

Abstract—In-place flipping of rectangular blocks/cells can

potentially reduce the wirelength of a floorplan/placement
solution without changing the chip area, In a recent work [Hao
05], the flipping optimization is solved through a binary decision
diagram (BDD) based approach. However, the BDD-based
approach is not scalable for large SOC designs with many blocks
due to memory and runtime blow-up. This paper presents a new
approach using the partitioned ordered partial decision diagrams
(POPDD) for wirelength minimization. POPDD is based on a
novel compact partial functional representation between flip
configurations and corresponding wirelengths. By controlling the
number of nodes allowed per POPDD and the iterations, easy
trade-off between runtime/memory and accuracy/optimality can
be achieved. Experimental results clearly demonstrate the
efficiency of the proposed approach.

Index Terms—OPDD, wirelength minimization, BDD,
Symbolic algorithm

I. INTRODUCTION
 During floorplanning, both location and orientation of a set of
rectangular blocks are decided such that no blocks overlap.
The area of a floorplan is determined by the area of the
rectangular bounding box containing all the blocks. The wire
length is determined by the sum of the lengths of all the nets.
Typically half perimeter wire length (HPWL) is used as an
estimate of the total wire length since accurate wire length
information is not available during floorplanning. In
[Shahooker 91] it was shown that the orientations of the macro
cells can greatly impact the total wire-length. Flip operation
on blocks can be performed either along x-axis or y-axis or
both unless the orientations of the blocks are pre-specified. In
this paper we use HPWL as a measure of wire-length for each
net.

One approach to minimize wire-length is to flip each block
successively and keep the floorplan with a smaller HPWL.
Such greedy algorithms [Yao 90] usually produce poor results
[Hao 05]. Better heuristic approaches, e.g., simulated
annealing [Kim 91], genetic algorithm [Yan 96] typically
provide better solutions. [Funabiki 98] introduced an
evolutionary neural network based solution. Another heuristic
approach using a fuzzy c-means clustering was presented in
[Yan 91]. However since the search space is typically very
large, it is difficult to derive parameters to properly guide the

.

search using these heuristics. Since only a small set of
configurations provide optimal solutions, heuristic approaches
may still fail to provide good solutions.

In [Cheng 91], [Yan 93], the block flipping problem has
been proved to be NP-complete. Pure enumeration based
approaches are not applicable because the total number of flip
configurations is exponential in the number of blocks and even
for a moderate number of blocks this approach is intractable.
Several other algorithms have been proposed e.g., graph
decomposition [Cheng 91], shortest path computation on the
directed acyclic graph representation of the floorplan [Chong
93]. All these algorithms are heuristics.

In [Jeong 91] an integer linear programming based optimal
solution was presented which could provide an optimal
solution up to 33 blocks. However the runtime complexity was
not reported. Another optimal solution was presented in
[Yamada 88].

In [Hao 05] an optimal solution was presented based on a
compact representation of different flip configurations using a
binary decision diagram (BDD) [Bryant 86]. This approach
can provide a flip-optimal wire-length solution for up to 20-30
blocks. In [Kim 91] it was observed that some pins can not be
corner of a net in any flip configuration. [Hao 05] uses this
information to further reduce the BDD size. There are several
advantages of the method proposed in [Hao 05] compared to
the previous approaches. By compactly representing the flip
configurations using the BDDs, it avoids repeated
computations. The HPWL values of a net corresponding to the
different configurations are computed in parallel during BDD
traversal. It also allows dynamic pruning of the unpromising
solutions by first computing the HPWL at a lower resolution
and later on at a higher resolution only for the promising
solutions. To apply the algorithm in [Hao 05] for large
floorplans, the number of blocks considered for flipping has to
be limited to avoid runtime and memory blowup.

