
Generic Architecture Description for Retargetable Compilation and
Synthesis of Application-Specific Pipelined IPs

Bita Gorjiara, Mehrdad Reshadi, Daniel Gajski
Center for Embedded Computer Systems, University of California, Irvine

{bgorjiar, reshadi, gajski}@cecs.uci.edu

Abstract—Constraints of embedded systems and the shrinking time-to-
market have elevated the importance of designer productivity and design
predictability more than ever. To improve productivity, in ASIP approaches the
system is designed with software and executed on a customized processor. In
ASIP design flow, the processor is described in an Architecture Description
Language (ADL) and the toolset is generated from that ADL automatically.
However, in these approaches design predictability is low because the designer
has little or no control over the quality of the final implementation.

In this paper, we present a new design approach where the target processor
or Intellectual Property (IP) does not have any predefined instruction-set and its
datapath component netlist is described in a Generic Netlist Representation
(GNR). The GNR is used by the toolset to generate the controller of the IP and
the RTL of the design. The GNR is an order of magnitude shorter than state-of-
the-art ADLs with RTL generation capabilities and yet can capture any
structural details that affect the implementation quality. We have also developed
a web-based interface for our toolset, so that users can upload and evaluate new
IPs described in GNR.

I. INTRODUCTION
Tight constraints of embedded systems require careful design

exploration and fine tuning of quality metrics such as performance,
power consumption, area, or manufacturability. Shrinking time-to-
market and increasing complexity of these systems has made designer
productivity a vital factor for success. The logical way of gaining
productivity is to increase abstraction level by designing the systems
using software (high-level languages such as C) rather than directly
implementing them in RTL. However, design predictability must not
be sacrificed by increased abstraction level and as before the designers
must be able to control the quality of the final implementation.

One increasingly popular option for implementing software is using
Application-Specific Instruction-set Processors (ASIPs). An ASIP is
customized for the application to meet the design constrains. Due to
low volume and short life-span of ASIPs, automatic generation of
toolset (e.g. compiler, simulator) and automatic implementation of
processor are very important. In an ASIP design flow, an Architecture
Description Language (ADL) is used to capture the processor behavior
and to generate the toolset.

Over the past years many ADLs have been proposed. However the
focus of majority of these ADLs has been either compilation or
simulation of the programs but not synthesis of the processor. Only a
few approaches have offered automated or semi-automated RTL
synthesis of the processor. However, these approaches require very
complex description of the processor and also do not provide enough
control for the designer over the quality of the final implementation.
We believe the main source of such limitations is that all ADL-based
design flows always assume that the processor has a predefined
instruction-set.

The ADLs can be categorized to behavioral and structural. The
behavioral ADLs describe the functionality of instructions and
synthesize the architecture from that behavioral description. Since all
possible formats of instructions in the instruction-set (e.g. all operations
with all possible addressing modes) must be described explicitly in
these ADLs, they are typically very lengthy even for simple processors.
On the other hand, since such ADLs only focus on the functionality of
the processor, the implementation related information that may not
change the functionality cannot be captured by them. Therefore, the

designer has little or no control over the quality of the final
implementation. For example consider Figure 1(a) that shows a
possible datapath for implementing addition (ADD), multiplication
(MUL), and multiply-and-accumulate (MAC) operations. When
performing MUL, although the adder is not used, it still consumes
power due to the activities on its input signals. To reduce the power
consumption of the design, we can add input registers as shown in
Figure 1(b). However, this design has two disadvantages: (1) even if
clock period is longer than the accumulated delay of ADD and MULL,
still MAC will take two cycles; (2) adding registers increases the load
on the clock tree and hence can increase clock power consumption. An
alternative approach for reducing the power consumption of this design
is to use signal gating as shown in Figure 1(c). In this solution,
whenever the functional units are not used, their inputs are locked using
a gate signal. This example shows that meeting tight constraints may
require fine-grained architecture adjustments. However, behavioral
ADLs only capture functionality and timing of the operations. As a
result, the design predictability is very low in these approaches.

Figure 1- (a) A simple datapath, power optimization (b) using registers, (c) using gates.

The Structural ADLs describe the detailed component netlist of the
processor (similar to HDLs) and then extract the instructions from the
structural description of the controller and instruction decoder. These
ADLs provide better design predictability than behavioral ADLs.
However, designer productivity is very low because describing the
controller and instruction decoder is very time-consuming and tedious.
Also, extracting instructions from instruction decoder is very complex
and usually limits the architectural features that these ADLs can
support.

