints.

V. RESULTS

Because performance is the key concern for dynamic monitor-

ing, we present performance achieved by pesticide. We do not

show coverage because by design pesticide covers all out-of-

bounds heap accesses. Also, we do not incur any false positives.

Section V-A presents the unoptimized, raw impact of moni-

toring on performance. Section V-B shows how running multiple

monitor threads impacts performance—with different locking

strategies. These numbers show the benefit of using explicit paral-

lelism. Because the hash-block size impacts the hash chain lengths

which directly impacts the instruction overhead of monitoring, we

vary the hash-block size in Section V-C. Section V-D shows the

benefit of eliding checks via ARC’s memoization. Section V-E

shows how much merging improves performance by increasing the

ARC’s reach and also shortening the hash chains. Finally,

Section V-F summarizes our results.

 A. Runtime overhead due to monitoring

In Figure 3, we show the runtime overhead of monitoring. The

Y axis shows as percent, the run time of the user thread with one

monitor thread normalized to the run time of the user thread with

no monitoring. We show a line at the 100% mark which represents

no performance degradation due to monitoring. The higher the bars

above this line, the more the performance degradation. The X axis

shows the benchmarks. Low IPC (instructions per cycle) in the

case of no monitoring implies that the pipeline can absorb the extra

monitoring instructions. To show this trend, we order the X axis in

increasing order of no-monitoring IPC. There are two numbers

shown on top of each bar. The top number is the ratio of the

dynamic instruction counts with monitoring over the counts with-

out monitoring. The bottom number is the IPC of the benchmarks

without monitoring.

With monitoring the benchmarks’ runtime overhead range

from 5% to 1634% with an average of 414%. Most benchmarks

incur significant runtime overhead. There are two factors that

c) Biased locka) Basic lock

Reader:

Writer:

b) Reader-Writer lock

Reader:
lock(R);
readcount=readcount+1;
if (readcount==1)

unlock(R)
...critical section...
lock(R);
readcount=readcount-1;
if (readcount==0)

unlock(R)

Writer:
lock(MUTEX);
...critical section...
unlock(MUTEX);

Reader # i (1<= i <=n):

lock (MUTEXi);
...critical section...
unlock (MUTEXi);

Writer:

for (i=1; i<=n; i++)
lock (MUTEXi)
...critical section...
for (i=1; i<=n; i++)
unlock (MUTEXi)

then lock (MUTEX)

then unlock (MUTEX)

Figure 2: Three lock schemes

lock (MUTEX);
...critical section...
unlock (MUTEX);

lock (MUTEX);
...critical section...
unlock (MUTEX);

TABLE I: Simulation parameters

Simulator Parameters
fetch width 8
decode width 8
issue width 8
commit width 8
active list size (per thread) 256
LSQ size (per thread) 128
issue queue 64
L1 I-cache 64K, 2way, 3cycle
L1 D-cache 64K, 2way, 3cycle
L2 unified 2M, 8way, 12cycle
Memory Latency 300 cycles
Branch prediction 2-level hybrid
MJQ size 1000
ARC size 0,8,256,1024

determine performance with monitoring: (1) the dynamic instruc-

tion overhead due to monitoring (the top number on top of the

bars) and (2) the IPC of the no-monitoring case (the bottom num-

ber). Because each check adds about 33 instructions to probe the

BKS and determine the validity of the access and because heap

accesses are frequent in general, the instruction overhead is usually

high. If the instruction overhead is low, as is the case in gzip and

crafty, then there is little increase in the runtime due to monitoring.

However, if the instruction overhead is high, then there is substan-

tial increase in the runtime even if the no-monitoring IPC is low

allowing SMT to absorb the instruction overhead. This trend is true

for most of the benchmarks on the left side of the graph such as art,

equake, twolf, vpr, parser, and ammp. The only exception to this

trend is mcf whose no-monitoring IPC is so low that even a high

instruction overhead does not hurt performance. If the no-monitor-

ing IPC is higher, then SMT can absorb the overhead only to a

lesser extent, resulting in higher increase in runtime with monitor-

ing. gap, perl, and mesa show this effect.

Thus, monitoring introduces substantial runtime overhead.

While programs with low performance such as mcf can absorb

monitoring’s instruction overhead, we want programs with high

performance not to degrade. Therefore, we apply our optimizations

to reduce the overhead, both by overlapping monitor threads and

by eliminating software checks by memoizing in hardware.

