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Abstract—Constraints of embedded systems and the shrinking time-to-
market have elevated the importance of designer productivity and design 
predictability more than ever. To improve productivity, in ASIP approaches the 
system is designed with software and executed on a customized processor. In 
ASIP design flow, the processor is described in an Architecture Description 
Language (ADL) and the toolset is generated from that ADL automatically. 
However, in these approaches design predictability is low because the designer 
has little or no control over the quality of the final implementation.  

In this paper, we present a new design approach where the target processor 
or Intellectual Property (IP) does not have any predefined instruction-set and its 
datapath component netlist is described in a Generic Netlist Representation 
(GNR). The GNR is used by the toolset to generate the controller of the IP and 
the RTL of the design. The GNR is an order of magnitude shorter than state-of-
the-art ADLs with RTL generation capabilities and yet can capture any 
structural details that affect the implementation quality. We have also developed 
a web-based interface for our toolset, so that users can upload and evaluate new 
IPs described in GNR. 

I. INTRODUCTION 
Tight constraints of embedded systems require careful design 

exploration and fine tuning of quality metrics such as performance, 
power consumption, area, or manufacturability. Shrinking time-to-
market and increasing complexity of these systems has made designer 
productivity a vital factor for success. The logical way of gaining 
productivity is to increase abstraction level by designing the systems 
using software (high-level languages such as C) rather than directly 
implementing them in RTL. However, design predictability must not 
be sacrificed by increased abstraction level and as before the designers 
must be able to control the quality of the final implementation.  

One increasingly popular option for implementing software is using 
Application-Specific Instruction-set Processors (ASIPs). An ASIP is 
customized for the application to meet the design constrains. Due to 
low volume and short life-span of ASIPs, automatic generation of 
toolset (e.g. compiler, simulator) and automatic implementation of 
processor are very important. In an ASIP design flow, an Architecture 
Description Language (ADL) is used to capture the processor behavior 
and to generate the toolset. 

Over the past years many ADLs have been proposed. However the 
focus of majority of these ADLs has been either compilation or 
simulation of the programs but not synthesis of the processor. Only a 
few approaches have offered automated or semi-automated RTL 
synthesis of the processor. However, these approaches require very 
complex description of the processor and also do not provide enough 
control for the designer over the quality of the final implementation. 
We believe the main source of such limitations is that all ADL-based 
design flows always assume that the processor has a predefined 
instruction-set.  

The ADLs can be categorized to behavioral and structural. The 
behavioral ADLs describe the functionality of instructions and 
synthesize the architecture from that behavioral description. Since all 
possible formats of instructions in the instruction-set (e.g. all operations 
with all possible addressing modes) must be described explicitly in 
these ADLs, they are typically very lengthy even for simple processors. 
On the other hand, since such ADLs only focus on the functionality of 
the processor, the implementation related information that may not 
change the functionality cannot be captured by them. Therefore, the 

designer has little or no control over the quality of the final 
implementation. For example consider Figure 1(a) that shows a 
possible datapath for implementing addition (ADD), multiplication 
(MUL), and multiply-and-accumulate (MAC) operations. When 
performing MUL, although the adder is not used, it still consumes 
power due to the activities on its input signals. To reduce the power 
consumption of the design, we can add input registers as shown in 
Figure 1(b). However, this design has two disadvantages: (1) even if 
clock period is longer than the accumulated delay of ADD and MULL, 
still MAC will take two cycles; (2) adding registers increases the load 
on the clock tree and hence can increase clock power consumption. An 
alternative approach for reducing the power consumption of this design 
is to use signal gating as shown in Figure 1(c). In this solution, 
whenever the functional units are not used, their inputs are locked using 
a gate signal. This example shows that meeting tight constraints may 
require fine-grained architecture adjustments. However, behavioral 
ADLs only capture functionality and timing of the operations. As a 
result, the design predictability is very low in these approaches.  

 
Figure 1- (a) A simple datapath, power optimization (b) using registers, (c) using gates. 