In addition to the aforementioned issues, using technology-dependent
third-party cores is not supported in any ADL. Furthermore, all ASIP
approaches always impose the overhead of the instruction decoder on
the design. This overhead is not acceptable in many embedded systems
where a dedicated hardware is designed for a fixed application.

 To address these issues, in this paper we present a design approach
for generating programmable and dedicated custom pipelined IPs from
high level C description of the application. In contrast to ASIP
approaches, our target architecture does not have a predefined
instruction-set. In our approach, the accurate netlist of the datapath
components is described in a Generic Netlist Representation (GNR).
Using this GNR, a cycle-accurate compiler compiles C code of the
application directly on the input datapath and generates the control
words of each clock cycle. The result of this compiler and the input
GNR is used to generate the controller and the
simulatable/synthesizable RTL codes of the IP. Generally, most of the
designer’s experience, skill and innovation go into the design of
datapath. Our approach improves design predictability by giving the

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

designer complete control over the datapath. On the other hand, design
of the controller is tedious, time consuming and error prone process. By
automating this process and by allowing reuse of previously designed
datapaths and components, designer productivity is also significantly
improved in our approach.

The GNR is formal, supports use of third-party cores, and the same
GNR description is used for compilation, simulation and synthesis.
Since the designer does not describe the controller in our approach, the
GNR descriptions are much shorter than other ADLs. For example, the
GNR of a MIPS like datapath is less than 300 lines. We have
developed a web-based interface for our toolset, so that users can
upload and evaluate new IPs described in GNR. Our compiler supports
various architectural features such as controller/datapath pipelining,
multi-cycle/pipelined units, and heterogeneous forwarding paths. The
compilation algorithm and the datapath optimizations have been
discussed in [11] and [12] respectively. In this paper we focus on how
to model the architecture in the GNR and will explain its use for
compilation and synthesis. The rest of the paper is organized as
follows. Section II presents related works. Section III and IV explain
our modeling approach and the syntax of GNR. Section V discusses the
details of GNR using three examples. Section VI presents the flow of
our toolset, followed by experimental results in Section VII. Section
 VIII concludes the paper.

II. RELATED WORKS
Over the past decade, a few ADLs and their supporting software

tools have been introduced. A complete survey of these ADLs can be
found in [1], [2]. Among these ADLs only the followings have directly
or indirectly addressed synthesis of the architecture.

LISA [3], a sate-of-the-art commercial product, and EXPRESSION
 [4] are behavioral ADLs that capture a processor in terms of its
instruction-set behavior and a high level block diagram of its pipeline.
They were originally designed for compilation and simulation and have
been recently extended to generate the RTL of the processor by
synthesizing the instruction behaviors. Since instruction behaviors are
described in a very high abstraction level in order to be used by the
compiler, achieving a high quality synthesis in these approaches is less
likely. Furthermore, the designer has no control over the details of final
implementation and is limited to describing the functionality of
instructions. Since these ADLs are behavioral, they must capture all
possible configurations of instructions. This can lead to very lengthy
descriptions. For example, in LISA the description of two RISC
processors with four and seven pipeline stages has been reported to be
more than 2000 and more than 9000 lines of code, respectively [10].

UDL/I [5] is a hardware description language (HDL) that captures
the architecture at the Register-Transfer (RT)-level. A target specific
compiler can be generated based on the instruction set extracted from
the UDL/I description. UDL/I cannot support architecture with any
instruction level parallelism.

MIMOLA [6] is another HDL that captures the architecture netlist at
RT-Level and is used for hardware synthesis, simulation, test
generation, and code generation. The RECORD compiler [7] extracts
behavioral model of instructions from MIMOLA HDL. It processes the
structure of the datapath from destination storages towards source
storages to extract valid register transfers (RTs). After analyzing the
controller and the instruction decoder, it rejects illegal RTs that do not
correspond to an instruction, and uses the remaining RTs in the
compiler. MIMOLA does not support pipelined architectures and
assumes single cycle operations. Furthermore, designer must describe
the instruction decoder from which the compiler will extract the set of
valid operations. Although RT-level descriptions are more amicable to

hardware designers, describing the instruction decoder at RT-level is
very tedious. Also instruction set extraction from RT-level is very
difficult and is typically possible only for limited target scope.