 B. Locking strategy

We show the improvements achieved by better locking strate-

gies from Section III-C. Figure 4 shows the runtime normalized to

that of no monitoring. For each benchmark, the bars going from

left to right represent one monitor thread (same as Figure 3), seven

monitor threads with basic lock, with reader-writer lock, and with

biased-lock, respectively.

While one would expect runtime to improve with multiple

monitor threads, that is not the case for basic locks (e.g., equake).

Basic lock incurs contention which offsets the benefits of multiple

monitor threads. Comparing basic lock with biased lock, we see

that biased lock performs significantly better due to the reduced

contention for the readers. This improvement is despite the fact

that the monitor code using biased lock requires 42 instructions for

each check compared to the 33 required by basic lock. This

instruction count increase is because biased locks do not perform

the locality optimization done by basic lock of moving the hash

element to the top of the hash chain (Section III-C).

While the RW lock performs better than the basic lock, biased

lock is better than RW. In RW, the readers incur the overhead of its

local lock (Section III-C). Apart from the serialization due to the

local lock, RW requires 61 instructions for each check compared to

biased-lock’s 42. This increase in instruction count is due to the

local lock because neither biased lock and RW perform the locality

optimization. Thus, the local lock overhead is high.

Comparing one monitor thread with the biased lock, runtime

overhead decreases from an average of 414% to 157%.

 C. Hash-block size

As discussed in Section II-B, a small hash-block implies long

hash chains due to breaking up larger allocation into many hash-

blocks and a large hash-block implies long hash chains due to

many smaller allocations falling into the same bucket. We varied

the hash block size from 256 bytes to 4KB and found that 512

bytes is the best hash-block size for our benchmarks.

 D. ARC

To reduce the runtime overhead further, we now use the ARC

which exploits locality to reduce the number of checks in software

by memoizing recent checks in hardware.

Figure 5 shows the runtime for seven monitor threads using

biased locks and 512-byte hash-blocks normalized to no-monitor-

ing case. For each benchmark, the bars going from left to right vary

ARC sizes as 0, 8, 256, and 1024 entries. Note that the y-axis scale

is different than that of the previous graphs. There are two numbers

on top of the bars for each benchmark. The top number is the ratio

of the instruction count of monitoring over that of no monitoring,

and the bottom number is the ARC miss rate, both for 1024-entry

ARC.

We see that even an 8-entry ARC significantly improves runt-

ime over the no-ARC case. For many benchmarks, even 8 entries

suffice. For these benchmarks, the ARC miss rates (bottom num-

bers) are low allowing many checks to be memoized resulting in

low instruction overhead (top number). Comparing this overhead

with the overhead without the ARC (the top numbers in Figure 3),

we see a large reduction. The only exceptions are equake and

twolf, both of which have large miss rates even with 1024 entries.

In equake’s case, there are over 1 million less-than-32-bytes mem-

ory allocations which overwhelm the ARC. An 1024-entry ARC

could only reach 32KB of equake’s 32MB memory footprint.

 E. Merging

To increase the effective size of the ARC and to shorten hash

chains we employ our merging scheme which merges BKS entries

of contiguous allocations of the same size. Figure 6 shows the runt-

ime for seven monitor threads using biased lock, 512-byte hash-

blocks, 256- and 1024-entry ARC, and merging and no-merging

normalized to no-monitoring case.

Equake and twolf are the two benchmarks which have high

Figure 3: Runtime overhead of monitoring

m
cf art

equake
tw

olf
vp

r

pars
er

am
m

p
gcc

bzip
2

gap

vo
rte

x
cr

afty gzip

perlb
m

k
m

esa
0

500

1000

1500

5.4
1.1

10.3

8.1
0.2

19.2
0.3

4.8
0.4

7.7
0.5

2.6
0.7

4.4
0.7

1.6
1.3

6.5
1.6

1.7
2.0

0.1
2.2

0.0
2.3

3.5
2.7

1.8
3.7

0.04
100

R
u
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 n

o
 m

o
n
it
o
r

(%
)

Figure 4: Effectiveness of different locks

m
cf art

equake
tw

olf
vp

r

pars
er

am
m

p
gcc

bzip
2

gap

vo
rte

x

cr
afty

gzip

perlb
m

k

m
esa

0

500

1000

1500

2000

2500

3000

100

R
u
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 n

o
 m

o
n
it
o
r

(%
)

1 monitor thread, basic lock
7 monitor thread, basic lock
7 monitor thread, RW lock
7 monitor thread, biased lock

ARC miss rates in Figure 5. Because equake allocates same-sized

objects (about 24 bytes), merging works well. Equake’s ARC miss

rate improves from 62% to 11%, resulting in the runtime overhead

almost vanishing. Because twolf’s allocation is not as regular as

equake’s, twolf’s improvement is less drastic. As explained in

Section III-B, different-sized objects are not meged due to difficul-

ties with padding. By reducing the rutime overhead of equake and

twolf, merging provides peformance-robustness to the ARC.