Full functional representations, e.g., BDDs inevitably suffer
from the problems of blow-up both in the memory and the
runtime. The number of nodes required can be exponential in
the number of the variables in the worst case. For the method
proposed in [Hao 05], the BDDs corresponding to all the nets
have to be kept in the memory to calculate the final
summation and for selecting the floorplan with the mimimum
wire-length. The BDDs for the individual nets can also be
large for nets having a large number of boundary-terminals.
The terminals which appear at a boundary (of the bounding
box of the net) in at least one of the configurations are referred

Partial Functional Manipulation Based
Wirelength Minimization

Avijit Dutta and David Z. Pan, Comp Engineering Research Center, University of Texas at Austin

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

to as the boundary terminals. Due to these limitations, the full
BDD based method may not be applicable for larger
floorplans with a large number of flippable blocks.

In [Ross 90] the ordered partial decision diagram [OPDD]
was introduced. Unlike a BDD the number of nodes in an
OPDD is bounded by a constant. An extra terminus called the
unknown (U) terminus is introduced. In this paper, to avoid
the problem of memory blowup associated with the BDDs, the
OPDD representation is explored. The block orientations that
can not be represented within the memory limit are
represented by the paths ending at the U-terminus. The paths
ending at the 1-terminus denote the valid orientations which
can be represented under the memory constraint.

In this paper we propose a method to compactly represent
HPWLs of each net corresponding to the different flip
configurations of the blocks using the zero suppressed
partitioned ordered partial decision diagram (POPDD). The 0-
paths in the OPDD are not included to make it zero suppressed
thereby saving on memory. Furthermore, the variable set is
partitioned into two groups i.e., the block variables and the
coordinate variables. Due to the partitioning not all possible
variable orderings are possible. Same variable order is
maintained along every path from the root to a terminal node
(ordered). We present a depth first search (DFS) based
ordering scheme to iteratively build POPDDs for each net
representing a partial set of flip configurations and the
corresponding HPWLs. The bound on the number of nodes
and the number of the iterations determine the accuracy of the
method. Unlike the method in [Hao 05] the memory
requirement is constant as the OPDD sizes are bounded and
also the proposed approach does not require the number of the
flippable blocks to be bounded. At the same time the proposed
method retains all the advantages of the method proposed in
[Hao 05].

II. PROPOSED ALGORITHM
In this section we describe our proposed approach to

minimize the wirelength of a floorplan consisting of
rectangular blocks using only the flip operation. First we
describe the main steps involved in the optimization process
and a few basic definitions. Next we show how the POPDDs
compactly represent several flip configurations and how they
differ from the BDD based approach. We also present a
partitioning and a variable ordering scheme based on depth
first search (DFS) and gate input ordering.

To calculate the HPWL of a floorplan for a given block
orientation, for each net all the vertex positions are calculated
and the corresponding HPWLs are calculated. Next the
HPWLs of all the nets are added to get the total HPWL. These
steps have to be repeated for each flip configuration of the
blocks to find out the minimal cost configurations. The HPWL
is defined as the sum of HPWLX and HPWLY where:

HPWLX = Σi(maxj(Xi,j) – minj(Xi,j))
HPWLY = Σi(maxj(Yi,j) – minj(Yi,j))
where i is the index of each net and j is the index of each

terminal. The terminals could either be connected to the frame

(pad) or to the blocks (pin). The block or the frame to which
the terminal is connected is called the host of the terminal. For
each block the bottom left coordinate, the height and the width
of the host can be found from the initial floorplan. Given the
relative position of the terminal in the block, the actual
coordinate of the terminals can simply be calculated as:

X = xhost + width * px
Y = yhost + height * py
If the block is flipped along X-axis then
X = xhost + width * (1 – px)
If the block is flipped along Y-axis then
Y = yhost + height * (1 – py)
where px and py are the relative x and y coordinates of the

terminal with respect to the host block and can be any real
number in the range (0,1). For the case when only in place flip
operation is allowed, the HPWLX and HPWLY are
independent of each other and can be calculated separately.
For the rest of the paper we will only consider HPWLX.
HPWLY can be computed the same way. [Hao 05] introduced
a compact way to compute HPWL for all the flip
configurations using BDDs. Consider the floorplan shown in
Fig. 1 with 4 blocks and 2 nets. Each block is identified with a
variable (w0 through w3). If a block is flipped along the x-
axis, it is represented by the same variable complemented. Let
x0 through x3 be the variables representing the binary values
of each coordinate of the terminals of each net. Note than only
boundary terminals have to be considered. Non-boundary
terminals do not impact the HPWLX of the nets. The following
equations represent the relationship between the terminal
coordinates and the flip configuration of the host blocks:

Fnet1 = w0(4)+(!w0)(6)+w1(11)+(!w1)(14)+
w2(3)+(!w2)(2) +(10)

 = (w0)(!x3)(x2)(!x1)(!x0) + (!w0)(!x3)(x2)(x1)(!x0) +
(w1)(x3)(!x2)(x1)(x0) + (!w1)(x3)(x2)(x1)(!x0) +
(w2)(!x3)(!x2)(x1)(x0) + (!w2)(!x3)(!x2)(x1)(!x0)
+(x3)(!x2)(x1)(!x0) (1)

Fnet2 = w0(2)+(!w0)(8)+w1(13)+(!w1)(12)
= (w0)(!x3)(!x2)(x1)(!x0) + (!w0)(x3)(!x2)(!x1)(!x0) +

(w1)(x3)(x2)(!x1)(x0) + (!w1)(x3)(x2)(!x1)(!x0) (2)

Note that block 3 (w3) does not appear in the equation for

net1. This is because the corresponding terminal coordinate
appears exactly at the middle of the block w3 and hence is
independent of the flip configuration of the block.

Figure 1. An example floorplan with 2-nets.

These equations can be compactly represented using BDDs.

Figure 2 shows the BDD representing the ON-set of Eqn. (2).
The dashed lines represent the 0-arcs and 1-arcs are
represented with solid lines. Each node is tagged with the
variable on which shanon-decomposition [Bryant 86] is
performed. The OBDD for Eqn. 2 has 16 nodes. The OBDD
for Eqn. 1 has 24 nodes. For reasonably large floorplans
maintaining full BDDs simultaneously for each net is not
feasible due to memory constraints. Figures 3 and 4 show the
POPDDs exploring different regions of the ON-set of Eqn. (2)
which maintain a bound of 10 and 8 on the number of nodes
respectively. Similarly POPDDs can be constructed for net1
(Eqn. 1). Only one POPDD for each net is active in memory at
anytime. The POPDDs are constructed in the following
manner. First, the set of variables is partitioned into two
groups, i.e., block variables and coordinate variables. The
block variables are processed before the coordinate variables.
The equations representing the flip configurations and the
terminal coordinates can be viewed as a combinational
network. The combinational network representing Eqn. 2 is
shown in Fig. 5. The POPDD is constructed while traversing
the network in DFS manner starting from the output. The
partial solution space targeted by the POPDD of Fig. 3 is
given by:

 (!w0)(x3)(!x2)(!x1)(!x0) + (w1)(x3)(x2)(!x1)(x0)
+(!w1)(x3)(x2)(!x1)(!x0) (3)
While building the POPDD, the AND nodes in the

combinational network as shown in Fig. 5 are visited in the
following order: <M2,M4,M3,M1>. Note that Eqn. (3) does
not contain all minterms of the entire solution space
corresponding to w0=1. It only contains a partial set of
minterms corresponding to w0=1. Due to this, the HPWLX
corresponding to any configuration having w0=1 can not be
computed from the POPDD of Fig. 3. All the paths
corresponding to w0=1 is terminated at the unknown (U)
terminus. This allows further saving on the memory and
reduces computation time. Eqn. (3) fully represents the ON-set
(solution space) corresponding to w0=0, w1=0 and w0=0,
w1=1. Hence the HPWLX corresponding to the configurations
(!w0)(!w1) and (!w0)(w1) can be computed from the POPDD
of Fig. 3.