In our approach only the netlist of the datapath is captured in a format
that is very close to HDL but includes additional properties for ports,
components, and connections. Such properties enable automatic netlist
completion and design rule checking. While GNR is low level enough
for capturing all implementation details, it has enough high-level
information for the compilation.

III. GNR MODELING APPROACH
In our approach, a custom processor or IP is composed of a set of

input/output ports, and a netlist of components and connections. The
components have a type, and may have input, output and control ports.
The components may hierarchically contain other components and
connections as well. Components and custom IPs have especial
properties, called aspects, targeted for different tools such as compiler,
and RTL generator. In this section, we describe our approach for
modeling components and custom IPs.

A. Component model
A component x is represented by (τx, Px, Cx, Lx, Ax), where τx is the

component’s type, Px is the set of ports, Cx is the set of components
inside x, Lx is the set of its internal point-to-point connections, and Ax is
the list of aspects that describe behavior of x for different tools in the
toolset. Component type τx is defined as follows:

τx ∈ {register, register-file, bus, mux, tri-state buffer, functional-
unit, memory-proxy, controller, NiscArchitecture, module}

Where, NiscArchitecture is our top-level custom IP. Among these
components, NiscArchitecture, module, and controller contain an
internal netlist of components, while others are basic RTL components
with no internal netlist.

The set of ports Px is defined as follows:
Px = QPx ∪ IPx ∪ OPx ∪ CPx

Where QPx is the set of clock ports, which may have zero or one
element; IPx is the set of input ports, OPx is the set of output ports, and
CPx is the set of control ports. Each port p has a bit-width or size
denoted by βp. For example a register has one clock port, one input
port, one output port, and one control port (i.e. load enable). In general,
we call IPx and OPx data ports. We have separated clock ports and
control ports from data ports to enable automatic netlist completion and
validation.

Set of connections Lx is defined as follows:
Lx = QLx ∪ CLx ∪ DLx (1)

Where QLx is the set of clock connections, CLx is the set of control
connections, and DLx is the set of data connections defined as follows:

}))((and)),((|),{(

)}(and |),{(

})(and |),{(

2121

2121

2121

UU

U

U

xx

x

x

Cy
yx

Cy
yxx

Cy
yxx

Cy
yxx

IPOPpOPIPpppDL

CPpCPpppCL

QPpQPpppQL

∈∈

∈

∈

∪∈∪∈=

∈∈=

∈∈=

The clock connections are between the clock port of component x
and the clock of its children components. Similarly, control connections
are between control signals of x and the control signals of its children.
Data connections are between the input ports of x and the input ports of
the children, input port of x and output ports of x, output ports of the
children and input ports of the children, and output ports of the children
and output ports of x. Furthermore, we limit the number of connections
to input, clock and control ports to one connection. The only exception
is the bus component’s input port, which can be driven by multiple
sources. However, all the sources must go through a tri-state buffer to

ensure correct values on the bus. The limitation on number of
connections is described as follows:

∀ (p1, p2), (p3, p4)∈Lx, if p1≠p3 and p2=p4, then p2∈IPy and τy=bus
By distinguishing between the types of components and ports, we

can (a) perform many static analysis and validation, and (b) generate
many parts of the description automatically (see also Section V.C.1))

Ax is a list of aspects required by different tools for processing the
component x. Currently, in our toolset, each component has three
aspects: compilation aspect CAx, simulation aspect MAx, and synthesis
aspect NAx. Compilation aspect usually captures the relation between
the component’s behavior and the C-language operations, or
application functions. Simulation and synthesis aspects usually contain
the description of the component in an HDL, or the information
required for generation of a hardwired core (e.g. memory, divider, etc.).
For some component types, if an aspect is not specified by the designer,
the toolset will generate it automatically. For example, the
simulation/synthesis aspects of hierarchical components can be
generated automatically from their internal components or, they can be
explicitly specified by the designer. In this way, third party cores and
pre-laid-out components, that may have special technology or
manufacturability considerations, can also be modeled and used in the
GNR (refer to Section V.B).

The components in a NiscArchitecture may represent a proxy to a
component outside of the IP block. For example, a memory proxy
represents a memory or cache hierarchy connected to the ports of the
IP. The HDL implementation of a proxy may be as simple as input to
output wirings. However, its compiler aspect captures the information
for controlling the outside component.