The Structural ADLs describe the detailed component netlist of the 
processor (similar to HDLs) and then extract the instructions from the 
structural description of the controller and instruction decoder. These 
ADLs provide better design predictability than behavioral ADLs. 
However, designer productivity is very low because describing the 
controller and instruction decoder is very time-consuming and tedious. 
Also, extracting instructions from instruction decoder is very complex 
and usually limits the architectural features that these ADLs can 
support. 

In addition to the aforementioned issues, using technology-dependent 
third-party cores is not supported in any ADL. Furthermore, all ASIP 
approaches always impose the overhead of the instruction decoder on 
the design. This overhead is not acceptable in many embedded systems 
where a dedicated hardware is designed for a fixed application.  

 To address these issues, in this paper we present a design approach 
for generating programmable and dedicated custom pipelined IPs from 
high level C description of the application. In contrast to ASIP 
approaches, our target architecture does not have a predefined 
instruction-set. In our approach, the accurate netlist of the datapath 
components is described in a Generic Netlist Representation (GNR). 
Using this GNR, a cycle-accurate compiler compiles C code of the 
application directly on the input datapath and generates the control 
words of each clock cycle. The result of this compiler and the input 
GNR is used to generate the controller and the 
simulatable/synthesizable RTL codes of the IP. Generally, most of the 
designer’s experience, skill and innovation go into the design of 
datapath. Our approach improves design predictability by giving the 
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designer complete control over the datapath. On the other hand, design 
of the controller is tedious, time consuming and error prone process. By 
automating this process and by allowing reuse of previously designed 
datapaths and components, designer productivity is also significantly 
improved in our approach.  

The GNR is formal, supports use of third-party cores, and the same 
GNR description is used for compilation, simulation and synthesis. 
Since the designer does not describe the controller in our approach, the 
GNR descriptions are much shorter than other ADLs. For example, the 
GNR of a MIPS like datapath is less than 300 lines. We have 
developed a web-based interface for our toolset, so that users can 
upload and evaluate new IPs described in GNR. Our compiler supports 
various architectural features such as controller/datapath pipelining, 
multi-cycle/pipelined units, and heterogeneous forwarding paths. The 
compilation algorithm and the datapath optimizations have been 
discussed in  [11] and  [12] respectively. In this paper we focus on how 
to model the architecture in the GNR and will explain its use for 
compilation and synthesis. The rest of the paper is organized as 
follows. Section  II presents related works. Section  III and  IV explain 
our modeling approach and the syntax of GNR. Section  V discusses the 
details of GNR using three examples. Section  VI presents the flow of 
our toolset, followed by experimental results in Section  VII. Section 
 VIII concludes the paper. 

II. RELATED WORKS 
Over the past decade, a few ADLs and their supporting software 

tools have been introduced. A complete survey of these ADLs can be 
found in  [1],  [2]. Among these ADLs only the followings have directly 
or indirectly addressed synthesis of the architecture. 

LISA  [3], a sate-of-the-art commercial product,  and EXPRESSION 
 [4] are behavioral ADLs that capture a processor in terms of its 
instruction-set behavior and a high level block diagram of its pipeline. 
They were originally designed for compilation and simulation and have 
been recently extended to generate the RTL of the processor by 
synthesizing the instruction behaviors. Since instruction behaviors are 
described in a very high abstraction level in order to be used by the 
compiler, achieving a high quality synthesis in these approaches is less 
likely. Furthermore, the designer has no control over the details of final 
implementation and is limited to describing the functionality of 
instructions. Since these ADLs are behavioral, they must capture all 
possible configurations of instructions. This can lead to very lengthy 
descriptions. For example, in LISA the description of two RISC 
processors with four and seven pipeline stages has been reported to be 
more than 2000 and more than 9000 lines of code, respectively  [10]. 

UDL/I  [5] is a hardware description language (HDL) that captures 
the architecture at the Register-Transfer (RT)-level. A target specific 
compiler can be generated based on the instruction set extracted from 
the UDL/I description. UDL/I cannot support architecture with any 
instruction level parallelism. 