Perl’s runtime worsens because of its memory allocation char-

acteristics: perl invokes the realloc() library function often, which

not only reduces the possibility of merging, but also causes high

instruction overhead when merging is incorporated. This high

overhead is the result of realloc() performing both frees and mal-

locs, both of which incur instruction overhead due to merging.

For the rest of the benchmarks merging is not needed as their

ARC miss rates are good to start with. Consequently merging does

not improve them, but merging does not hurt them either.

 F. Performance summary

Summarizing our results in Figure 7, we show the normalized

runtime averaged over the benchmarks. The three groups from left

to right, show monitoring with the basic lock, with the biased lock

but no merging, and with the biased lock and merging. In each

group from left to right we show 1, 3 and 7 monitor threads.

Going from basic lock to biased lock corrects the disadvanta-

geous trend of worsening performance with more threads. In all the

groups, the ARC significantly improves performance, and a 256-

entry ARC is enough for most benchmarks. Merging improves

over the ARC by providing performance-robustness.

We see that we started with a 414% runtime overhead which

we reduced to 24% using a 256-entry ARC and 3 monitor threads

(the overhead is 18% for 7 monitor threads but using 7 SMT contexts

for pointer bugs may be too aggressive, so we highlight 3 threads).

This 24% overhead compares well with the 700% overhead for

[16] and 200% overhead for [25] which also incurs false positives,

and also with the fact the Java which performs bounds-checks in-

line in the user code incurs about 100% runtime overhead [4], [24].

Because pesticide checks all heap accesses, it covers all out-of-

bounds heap accesses without false positives.

VI. RELATED WORK

We have discussed [16], iWatcher [26], and Accmon [25].

Previous work on bug detection is broadly divided into two classes,

static and dynamic checking. Static checking and analysis for bugs

include work from [9], [11], [15] and [17]. We define static check-

ing as those schemes that do not impose any runtime overhead.

However, for languages like C, pointer alias problems prevent thor-

ough checking of code during compile time.

In dynamic checking, the earlier proposals are mainly soft-

ware solutions (e.g., BCC [13] and SafePointer [3]). However both

these schemes have substantial runtime overhead (30 times for

BCC and 5.4 times for SafePointer). More sophisticated dynamic

checking schemes check for program-invariant violations [12] but

incur high runtime overhead (e.g., 500%).

Next we discuss dynamic schemes which use some hardware

support. DISE [14] is designed for checking whether accesses fall

within coarse-grain contiguous address space rather than fine-

grain objects. DISE checks all accesses against the same bound

(which can be kept in two registers for the whole execution)

whereas we check accesses against individual object boundaries

(need to be kept in memory, not registers).

HeapMon [19] also targets out-of-bounds bugs but checks at

word granularity whereas we check at byte granularity. Thus,

HeapMon would miss out-of-bounds accesses for object sizes that

are not multiple of words. As [21] shows, “high-impact” bugs

access a few bytes past objects. HeapMon would miss these impor-

tant bugs. Adding byte granularity to HeapMon would increase its

overhead. Additionally, HeapMon uses an extra 128KB cache

(much larger than our 256-entry ARC), without which its perfor-

mance overhead is 17%. However, this 17% cannot be compared

with our 24% overhead because Heapmon uses small, unrealistic

SPEC2000 test inputs while we use realistic ref inputs. HeapMon’s

performance would be worse with larger ref inputs.

Mondrian Memory Protection [8] checks memory protection

for arbitrary-sized memory blocks, and could be used for pointer

bugs. However, Mondrian has no ability to overlap checking with

user thread. Implementing Mondrian with additional features (non-

Figure 5: Effectiveness of the ARC

m
cf ar

t

eq
ua

ke
tw

ol
f

vp
r

pa
rs

er

am
m

p
gc

c

bz
ip

2
ga

p

vo
rte

x

cr
af

ty
gz

ip

pe
rlb

m
k

m
es

a
0

500

1000
R

u
n

ti
m

e
 r

e
la

ti
v
e

 t
o

 n
o

 m
o

n
it
o

r
(%

)