B. NiscArchitecture model
A NiscArchitecture is a component with additional properties. A

NiscArchitecture ξ is modeled by (Pξ, Cξ, Lξ, CNSTξ, Aξ), where Pξ is
the set of the ports, Cξ is the set of internal components, Lξ is the set of
connections, CNSTξ is the set of constant fields in the control word
used for constant and jump operations, and Aξ is a collection of ξ’s
compilation, simulation and synthesis aspects denoted by CAξ, MAξ,
and NAξ, respectively. Set Pξ includes one clock port qpξ, input ports
IPξ, and output ports OPξ:

Pξ = {qpξ} ∪ IPξ ∪ OPξ
Note that a NiscArchitecture does not have any control ports. Since

control ports are introduced to facilitate compilation and binary
generation, they are used only inside the NiscArchitecture. The set of
all control ports of the components inside the IP is defined as follows:

}|{ U
ξ

ξ
Cx

xCPppICP
∈

∈=

The set of components Cξ includes one (and only one) component of
type controller, and at least one memory proxy and one register file:

Cξ = {x | x is a component, and ∃! x1∈ Cξ where τx1=controller,
and ∃x2, x3∈ Cξ, where τx2=memory-proxy, and τx3=register-file }

The controller is a special component that drives the control signals
of all other components at every cycle. The controller has an output
port called cwPort that its bit-width is equal to the sum of the bit-widths
of all control ports in the IP, plus the bit-widths of the constant fields in
CNSTξ:

∑∑
∈∈

+=
ξξ

βββ
CNSTf

f
ICPp

pcwPort

The set of connections Lξ is defined similar to Equation (1). The only
difference is that the set of control connections is defined only between
the cwPort of the controller and the control ports of the components:

} and

 ,]1,0[, and ,|),,,{(

p

cwPort

se
esICPpespcwPortCL

β

βξξ

=−

−∈∈=

Where s and e are start and end indices for connecting part of cwPort
to the control port p. The start and end indices of every two connection
in CLξ are not allowed to overlap in order to maintain the correct
functionality.

Compilation aspect CAξ is modeled by (Γξ, sPtξ, fPtξ, dPtξ). The Γξ is
a function that defines the ordering of the constant and control fields in
the control word. The ordering must match the connection indices in
CLξ. The sPtξ, fPtξ, dPtξ are storage components used for stack pointer,
frame pointer and data segment pointer. The storage components can
be separate registers or registers in a register file.

IV. GNR SYNTAX
We use XML language [14] to describe IP models in GNR. We

define GNR syntax in XML Schema [15] to enforce syntax and
semantics checking on the given input model. The Schema can also be
used for code completion, which further increases the productivity of
the designers. Figure 2 shows the partial block diagram of the Schema
for modeling a custom IP (NiscArchitecture). The IP has several
children tags including: <Ports>, <Components>, <Connections>,
<CwFields>, <Compiler-aspect>, <Simulation-aspect>, and
<Synthesis-aspect>, representing Pξ, Cξ, Lξ, Γξ, CAξ, MAξ, and NAξ,
respectively. All components in GNR have a <Params> tag that
parameterizes that component. For example, the delay or bit-width of
the component can be specified as parameters.

Figure 2- Block diagram of GNR schema for NiscArchitecture.

V. GNR MODELING EXAMPLES
In this section, we discuss modeling IPs in more details using three

examples. We first explain how a simple component, namely a custom
ALU, is defined in GNR. Next, we discuss modeling of complex third-
party cores. Finally, we explain how components are integrated to form
a simple IP that can execute C code.

A. Modeling a custom ALU
ALU is a component of type functional-unit (FU). Figure 3 shows

the GNR description of a custom ALU that executes three operations:
Add, Sub, Not. The component has two parameters: BIT_WIDTH and
DELAY. The parameters are initialized during the instantiation of a
component in a datapath. This ALU has two input ports, one output
port and a control port. Since this ALU executes three operations, the
size of the ctrl port is at least two. The simulatable and synthesizable
code of the ALU are described in the <Simulation-aspect> and
<Synthesis-aspect> (not shown due to space limitations). For some
components, it is also possible to generate the HDL description
automatically from the component entity information and compiler
aspect. In <Compiler-aspect> the operations that the ALU executes are
described in details. Each operation has a name and a delay attribute:
the name is selected from the list of valid C operations, and the delay is
specified in terms of either number of cycles or nanoseconds according
to the selected target technology. Each operation has a set of input ports

and at most one output port. An operation may also require a specific
value on one or more control ports. The values are specified using
<Ctrl> tag. Using this modeling approach, new functional units can be
described and added to the library.