MIMOLA  [6] is another HDL that captures the architecture netlist at 
RT-Level and is used for hardware synthesis, simulation, test 
generation, and code generation. The RECORD compiler  [7] extracts 
behavioral model of instructions from MIMOLA HDL. It processes the 
structure of the datapath from destination storages towards source 
storages to extract valid register transfers (RTs). After analyzing the 
controller and the instruction decoder, it rejects illegal RTs that do not 
correspond to an instruction, and uses the remaining RTs in the 
compiler. MIMOLA does not support pipelined architectures and 
assumes single cycle operations. Furthermore, designer must describe 
the instruction decoder from which the compiler will extract the set of 
valid operations. Although RT-level descriptions are more amicable to 

hardware designers, describing the instruction decoder at RT-level is 
very tedious. Also instruction set extraction from RT-level is very 
difficult and is typically possible only for limited target scope. 

In our approach only the netlist of the datapath is captured in a format 
that is very close to HDL but includes additional properties for ports, 
components, and connections. Such properties enable automatic netlist 
completion and design rule checking. While GNR is low level enough 
for capturing all implementation details, it has enough high-level 
information for the compilation.   

III. GNR MODELING APPROACH 
In our approach, a custom processor or IP is composed of a set of 

input/output ports, and a netlist of components and connections. The 
components have a type, and may have input, output and control ports. 
The components may hierarchically contain other components and 
connections as well. Components and custom IPs have especial 
properties, called aspects, targeted for different tools such as compiler, 
and RTL generator. In this section, we describe our approach for 
modeling components and custom IPs.   

A. Component model 
A component x is represented by (τx, Px, Cx, Lx, Ax), where τx is the 

component’s type, Px is the set of ports, Cx is the set of components 
inside x, Lx is the set of its internal point-to-point connections, and Ax is 
the list of aspects that describe behavior of x for different tools in the 
toolset. Component type τx is defined as follows: 

τx ∈ {register, register-file, bus, mux, tri-state buffer, functional-
unit, memory-proxy, controller, NiscArchitecture, module} 

Where, NiscArchitecture is our top-level custom IP. Among these 
components, NiscArchitecture, module, and controller contain an 
internal netlist of components, while others are basic RTL components 
with no internal netlist.  

The set of ports Px is defined as follows: 
Px = QPx ∪ IPx ∪ OPx ∪ CPx 

Where QPx is the set of clock ports, which may have zero or one 
element; IPx is the set of input ports, OPx is the set of output ports, and 
CPx is the set of control ports. Each port p has a bit-width or size 
denoted by βp. For example a register has one clock port, one input 
port, one output port, and one control port (i.e. load enable). In general, 
we call IPx and OPx data ports. We have separated clock ports and 
control ports from data ports to enable automatic netlist completion and 
validation.  

Set of connections Lx is defined as follows: 
Lx = QLx ∪ CLx ∪ DLx    (1) 

Where QLx is the set of clock connections, CLx is the set of control 
connections, and DLx is the set of data connections defined as follows: 
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The clock connections are between the clock port of component x 
and the clock of its children components. Similarly, control connections 
are between control signals of x and the control signals of its children. 
Data connections are between the input ports of x and the input ports of 
the children, input port of x and output ports of x, output ports of the 
children and input ports of the children, and output ports of the children 
and output ports of x. Furthermore, we limit the number of connections 
to input, clock and control ports to one connection. The only exception 
is the bus component’s input port, which can be driven by multiple 
sources. However, all the sources must go through a tri-state buffer to 



ensure correct values on the bus. The limitation on number of 
connections is described as follows: 

∀ (p1, p2), (p3, p4)∈Lx, if p1≠p3 and p2=p4, then p2∈IPy and τy=bus 
By distinguishing between the types of components and ports, we 

can (a) perform many static analysis and validation, and (b) generate 
many parts of the description automatically (see also Section  V.C.1)) 

Ax is a list of aspects required by different tools for processing the 
component x. Currently, in our toolset, each component has three 
aspects: compilation aspect CAx, simulation aspect MAx, and synthesis 
aspect NAx. Compilation aspect usually captures the relation between 
the component’s behavior and the C-language operations, or 
application functions. Simulation and synthesis aspects usually contain 
the description of the component in an HDL, or the information 
required for generation of a hardwired core (e.g. memory, divider, etc.). 
For some component types, if an aspect is not specified by the designer, 
the toolset will generate it automatically. For example, the 
simulation/synthesis aspects of hierarchical components can be 
generated automatically from their internal components or, they can be 
explicitly specified by the designer. In this way, third party cores and 
pre-laid-out components, that may have special technology or 
manufacturability considerations, can also be modeled and used in the 
GNR (refer to Section  V.B). 