no ARC
8-entries ARC
256-entries ARC
1024-entries ARC

0.03
0.1%

15.9%

16.2
61.9%

3.6
77.4%

0.01
0.1%

0
0%

1.2
27.4%

0.1
1.4%

0
0%

0.03
1.6%

0.3
7.7%

0
0.2%

1.0

100

0
0%

0
0%

0
0%

Figure 6: Effectiveness of merging

m
cf ar

t

eq
ua

ke
tw

ol
f

vp
r

pa
rs

er

am
m

p
gc

c

bz
ip

2
ga

p

vo
rte

x

cr
af

ty
gz

ip

pe
rlb

m
k

m
es

a
0

100

200

300

400

500

600

700

no merging 256ARC
no merging 1024ARC
with merging 256ARC
with merging 1024ARC

R
u
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 n

o
 m

o
n
it
o
r

(%
)

Figure 7: Runtime overhead summary

no
 A

R
C

10
24

 A
R
C

no
 A

R
C

8
A
R
C

25
6

A
R
C

10
24

 A
R
C

8
A
R
C

25
6

A
R
C

10
24

 A
R
C

0

100

200

300

400

500

600

700

R
u
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 n

o
 m

o
n
it
o
r

(%
)

basic lock biased lock,no merge biased lock,merge

1 monitor threads
3 monitor threads
7 monitor threads

existent in [8]) to allow this overlap would need significantly more

complex and dedicated hardware to service or buffer checks while

checker cache misses are being serviced. [8]‘s performance num-

bers cannot be compared to ours because [8] gives an overhead on

the number of memory accesses using SPEC2000 test and train

inputs but not runtime overhead with ref inputs.

VII. CONCLUSION

The key challenge with dynamic monitoring schemes for

detecting pointer bugs is the runtime overhead. Previous

approaches have used thread-level speculation (TLS) to reduce the

overhead. However, the approaches still incur substantial slow-

downs while requiring complex TLS hardware. We explicitly mul-

tithreaded the monitor code and use SMT to exploit the parallelism

in the monitor code, avoiding TLS’s complexity.

Out scheme still slows down the user thread due to two prob-

lems: instruction overhead and insufficient overlap among the

monitor threads. To address instruction overhead, we exploited the

natural locality in the user thread addresses and memoized recent

checks in a small table called the allocation-record-cache (ARC).

However, programs making and accessing many small memory

allocations cause many ARC misses and reduce the effectiveness

of ARC. To address this issue, we make the key observation that

because adjacent memory objects result in ARC entries with con-

tiguous address ranges, the entries can be merged into one by sim-

ply merging the ranges into one. This merging increases the

effective size of the ARC. Finally, insufficient overlap among mon-

itor threads occurs because of inefficient synchronization to protect

the allocation data structure updated by the user thread and read by

the monitor threads. We made the key observation that because

monitor-thread reads occur for every check but user-thread writes

occur only in allocations and deallocations, monitor reads are

much more frequent than user writes. We proposed a locking strat-

egy, called biased lock, which puts the locking overhead on the

writer away from the readers.

We show that starting from a runtime overhead of 414% pesti-

cide reduces this overhead to a respectable 24% running three

monitor threads on an SMT using a 256-entry ARC with merging

and biased lock. This 24% overhead compares well with previous

schemes’ 700% and 200% and also with the fact the Java which

performs bounds-checks in-line in the user code incurs about

100% runtime overhead. Because pesticide checks all heap

accesses, it covers all out-of-bounds heap accesses without any

false positives.

REFERENCES

[1] Software errors cost us economy $59.5 billion annually. http://

www.nist.gov/public_affairs/releases/n02-10.htm, 2002.

[2] Haithm Akkary and Michael Driscoll. A Dynamic Multithreading Proces-

sor. Proceedings of 31st Int’l Symposium on Microarchitecture, Dec 1998.

[3] Todd Austin, Scott Breach, and Gurindar Sohi. Efficient Detection of All

Pointer and Array Access Errors. In Proceedings of the ACM SIGPLAN 94

Conference on Programming Language Design and Implementation, June

1994.

[4] Chris Bentley, Scott Watterson, David Lowenthal, and Barry Rountree.

Implicit Java Array Bounds Checking on 64-bit Architecture. In Proceed-

ings of the 18th annual Int’l Conference on Supercomputing, June 2004.

[5] Doug Burger, Todd Austin, and Steve Bennett. Evaluating Future Micro-

processors: The Simplescalar Tool Set. Technical Report CS-TR-1996-

1308, University of Wisconsin, 1996.