Some functional units are more complex than others. For example,
some of them are pipelined, or may require instantiation of hardwired
cores provided by a third party. In case of a pipelined unit, a netlist of
the main functional unit and the pipeline registers are defined as a
component of type module in GNR. Most of today’s synthesis tools
apply retiming to the netlist, and generate proper pipelined functional
unit. In case of hardwired cores, the information of the third party tool
that must be called for core generation is specified in <Synthesis-
aspect>.

Figure 3- Partial description of a custom

ALU in GNR.

Figure 4- Block diagram of a simple IP.

B. Modeling third-party cores in GNR
To improve the area, power consumption, and performance of the

generated IPs, designers may desire to include hardwired third-party
cores. This requires proper support in ADL and RTL code generator.
To the best of our knowledge, no ADL-based ASIP design approach is
able to incorporate hardwired cores in a systematic way.

In the synthesis aspect of GNR components, we allow calling core-
translator programs to generate proper input files for third-party core
generators. For example, for Xilinx FPGAs, the core generator (i.e.
LogiCore) requires a .xco file that describes the properties of the core.
For other cores, additional information may be required in specific
formats. The information of the core is extracted from GNR and
formatted by the translator program to match the requirements of the
target platform. For example, in GNR, the synthesis aspect of memory
components calls an external program to generate proper .xco and .coe
(memory content) files that LogiCore needs for generating memory
cores. The translator programs have different implementations for
different target platforms.

Another example is integer divider unit that is usually implemented
by a hard or soft core. Dividers are costly functional units that are
usually designed in pipelined fashion to improve the performance.
Suppose that we have a four-stage pipelined divider core where each
stage has a delay of two cycles. The goal is to describe such divider in
ADL both for compilation and synthesis. From compiler point of view,
to perform a divide operation, the inputs of the divider must be
preserved for two cycles, and the division result is ready after eight
cycles. Also, new inputs can be loaded every two cycles. The GNR
model of such divider is a component of type module that contains a

two-cycle functional-unit and three registers. The registers are
connected to the output of the functional unit serially. The compiler-
aspect of the functional unit contains the divide operation and the
delays of the functional-unit and all of the registers are parameterized to
two cycles. This way, the compiler detects that it can use the functional
unit every two cycles and the results will be ready after eight cycles. To
guarantee correct control generation, the registers should not have any
control port and the control port of the module must be connected to the
control port of the functional unit. To prevent the toolset from
generating RTL for this module, we add proper commands to the
simulation-aspect and synthesis-aspect of the module to call a core
translator program. For example, if Xilinx FPGA is chosen as target
platform, then the translator program generates proper .xco file based
on the parameters passed to the divider component.

C. Modeling a simple IP
Figure 4 shows the block diagram of a simple NiscArchitecture that

can execute simple C codes. The architecture consists of a controller, a
register file (RF), a data memory proxy, an ALU, a comparator, and a
few multiplexers. The bus-width of the IP is 32 bits. The register file
has 32 registers, and two read ports and one write port.

Figure 5- GNR description of the IP in Figure 4.

In this IP, suppose that a constant field of 10 bits is used for constants
and offsets of jump operations. Figure 5 shows the GNR description of
the IP. The IP has one clock port, a reset port, and several IO ports for
communicating with data memory unit. The <Netlist> tag shows the
components and connections of the IP. For each instantiated
component the proper parameters such as BIT_WIDTH and

REG_COUNT are initialized. Thirty four connections are defined for
this IP. Each connection determines the source component src, source
port sPort, destination component dest, and destination port dPort.
Among these connections, 19 are shown in Figure 4, and the rest are
clock and control connections.

In <Compiler-aspect> the ordering of the control fields are specified
by listing the fields in tag <CwFields>. This information is used by the
compiler for generating the control words. In this architecture, the total
bit-width of the control ports is 35 bits, and the constant width is 10
bits. Therefore, the bit-width of the control words is 45 bits.

1) Automatic generation of control and clock connections
In order to further simplify the datapath description, if the control

connections are not explicitly specified, we generate them
automatically by analyzing the components added to the architecture.
This improves the productivity significantly because adding the control
connections is very error-prone. Our modeling approach allows
automatic generation of control connections and control fields, because
we distinguish the control ports from other types of ports. Similarly, the
clock connections can be added automatically. In this architecture,
automatically adding the control connections and control fields reduces
the description size by 25%. We also observed that such automation
reduces the design and validation time by more than two times because
it eliminates the unavoidable control connection errors.