The components in a NiscArchitecture may represent a proxy to a 
component outside of the IP block. For example, a memory proxy 
represents a memory or cache hierarchy connected to the ports of the 
IP. The HDL implementation of a proxy may be as simple as input to 
output wirings. However, its compiler aspect captures the information 
for controlling the outside component.   

B. NiscArchitecture model 
A NiscArchitecture is a component with additional properties. A 

NiscArchitecture ξ is modeled by (Pξ, Cξ, Lξ, CNSTξ, Aξ), where Pξ is 
the set of the ports, Cξ is the set of internal components, Lξ is the set of 
connections, CNSTξ is the set of constant fields in the control word 
used for constant and jump operations, and Aξ is a collection of ξ’s 
compilation, simulation and synthesis aspects denoted by CAξ, MAξ, 
and NAξ, respectively. Set Pξ includes one clock port qpξ, input ports 
IPξ, and output ports OPξ: 

Pξ = {qpξ} ∪ IPξ ∪ OPξ 
Note that a NiscArchitecture does not have any control ports. Since 

control ports are introduced to facilitate compilation and binary 
generation, they are used only inside the NiscArchitecture. The set of 
all control ports of the components inside the IP is defined as follows: 
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The set of components Cξ includes one (and only one) component of 
type controller, and at least one memory proxy and one register file: 

Cξ = {x | x is a component, and ∃! x1∈ Cξ where τx1=controller,  
and ∃x2, x3∈ Cξ, where τx2=memory-proxy, and τx3=register-file } 

The controller is a special component that drives the control signals 
of all other components at every cycle. The controller has an output 
port called cwPort that its bit-width is equal to the sum of the bit-widths 
of all control ports in the IP, plus the bit-widths of the constant fields in 
CNSTξ: 
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The set of connections Lξ is defined similar to Equation (1). The only 
difference is that the set of control connections is defined only between 
the cwPort of the controller and the control ports of the components: 
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Where s and e are start and end indices for connecting part of cwPort 
to the control port p. The start and end indices of every two connection 
in CLξ are not allowed to overlap in order to maintain the correct 
functionality.  

Compilation aspect CAξ is modeled by (Γξ, sPtξ, fPtξ, dPtξ). The Γξ is 
a function that defines the ordering of the constant and control fields in 
the control word. The ordering must match the connection indices in 
CLξ. The sPtξ, fPtξ, dPtξ are storage components used for stack pointer, 
frame pointer and data segment pointer. The storage components can 
be separate registers or registers in a register file. 

IV. GNR SYNTAX 
We use XML language  [14] to describe IP models in GNR. We 

define GNR syntax in XML Schema  [15] to enforce syntax and 
semantics checking on the given input model. The Schema can also be 
used for code completion, which further increases the productivity of 
the designers. Figure 2 shows the partial block diagram of the Schema 
for modeling a custom IP (NiscArchitecture). The IP has several 
children tags including: <Ports>, <Components>, <Connections>, 
<CwFields>, <Compiler-aspect>, <Simulation-aspect>, and 
<Synthesis-aspect>, representing Pξ, Cξ, Lξ, Γξ, CAξ, MAξ, and NAξ, 
respectively. All components in GNR have a <Params> tag that 
parameterizes that component. For example, the delay or bit-width of 
the component can be specified as parameters.  

   
Figure 2- Block diagram of GNR schema for NiscArchitecture. 

V. GNR MODELING EXAMPLES 
In this section, we discuss modeling IPs in more details using three 

examples. We first explain how a simple component, namely a custom 
ALU, is defined in GNR. Next, we discuss modeling of complex third-
party cores. Finally, we explain how components are integrated to form 
a simple IP that can execute C code. 