[6] P. Courtois, F.Heymans, and D. Parnas. Concurrent Control with readers

and writers. In Comminication of the ACM, Vol 14, No10, pp.667-668, Oct

1971.

[7] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,

Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard:

Automatic Detection and Prevention of Buffer-Overflow Attacks. In Pro-

ceedings of the USENIX Summer Conference (USENIX 98), Jan. 1998.

[8] Josh Cates, Emmett Witchel and Krste Asanovic. "Mondrian Memory Pro-

tection". In Proceedings of the 10th Int’l Conference on Architectural Sup-

port for Programming Languages and Operating Systems, Oct. 2002.

[9] David Evans. Static detection of dynamic memory errors. In Proceedings of

the ACM SIGPLAN 96 Conference on Programming Language Design and

Implementation, May 1996.

[10] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs

using automatic anomaly detection. In Proceedings of the 24th Int’l Con-

ference on Software Engineering, May 2002.

[11] David Hovemeyer and William Pugh. Finding Bugs is Easy. In Proceedings

of the 19th ACM Conference on Object-Oriented Programming, Systems,

Languages and Applications, Dec. 2004.

[12] Richard Jones and Paul Kelly. Backwards-Compatible Bounds Checking

for Arrays and Pointers in C Programs. In Proceedings of the 3rd Int’l

Workshop on Automated Debugging, May 1997.

[13] Samuel Kendall. BCC: Run-time Checking for Cprograms. In Proceedings

of the USENIX Summer Conference (USENIX 83), Summer 1983.

[14] E. Christopher Marc Corliss and Amir Roth. "DISE: A Programmable

Macro Engine for Customizing Applications". In Proceedings of the 30th

Int’l Symposium on Computer Architecture, June 2003.

[15] Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, and

David Dill. Cmc: A Pragmatic Approach to Model Checking Real Code.

In Proceedings of the 5th Symposium on Operating Systems Design and

Implementation, Dec. 2002.

[16] Jeffery Oplinger and Monica Lam. Enhancing Software Reliability with-

Speculative Threads. In Proceedings of the 10th Int’l Conference on Archi-

tectural Support for Programming Languages and Operating Systems, Oct

2002.

[17] D. Park, U. Stern, J. Skakkebask, and D. Dill. Java Model Checking. In

15th IEEE Int’l Conference on Automated Software Engineering, Sept.

2000.

[18] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sher-

wood, and Brad Calder. Using SimPoint for Accurate and Efficient Simula-

tion. In Proceedings of the Int’l Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS 03), June 2003.

[19] Yan Solihin, Rithin Shetty, Mazen Kharbutli and Milos Prvulovic. Heap-

Mon: a Low Overhead, Automatic, and Programmable Memory Bug

Detector. In Proceedings of the 1st Watson Conference on Interaction

between Architecture, Circuits, and Compilers (PAC2 04), Oct. 2004.

[20] J. Gergory Steffan, Christopher Colohan, Antonia Zhai, and Todd Mowry.

A Scalable Approach to Thread-level Speculation. In Proceedings of the

27th Int’l Symposium on Computer Architecture, June 2000.

[21] M. Sullivan and R. Chillarege. Software defects and their impact on system

availability: A study of field failures in operating systems. In Proceedings

of 21st Int’l Symposium on Fault-Tolerant Computing, 1991, June 1991.

[22] Dean Tullsen, Jack Lo, Susan Eggers, and Henry Levy. Supporting Fine-

grained synchronization on a Simultaneous Multithreading Processor. In

5th Int’l Symposium on High Performance Computer Architecture, 1999.

[23] Dean Tullsen, Susan Eggers, and Henry Levy. Simultaneous Multithread-

ing: Maximizing On-chip Parallelism. In Proceedings of the 22nd Int’l

Symposium on Computer Architecture, June 1995.

[24] Hongwei Xi and Songtao Xia. Towards Array Bound Check Elimination in

Java Virtual Machine Language. In Proceedings of the 1999 Conference of

the IBM Center for Advanced Studies on Collaborative Research, 1999.

[25] Pin Zhou, Wei Lin, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel

Midkiff, and Jose Torrellas. AccMon: Automatically Detecting Memory-

related Bugs via Program Counter-Based Invariants. In Proceedings of the

37th Int’l Symposium on Microarchitecture, Dec 2004.

[26] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Joseph Torrellas.

iWatcher: Efficient Architectural Support for Software Debugging. In Pro-

ceedings of the 31st Int’l Symposium on Computer Architecture, June

2004.