The partial solution space targeted by the POPDD of Fig. 4

is given by:
(w0)(!x3)(!x2)(x1)(!x0)+(!w1)(x3)(x2)(!x1)(!x0) (4)
Using similar reasoning as the above, it can be seen that the

HPWLX corresponding to w0=0 and w1=1 (i.e., (!w0)(!w1),
(!w0)(w1) and (w0)(w1)) can not be computed from the
POPDD of Fig. 4 and the corresponding paths are directed to
the unknown (U) terminus. Only the HPWLX corresponding to
the configuration (w0)(!w1) can be computed from the
POPDD of Fig. 4. Thus the input ordering in this case is
<M1,M4,M3,M2>. Based on the order in which the inputs to
the OR gate (combinational network representation) are
processed and the bound on the number of nodes, different
regions of the ON-set of the equation can be explored.
Ordering should be such that the overlap between the explored
solution spaces in different iterations is minimized. In both
cases the base variable ordering is <w0,w1,w2,w3 |
x3,x2,x1,x0>. This helps in maximizing sharing of OPDD
nodes. A different input ordering is used for each of the
iterations. The POPDDs built this way represent a partial set
of flip configurations and the HPWL of the floorplan can be
computed for those partial set of flip configurations in each
iteration.

Figure 2. Zero-suppressed OBDD for Eqn. (2).

A. Computing HPWL from POPDD
Note that the same input-ordering (for OR gate) and base

ordering have to be used for every net in any one iteration.
This ensures that in any one iteration, the number of
compatible flip-configurations across all nets is maximized.
However these orderings will vary from one iteration to the
next. This is required to explore hitherto unexplored regions of
the solution space (i.e., flip conditions). While building the
POPDD, whenever the bound on the number of nodes is
reached, all the remaining paths are directed to the unknown
(U) terminus. Paths terminating at the U-terminus represent
the unexplored solution space.

 W0

 W1

 X3 X3

 X1

 X2

 X1

 X0 X0

1

 W1

 X3 X3

 X2 X2 X2

 X1

W2 W3

W0 W1 10,0 15,0
0,0

0,10

0,20
5,20

 15,20
3,20

2,0 4,0 11,0 13,0

net1

net2

10,20

Figure 3. Zero-suppressed POPDD of Eqn. 2 (node limit 10:

input ordering for the OR gate<2,4,3,1>)

Figure 4. Zero-suppressed POPDD of Eqn 2 (node limit 8:

input ordering for the OR gate<1,4,3,2>)

The HPWLX of the floorplan can be calculated after each
iteration by adding up the HPWLX of the individual nets
corresponding to the compatible configurations. Each path
from from the root to the 1-terminus of the POPDD represents
a cube of the ON-set of the corresponding function. The cubes
can be extracted in parallel while traversing the POPDD. If
there are m block variables and k coordinate variables then
there are m+k entries in each cube. Absence of a variable is
denoted by a x in that position. All the paths to the 1-terminus
represent the explored portion of the ON-set as a set of disjoint
cubes. Table 1 and Table 2 shows the cubes encoded by the
paths to the 1-terminus and corresponding configurations,
coordinates and HPWLX (maxX – minX) computed from the
coordinates for each of the configurations for 2 iterations
(Eqn. 2). Finally the HPWLX of every net corresponding to
the compatible configurations are added to obtain the HPWLX
for the floorplan. Note that even though in the worst case the
number of the distinct configurations is exponential in the

number of the blocks, due to a compact POPDD based
representation the actual number of distinct configurations to
be considered is typically much less.