A. Modeling a custom ALU 
ALU is a component of type functional-unit (FU). Figure 3 shows 

the GNR description of a custom ALU that executes three operations: 
Add, Sub, Not. The component has two parameters: BIT_WIDTH and 
DELAY. The parameters are initialized during the instantiation of a 
component in a datapath. This ALU has two input ports, one output 
port and a control port. Since this ALU executes three operations, the 
size of the ctrl port is at least two. The simulatable and synthesizable 
code of the ALU are described in the <Simulation-aspect> and 
<Synthesis-aspect> (not shown due to space limitations). For some 
components, it is also possible to generate the HDL description 
automatically from the component entity information and compiler 
aspect. In <Compiler-aspect> the operations that the ALU executes are 
described in details. Each operation has a name and a delay attribute: 
the name is selected from the list of valid C operations, and the delay is 
specified in terms of either number of cycles or nanoseconds according 
to the selected target technology. Each operation has a set of input ports 



and at most one output port. An operation may also require a specific 
value on one or more control ports. The values are specified using 
<Ctrl> tag. Using this modeling approach, new functional units can be 
described and added to the library. 

Some functional units are more complex than others. For example, 
some of them are pipelined, or may require instantiation of hardwired 
cores provided by a third party. In case of a pipelined unit, a netlist of 
the main functional unit and the pipeline registers are defined as a 
component of type module in GNR. Most of today’s synthesis tools 
apply retiming to the netlist, and generate proper pipelined functional 
unit. In case of hardwired cores, the information of the third party tool 
that must be called for core generation is specified in <Synthesis-
aspect>. 

 
Figure 3- Partial description of a custom 

ALU in GNR. 

 
Figure 4- Block diagram of a simple IP. 

 

B. Modeling third-party cores in GNR 
To improve the area, power consumption, and performance of the 

generated IPs, designers may desire to include hardwired third-party 
cores. This requires proper support in ADL and RTL code generator. 
To the best of our knowledge, no ADL-based ASIP design approach is 
able to incorporate hardwired cores in a systematic way.  

In the synthesis aspect of GNR components, we allow calling core-
translator programs to generate proper input files for third-party core 
generators. For example, for Xilinx FPGAs, the core generator (i.e. 
LogiCore) requires a .xco file that describes the properties of the core. 
For other cores, additional information may be required in specific 
formats. The information of the core is extracted from GNR and 
formatted by the translator program to match the requirements of the 
target platform. For example, in GNR, the synthesis aspect of memory 
components calls an external program to generate proper .xco and .coe 
(memory content) files that LogiCore needs for generating memory 
cores. The translator programs have different implementations for 
different target platforms. 

Another example is integer divider unit that is usually implemented 
by a hard or soft core. Dividers are costly functional units that are 
usually designed in pipelined fashion to improve the performance. 
Suppose that we have a four-stage pipelined divider core where each 
stage has a delay of two cycles. The goal is to describe such divider in 
ADL both for compilation and synthesis. From compiler point of view, 
to perform a divide operation, the inputs of the divider must be 
preserved for two cycles, and the division result is ready after eight 
cycles. Also, new inputs can be loaded every two cycles. The GNR 
model of such divider is a component of type module that contains a 

two-cycle functional-unit and three registers. The registers are 
connected to the output of the functional unit serially. The compiler-
aspect of the functional unit contains the divide operation and the 
delays of the functional-unit and all of the registers are parameterized to 
two cycles. This way, the compiler detects that it can use the functional 
unit every two cycles and the results will be ready after eight cycles. To 
guarantee correct control generation, the registers should not have any 
control port and the control port of the module must be connected to the 
control port of the functional unit. To prevent the toolset from 
generating RTL for this module, we add proper commands to the 
simulation-aspect and synthesis-aspect of the module to call a core 
translator program. For example, if Xilinx FPGA is chosen as target 
platform, then the translator program generates proper .xco file based 
on the parameters passed to the divider component.  

C. Modeling a simple IP 
Figure 4 shows the block diagram of a simple NiscArchitecture that 

can execute simple C codes. The architecture consists of a controller, a 
register file (RF), a data memory proxy, an ALU, a comparator, and a 
few multiplexers. The bus-width of the IP is 32 bits. The register file 
has 32 registers, and two read ports and one write port.  