The designer may also choose to explicitly specify the synthesis
aspect of a NiscArchitecture to meet special constraints such as
manufacturability. In that case, the connections and control fields must
be specified manually.

VI. GENERATING RTL FROM GNR
Figure 6 shows the block diagram of our toolset. The inputs of the

toolset are GNR description of the custom IP and the application C
code. Currently, the outputs include synthesizable and simulatable RTL
codes.

The Pre-Processor first verifies the syntax of the given GNR file
using the GNR Schema. Next, it completes the netlist by (a) resolving
the parameters of the components, (b) adding the missing clock and
control connections, and (c) adding the control fields, as explained in
Section V.C. The semantic correctness of the completed netlist is
verified afterwards, and proper warning and error messages are
reported bye Pre-Processor. The netlist checker reports unconnected
ports, invalid connectivity, and non-existing component and port
names. GNR modeling enables additional checking that is not possible
using HDL-based structural descriptions. For example, in GNR, if a
data port is mistakenly connected to a clock port, or if multiple output-
ports are connected to one input port of a non-bus component, then it is
possible to detect and report the problem. Note that such connections
are valid in HDLs but result in an incorrect design behavior. Using such
simple checking in GNR, most architecture problems are quickly
determined.

Pre-Processor

HDL Generator

GNR Model C code

Synthesizable Code

Cycle-accurate Compiler

Simulatable Code

Third-Party Core Generator

Core Translator

Figure 6-The flow of our toolset.

The Cycle-accurate compiler compiles the C code on the given GNR
using the algorithm presented in [11]. If a specific operation required

by C code is not supported by the given datapath, then compiler
displays proper error messages. After compilation, the compiler
generates the contents of data memory as well as the control words for
every clock cycle of the execution.

The HDL Generator uses the GNR and the output of the compiler to
produce the output simulatable and synthesizable codes. The
simulatable code is mostly behavioral and simulates much faster than
the synthesizable code. The Core Translator generates the input files
for third-party core generator by extracting proper information and
parameters from the GNR model. The produced cores are combined
with the generated HDL code to form the final synthesizable code.

Our IP design toolset can be used for creating new IPs or
reprogramming existing IPs. An online version of the toolset is
available at [13].

VII.EXPERIMENTAL RESULTS
We conducted two sets of experiments using our toolset and GNR.

First, we compiled a fixed-point MP3 decoder (13000 lines of C code
downloaded from [17]) on three processors and compared the results.
As a second set of experiments, we explored different custom designs
for implementing a 2D DCT. For all experiments, we generated
Verilog RTL code, and simulated and synthesized them on a Xilinx
Virtex II FPGA using Xilinx ISE 8.1 toolset.

In the first experiment, we compiled MP3 code on three processors:
(1) Xilinx MicroBlaze, (2) a NISC-style MIPS processor (DMIPS), and
(3) a NISC customized for MP3 application (GD). All processors had
an integer divider unit, and the compiler options were set to maximize
optimization. Table 1 compares these processors in terms of cost and
performance. The second column shows that clock frequency of
100MHz, 70MHz, and 95MHz was achieved for MicroBlaze, DMIPS,
and GD, respectively. The third column shows the area of the three
processors in terms of the percentage of utilized logic on the chip. As
shown in the fourth column, MicroBlaze takes 2.7 million cycles to run
the MP3 code, while DMIPS and GD take less than a million cycles.
Considering both number of cycles and the clock frequency, DMIPS
and GD run 2.04 and 3.1 times faster than MicroBlaze as shown in
column fifth. Column sixth, seventh, and eight show number of lines of
GNR code, simulatable code and synthesizable code, respectively. The
size of GNR codes is significantly smaller than their corresponding
simulatable and synthesizable code. Since synthesizable Verilog files
include the structural design of the Xilinx cores, they are much larger
than their simulatable counterparts. Although our GNR is XML-based
(and hence relatively verbose), the description of the DMIPS and GD
are very short compared to typical LISA descriptions, which are
usually in the range of several thousands lines of code [8] [9] [10].