Further the reduction in the number of distinct
configurations per net is achieved by merging configurations
yielding same HPWLX for the net. Moreover configurations
resulting in poor cost can be thrown away from further
consideration. While adding up the HPWLX of the nets
corresponding to a configuration if the sum exceeds
previously found best HPWLX (minimum) for the floorplan
then the configuration can be immediately removed from
consideration. In this example, for iteration 1, only 2
configurations had to be considered (000X, 001X) out of
possible 16 configurations. The same holds for iteration 2. As
can be seen, in this case optimal solution can be achieved after
2 iterations. The peak memory requirement is 20 nodes. For
the BDD based approach the peak memory requirement would
be 40 nodes. The quality of the solutions obtained depends on
the input ordering, the bound on the number of the POPDD
nodes and the number of iterations. From each of the iterations
only the configurations yielding the minimum HPWLX is
retained. Performing addition at lower resolution (in terms of
the number of coordinate bits being used) can be used to
prune the unpromising solutions in the first-place. Next
addition can be performed at a higher resolution using a larger
number of coordinate variables. The final solution is the
minimum across all the iterations. The bound on the number
of the nodes can also be varied across iterations. The number
of iterations can be increased at some cost of runtime to
explore other configurations. Note that by bounding the
maximum number of nodes per net, the total number of nodes
required to represent the HPWL for the entire floorplan is also
bounded. The POPDD nodes having same functional
representation are shared across the different OPDDs
corresponding to the different nets. So the actual number of
OPDD nodes required for all the nets is much less than (max
number of nodes per net × #nets).

In our proposed approach, sub-optimality is introduced
because configurations across iterations can not be considered
together. However as our experimental results suggest, by
maximizing compatible configurations among nets per
iteration and by exploring the unexplored solution space in
successive iterations, very high quality solution in terms of
minimized wirelength can be obtained while maintaining a
bound on the memory requirement and fast runtime.

 W0

 W1

 X3

 X2 X2

 X1 X1

1

U

 X0

 W0

 W1

 X3 X3

 X1

 X2

 X1

 X0 X0

1

U

Table 1. Iteration 1
Net Cubes Config Coordinate

(int)
HPWLX
max-min

CONFIG
(ΣHPWLX)

000XXX10 000X XX10=>
2,6,10,14

(14-2)=12 1

001XX110
001X0011
001X1010

001X X110=>6,14
0011=>3
1010->10

(14-3)=11

2 00XX1X00 00XX 1X00=>8,12 (12-8)=4

CONFIG=
001X,00XX
 =>001X
 (ΣHPWLX)=
(11+4=15)

Table 2. Iteration 2
Net Cubes Config Coordinate

(int)
HPWLX
max-min

CONFIG
(ΣHPWLX)

010X101X
010X0010
010X0110

010X 101X=>
10,11
0010=>2
0110=>6

(11-2)=9 1

011X101X
011X0011
011X0110

011X 101X=>
10,11
0011=>3
0110=>6

(11-3)=8

2 01XX1000
01XX1101

01XX 1000=8
1101=13

(13-8)=5

 CONFIG=
011X,01XX
=>011X
(ΣHPWLX)=
(8+5=13)

Figure 5. Combinational Network Representation of Eq.2

In [Hao 05] several strategies were presented to reduce the
sizes of the BDDs. All those strategies can be applied without
modification to the POPDDs. For the larger floorplans, the
algorithm in [Hao 05] can be applied by limiting the number
of blocks. A block weighting stategy was proposed to choose a
set of flipping blocks. In our proposed algorithm we don’t
limit the number of flipping blocks rather we explore different
set of flip configurations iteratively in different iterations.
Experimental results show that our proposed agorithm
consistently achieves better result when compared with the
block limiting approach of [Hao 05] for large floorplans.

III. EXPERIMENTAL RESULTS
We performed two sets of experiments to demonstrate the

efficiency of our proposed approach: one with randomly
generated large floorplans and the other one with some of the
MCNC benchmarks. We compare our results with another
boolean symbolic approach [Hao 05] based on the BDDs. In
all the experiments, the maximum number of OPDD nodes per
net was kept at 500. Table 3 shows the floorplan information
for the randomly generated floorplans.