 
Figure 5- GNR description of the IP in Figure 4. 

In this IP, suppose that a constant field of 10 bits is used for constants 
and offsets of jump operations. Figure 5 shows the GNR description of 
the IP. The IP has one clock port, a reset port, and several IO ports for 
communicating with data memory unit. The <Netlist> tag shows the 
components and connections of the IP. For each instantiated 
component the proper parameters such as BIT_WIDTH and 



REG_COUNT are initialized. Thirty four connections are defined for 
this IP. Each connection determines the source component src, source 
port sPort, destination component dest, and destination port dPort. 
Among these connections, 19 are shown in Figure 4, and the rest are 
clock and control connections.   

In <Compiler-aspect> the ordering of the control fields are specified 
by listing the fields in tag <CwFields>. This information is used by the 
compiler for generating the control words. In this architecture, the total 
bit-width of the control ports is 35 bits, and the constant width is 10 
bits. Therefore, the bit-width of the control words is 45 bits. 

1) Automatic generation of control and clock connections 
In order to further simplify the datapath description, if the control 

connections are not explicitly specified, we generate them 
automatically by analyzing the components added to the architecture. 
This improves the productivity significantly because adding the control 
connections is very error-prone. Our modeling approach allows 
automatic generation of control connections and control fields, because 
we distinguish the control ports from other types of ports. Similarly, the 
clock connections can be added automatically. In this architecture, 
automatically adding the control connections and control fields reduces 
the description size by 25%. We also observed that such automation 
reduces the design and validation time by more than two times because 
it eliminates the unavoidable control connection errors.  

The designer may also choose to explicitly specify the synthesis 
aspect of a NiscArchitecture to meet special constraints such as 
manufacturability. In that case, the connections and control fields must 
be specified manually. 

VI. GENERATING RTL FROM GNR 
Figure 6 shows the block diagram of our toolset. The inputs of the 

toolset are GNR description of the custom IP and the application C 
code. Currently, the outputs include synthesizable and simulatable RTL 
codes.  

The Pre-Processor first verifies the syntax of the given GNR file 
using the GNR Schema. Next, it completes the netlist by (a) resolving 
the parameters of the components, (b) adding the missing clock and 
control connections, and (c) adding the control fields, as explained in 
Section  V.C. The semantic correctness of the completed netlist is 
verified afterwards, and proper warning and error messages are 
reported bye Pre-Processor. The netlist checker reports unconnected 
ports, invalid connectivity, and non-existing component and port 
names. GNR modeling enables additional checking that is not possible 
using HDL-based structural descriptions. For example, in GNR, if a 
data port is mistakenly connected to a clock port, or if multiple output-
ports are connected to one input port of a non-bus component, then it is 
possible to detect and report the problem. Note that such connections 
are valid in HDLs but result in an incorrect design behavior. Using such 
simple checking in GNR, most architecture problems are quickly 
determined.  

Pre-Processor 

HDL Generator 

GNR Model C code 

Synthesizable Code 

Cycle-accurate Compiler 

Simulatable Code 

Third-Party Core Generator 

Core Translator 

 
Figure 6-The flow of our toolset. 

The Cycle-accurate compiler compiles the C code on the given GNR 
using the algorithm presented in  [11]. If a specific operation required 

by C code is not supported by the given datapath, then compiler 
displays proper error messages. After compilation, the compiler 
generates the contents of data memory as well as the control words for 
every clock cycle of the execution. 

The HDL Generator uses the GNR and the output of the compiler to 
produce the output simulatable and synthesizable codes. The 
simulatable code is mostly behavioral and simulates much faster than 
the synthesizable code. The Core Translator generates the input files 
for third-party core generator by extracting proper information and 
parameters from the GNR model. The produced cores are combined 
with the generated HDL code to form the final synthesizable code. 

Our IP design toolset can be used for creating new IPs or 
reprogramming existing IPs. An online version of the toolset is 
available at  [13]. 

VII.EXPERIMENTAL RESULTS  
We conducted two sets of experiments using our toolset and GNR. 