Table 1- Comparing MicroBlaze with two NISC processors.
Processor clock freq

(MHz)
Area
(%)

#Cycles
(million) Speedup Lines of

GNR
Lines of

Simulatable RTL
Lines of

Synthesizable Code
MicroBlaze 100 11 2.7 1 - - -

DMIPS 70 13 0.92 2.04 301 1981 22300
GD 95 17 0.83 3.1 432 2490 23500

A. DCT implementation using GNR
In the second set of experiments, we start from a MIPS architecture

(without the divider unit), called NMIPS, and customize it for the 2D
DCT application. The Discrete Cosine Transform (DCT) and Inverse
Discrete Cosine Transform (IDCT) are important parts of JPEG and
MPEG standards. The definition of DCT for a 2-D N×N matrix of
pixels is as follows:

 ∑∑
−

=

−

=

++
=

1

0

1

0
2 2

)12(cos
2

)12(cos],[1],[
N

m

N

n N
vn

N
umnmf

N
vuF ππ

Where u, v are discrete frequency variables (0≤u, v≤N-1), f[i, j] gray
level of pixel at position (i, j), and F[u,v] coefficients of point (u, v) in
spatial frequency. Assuming N=8, matrix C is defined as follows:

16

)12(cos
8
1]][[πunnuC +

=

Based on matrix C, an integer matrix C1 is defined as follows: C1 =
round(factor × C). The C1 matrix is used in calculation of DCT and
IDCT: F = C1 × f × C2, where, C2= C1T. As a result, DCT can be
calculated using two consecutive matrix multiplications. Figure 7(a)
shows the C code of multiplying two given matrix A and B using three
nested loops. In general, customization of a design involves both
software and hardware transformations. To increase the parallelism in
code, we unroll the inner-most loop of the matrix multiplication code,
merge the two outer loops, and convert some of the costly operations
such as addition and multiplication to OR and AND. In DCT, the
operation conversions are possible because of the special values of the
constants and variables. The transformed code is shown in Figure 7(b).

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 sum=0;
 for(int k=0; k<8; k++)
 sum= sum+A[i][k]×B[k][j];
 C[i][j]= sum;
 }

ij=0;
do {
 i8 = ij & 0xF8;
 j = ij & 0x7;
 aL= *(A+(i8|0)); bL= *(B + (0|j)); sum = aL × bL;
 aL= *(A+(i8|1)); bL= *(B + (8|j)); sum+= aL × bL;
 aL= *(A+(i8|2)); bL= *(B + (16|j)); sum+= aL × bL;
 aL= *(A+(i8|3)); bL= *(B + (24|j)); sum+= aL × bL;
 aL= *(A+(i8|4)); bL= *(B + (32|j)); sum+= aL × bL;
 aL= *(A+(i8|5)); bL= *(B + (40|j)); sum+= aL × bL;
 aL= *(A+(i8|6)); bL= *(B + (48|j)); sum+= aL × bL;
 aL= *(A+(i8|7)); bL= *(B + (56|j));
 *(C + ij) = sum + (aL × bL);
} while(++ij!=64);

(a) (b)
Figure 7. (a) Original and (b) Transformed matrix multiplication

By looking at the body of loop, four steps of computation can be
identified: (1) calculation of the memory addresses of the matrix
elements; (2) loading the values from data memory; (3) multiplying the
two values; (4) accumulating the multiplication results. We design our
custom datapath in a way that each of these steps is a pipeline stage.
Figure 8(a) shows the proposed custom pipelined datapath called
CDCT1. The datapath includes four major pipeline stages that are
marked in the figure. Table 2 shows the summary of the customizations
applied to architectures. It also shows the size of corresponding GNR
files and the amount of code that has been modified to implement the
customizations. After applying all customizations, we get to the
CDCT7 that is shown in Figure 8(b). We capture all of these
architectures in GNR and synthesize them using Xilinx ISE tool.

Table 3 compares the performance, power, energy, and area of the all

the DCT implementations after synthesis. Compared to NMIPS,
CDCT7 runs 10 times faster, consumes 1.3 times less power and 12.8
times less energy. Also, it occupies 2.9 times less area than NMIPS. All
of the above experiments took less than 7 man-days. Using GNR and
the toolset, we can quickly explore different architecture alternatives
and significantly improve the quality of generated IPs.

(a) (b)

Figure 8- Block diagram of (a) CDCT1, (b) CDCT7.

Table 2- Summary of customizations and GNR changes.