First, we compiled a fixed-point MP3 decoder (13000 lines of C code 
downloaded from  [17]) on three processors and compared the results. 
As a second set of experiments, we explored different custom designs 
for implementing a 2D DCT. For all experiments, we generated 
Verilog RTL code, and simulated and synthesized them on a Xilinx 
Virtex II FPGA using Xilinx ISE 8.1 toolset.  

In the first experiment, we compiled MP3 code on three processors: 
(1) Xilinx MicroBlaze, (2) a NISC-style MIPS processor (DMIPS), and 
(3) a NISC customized for MP3 application (GD). All processors had 
an integer divider unit, and the compiler options were set to maximize 
optimization. Table 1 compares these processors in terms of cost and 
performance. The second column shows that clock frequency of 
100MHz, 70MHz, and 95MHz was achieved for MicroBlaze, DMIPS, 
and GD, respectively. The third column shows the area of the three 
processors in terms of the percentage of utilized logic on the chip. As 
shown in the fourth column, MicroBlaze takes 2.7 million cycles to run 
the MP3 code, while DMIPS and GD take less than a million cycles. 
Considering both number of cycles and the clock frequency, DMIPS 
and GD run 2.04 and 3.1 times faster than MicroBlaze as shown in 
column fifth. Column sixth, seventh, and eight show number of lines of 
GNR code, simulatable code and synthesizable code, respectively. The 
size of GNR codes is significantly smaller than their corresponding 
simulatable and synthesizable code. Since synthesizable Verilog files 
include the structural design of the Xilinx cores, they are much larger 
than their simulatable counterparts. Although our GNR is XML-based 
(and hence relatively verbose), the description of the DMIPS and GD 
are very short compared to typical LISA descriptions, which are 
usually in the range of several thousands lines of code  [8] [9] [10]. 

Table 1- Comparing MicroBlaze with two NISC processors. 
Processor clock freq 

(MHz) 
Area 
(%) 

#Cycles 
(million) Speedup Lines of 

GNR 
Lines of  

Simulatable RTL 
Lines of  

Synthesizable Code 
MicroBlaze 100 11 2.7 1 - - - 

DMIPS 70 13 0.92 2.04 301 1981 22300 
GD 95 17 0.83 3.1 432 2490 23500 

A. DCT implementation using GNR 
In the second set of experiments, we start from a MIPS architecture 

(without the divider unit), called NMIPS, and customize it for the 2D 
DCT application. The Discrete Cosine Transform (DCT) and Inverse 
Discrete Cosine Transform (IDCT) are important parts of JPEG and 
MPEG standards. The definition of DCT for a 2-D N×N matrix of 
pixels is as follows: 
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Where u, v are discrete frequency variables (0≤u, v≤N-1), f[i, j] gray 
level of pixel at position (i, j), and F[u,v] coefficients of point (u, v) in 
spatial frequency. Assuming N=8, matrix C is defined as follows: 
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Based on matrix C, an integer matrix C1 is defined as follows: C1 = 
round( factor × C). The C1 matrix is used in calculation of DCT and 
IDCT: F = C1 × f  × C2, where, C2= C1T. As a result, DCT can be 
calculated using two consecutive matrix multiplications. Figure 7(a) 
shows the C code of multiplying two given matrix A and B using three 
nested loops. In general, customization of a design involves both 
software and hardware transformations. To increase the parallelism in 
code, we unroll the inner-most loop of the matrix multiplication code, 
merge the two outer loops, and convert some of the costly operations 
such as addition and multiplication to OR and AND. In DCT, the 
operation conversions are possible because of the special values of the 
constants and variables. The transformed code is shown in Figure 7(b).  

for(int i=0; i<8; i++) 
    for(int j=0; j<8; j++){ 
        sum=0; 
        for(int k=0; k<8; k++) 
            sum= sum+A[i][k]×B[k][j]; 
        C[i][j]= sum;     
    } 

 

ij=0; 
do { 
 i8 = ij & 0xF8; 
 j = ij & 0x7; 
 aL= *(A+(i8|0) ); bL= *(B + (0|j) );  sum =  aL × bL;  
 aL= *(A+(i8|1) ); bL= *(B + (8|j) );  sum+= aL × bL;  
 aL= *(A+(i8|2) ); bL= *(B + (16|j) ); sum+= aL × bL; 
 aL= *(A+(i8|3) ); bL= *(B + (24|j) ); sum+= aL × bL; 
 aL= *(A+(i8|4) ); bL= *(B + (32|j) ); sum+= aL × bL; 
 aL= *(A+(i8|5) ); bL= *(B + (40|j) ); sum+= aL × bL; 
 aL= *(A+(i8|6) ); bL= *(B + (48|j) ); sum+= aL × bL; 
 aL= *(A+(i8|7) ); bL= *(B + (56|j) );  
 *(C + ij) = sum + (aL × bL);  
} while(++ij!=64); 

(a) (b) 
Figure 7. (a) Original and (b) Transformed matrix multiplication  

By looking at the body of loop, four steps of computation can be 
identified: (1) calculation of the memory addresses of the matrix 
elements; (2) loading the values from data memory; (3) multiplying the 
two values; (4) accumulating the multiplication results. We design our 
custom datapath in a way that each of these steps is a pipeline stage. 
Figure 8(a) shows the proposed custom pipelined datapath called 
CDCT1. The datapath includes four major pipeline stages that are 
marked in the figure. Table 2 shows the summary of the customizations 
applied to architectures. It also shows the size of corresponding GNR 
files and the amount of code that has been modified to implement the 
customizations. After applying all customizations, we get to the 
CDCT7 that is shown in Figure 8(b). We capture all of these 
architectures in GNR and synthesize them using Xilinx ISE tool. 

 
Table 3 compares the performance, power, energy, and area of the all 

the DCT implementations after synthesis. Compared to NMIPS, 
CDCT7 runs 10 times faster, consumes 1.3 times less power and 12.8 
times less energy. Also, it occupies 2.9 times less area than NMIPS. All 
of the above experiments took less than 7 man-days. Using GNR and 
the toolset, we can quickly explore different architecture alternatives 
and significantly improve the quality of generated IPs. 

  
(a) (b) 

Figure 8- Block diagram of (a) CDCT1, (b) CDCT7. 

Table 2- Summary of customizations and GNR changes. 

 Customization #lines in 
GNR 

#modified 
lines in GNR 

NMIPS Initial generic architecture 247 - 
CDCT1 Custom pipeline design 199 150 
CDCT2 Optimizing interconnects 160 50 
CDCT3 removing unused ALU and Comparator operations 160 10 
CDCT4 controller pipelining 1 162 5 
CDCT5 controller pipelining 2 164 5 
CDCT6 bit-width reduction 164 10 

CDCT7 multi-cycle multiplier, additional pipelined registers at the outputs 
of the RF 173 15 

 
Table 3- Performance, dynamic power, energy, and area of DCTs. 

 

 No. of 
cycles 

Clock 
Freq 

DCT exec. 
time(us) 

Power 
(mW) Enegy (uJ) Normalized 

area 
NMIPS 10772 78.3 137.57 177.33 24.40 1.00 
CDCT1 3080 85.7 35.94 120.52 4.33 0.81 
CDCT2 2952 90.0 32.80 111.27 3.65 0.71 
CDCT3 2952 114.4 25.80 82.82 2.14 0.40 
CDCT4 3080 147.0 20.95 125.00 2.62 0.46 
CDCT5 3208 169.5 18.93 106.00 2.01 0.43 
CDCT6 3208 171.5 18.71 104.00 1.95 0.34 
CDCT7 3460 250.0 13.84 137.00 1.90 0.35 

VIII. CONCLUSION 
To improve the productivity of the designers while maintaining the 

predictability or the design, we presented GNR modeling approach. 
GNR captures programmable custom IPs at structural level and 
contains enough information for compilation, simulation and synthesis 
of IPs, yet it is much shorter than other ADL languages with similar 
capabilities. The new semantics in GNR significantly improve 
productivity by freeing designer from describing error-prone and 
tedious parts of the IP netlist. Using GNR, we could quickly explore 
different datapath architectures to gain ten and three times performance 
improvements for a DCT algorithm and a complete MP3 application, 
respectively.  
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