 Customization #lines in
GNR

#modified
lines in GNR

NMIPS Initial generic architecture 247 -
CDCT1 Custom pipeline design 199 150
CDCT2 Optimizing interconnects 160 50
CDCT3 removing unused ALU and Comparator operations 160 10
CDCT4 controller pipelining 1 162 5
CDCT5 controller pipelining 2 164 5
CDCT6 bit-width reduction 164 10

CDCT7 multi-cycle multiplier, additional pipelined registers at the outputs
of the RF 173 15

Table 3- Performance, dynamic power, energy, and area of DCTs.

 No. of
cycles

Clock
Freq

DCT exec.
time(us)

Power
(mW) Enegy (uJ) Normalized

area
NMIPS 10772 78.3 137.57 177.33 24.40 1.00
CDCT1 3080 85.7 35.94 120.52 4.33 0.81
CDCT2 2952 90.0 32.80 111.27 3.65 0.71
CDCT3 2952 114.4 25.80 82.82 2.14 0.40
CDCT4 3080 147.0 20.95 125.00 2.62 0.46
CDCT5 3208 169.5 18.93 106.00 2.01 0.43
CDCT6 3208 171.5 18.71 104.00 1.95 0.34
CDCT7 3460 250.0 13.84 137.00 1.90 0.35

VIII. CONCLUSION
To improve the productivity of the designers while maintaining the

predictability or the design, we presented GNR modeling approach.
GNR captures programmable custom IPs at structural level and
contains enough information for compilation, simulation and synthesis
of IPs, yet it is much shorter than other ADL languages with similar
capabilities. The new semantics in GNR significantly improve
productivity by freeing designer from describing error-prone and
tedious parts of the IP netlist. Using GNR, we could quickly explore
different datapath architectures to gain ten and three times performance
improvements for a DCT algorithm and a complete MP3 application,
respectively.

REFERENCES
[1] P. Mishra and N. Dutt, “Architecture Description Languages for Programmable
Embedded Systems”, IEE Proceedings on Computers and Digital Techniques (CDT),
Special issue on Embedded Microelectronic Systems: Status and Trends, volume 152, no 3,
pages 285--297, May 2005.
[2] W. Qin and S. Malik, “Architecture Description Languages for Retargetable
Compilation”, in The Compiler Design Handbook: Optimizations & Machine Code
Generation. CRC Press, 2002.
[3] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, A.Wieferink, and H.
Meyr, “A Novel Methodology for the Design of Application Specific Instruction Set
Processors (ASIP) Using a Machine Description Language”. IEEE Transactions on
Computer-Aided Design, 20(11):1338–1354, Nov. 2001.
[4] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven Exploration of Pipelined
Embedded Processors”, International Conference on VLSI Design, January, 2004.
[5] H. Akaboshi, “A Study on Design Support for Computer Architecture Design”,
Doctoral Thesis, Depart. of Information Systems, Kyushu Univ., Japan, Jan. 1996
[6] R. Leupers and P. Marwedel, “Retargetable Code Generation based on Structural
Processor Descriptions,” Design Automation for Embedded Systems, vol. 3, no. 1, Jan
1998.
[7] R. Leupers, P. Marwedel, “Retargetable Generation of Code Selectors from HDL
Processor Models”, European Design and Test, 1997.
[8] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun, “C
Compiler Retargeting Based on Instruction Semantics Models”, DATE, 2005.
[9] K. Karuri, R. Leupers, G. Ascheid, H. Meyr, and M. Kedia, “Design and
implementation of a modular and portable IEEE 754 compliant floating-point unit”.
DATE 2006.
[10] A. Chattopadhyay, D. Kammler, E. Witte, O. Schliebusch, H. Ishebabi, B. Geukes,
R. Leupers, G. Ascheid, “Automatic Low Power Optimizations during ADL-driven
ASIP Design”, VLSI-DAT, 2006.
[11] M. Reshadi, D. Gajski, “A Cycle-Accurate Compilation Algorithm for Custom
Pipelined Datapaths”, CODES+ISSS, 2005.
[12] B. Gorjiara, D. Gajski, “Custom Processor Design Using NISC: A Case-Study on
DCT algorithm”, ESTIMEDIA, 2005.
[13] http://www.cecs.uci.edu/~nisc
[14] XML: http://www.w3.org/XML/
[15] XML Schema: http://www.w3.org/XML/Schema
[16] MIPS32® M4K™ Core, http://www.mips.com
[17] http://www.underbit.com/products/mad/