Table 3. Randomly generated floorplans

Block# Net# Pin# pins/net
Ckt1 10 100 300 2-4
Ckt2 20 200 1000 2-10
Ckt3 50 1000 3000 2-4
Ckt4 50 1000 5000 2-10
Ckt5 100 500 1500 2-4
Ckt6 300 1200 6000 2-10

Table 4. Comparison (Proposed:#iter=3)
 Hao[05] Proposed
 Run

Time
(s)

#bdd
nodes

hpwlx Run
Time
(s)

#opdd
nodes

hpwlx

Ckt1 3 5040 2450 3.2 2520 2450
Ckt2 7 26100 7100 8 17500 7300
Ckt3 13 33500 35000 12.2 24900 34000
Ckt4 15 53500 42000 14.8 43500 42000
Ckt5 21 25450 17500 24.1 24900 17000
Ckt6 228 170400 44980 194 156600 42793

Table 4 compares the [Hao 05] with our proposed approach

for the randomly generated floorplans. Wirelength
minimization based on in place flipping is targeted. For [Hao
05] the maximum number of flipping blocks is limited to 25
(due to memory constraint). For ckt1 and ckt2 optimum
wirelength can be obtained using [Hao 05]. In these cases,
close to optimum solution can be obtained using the proposed
approach while using much less memory and a comparable
runtime. The 5th column of Table 4 shows the total runtime for
3 iterations for the proposed approach. Figure 6 shows
accuracy vs no of POPDD nodes (memory) for ckt2. It also
shows how the accuracy is affected by the number of the
iterations. The x-axis plots ((obtained (proposed) − optimum) /
optimum)*100% and y-axis plots the maximum number of
POPDD nodes for any iteration. For larger floorplans,
consistently better solutions can be obtained using the
proposed method both in terms of reduction in the wirelength
and the memory (#nodes).

The details of the MCNC benchmarks are shown in Table 5.
Table 6 compares the result with that of [Hao 05]. Same
resolution is used for all the experiments. 1st column of Table
6 reports ((runtime per iteration (proposed) − runtime (Hao
05)) / runtime (Hao 05))×100%. 2nd column of Table 6
reports ((memory (proposed) − memory (Hao 05))/ memory
(Hao 05))×100%. 3rd column of Table 6 reports ((HPWLX
(proposed) − HPWLX (Hao 05)) / HPWLX (Hao 05))×100%.
For the smaller floorplans an optimal solution is obtained
using [Hao 05]. In these cases, the proposed algorithm can
obtain a near optimal solution using only a fraction of the
memory required by [Hao 05] and the runtime is comparable.
For the larger floorplans the proposed algorithm outperforms
the BDD based block limiting (#max flippable blocks= 20)
approach both in terms of the reduction in wirelength and the
memory requirement.

1

2

3

4

M1

M2

 M3

 M4

 OR

Trade-off Characteristics

12000

17000

22000

27000

0% 3% 6% 9% 12%

wirelength increase as % of the optim al

#
PO
PD
D
no
de
s

no of iters=1 no of iters=2 no of iters=3

Figure 6. Trade-off characteristics (ckt2)

Table 5. MCNC Benchmarks
 Block# Net# Pin# Pad#

Apte 9 97 214 73
Xerox 10 203 696 2

Hp 11 83 264 45
Ami33 33 123 480 42
Ami49 49 408 931 22

Table 6. Comparison with [Hao 05] (Proposed:#iter=3,
resolution = 1000)

 ∆(runtime) ∆(memory) ∆(HPWLX)
Apte -7.5% -45% +4.2%

Xerox -8% -40% +5.0%
Hp -12% -50% 0.0%

Ami33 -20% -30% -2.0%
Ami49 -40% -40% -12.0%

IV. CONCLUSION
A compact partial functional representation based algorithm

is presented for wirelength minimization with in-place
cell/macro flipping in large-scale system-on-chip floorplans.
The proposed algorithm provides smooth tradeoff between the
accuracy and the memory requirement and consistently
outperforms the full Boolean symbolic representation based
methods both in terms of reduction in wirelength and memory
requirement for floorplans with a large number of blocks.

REFERENCES
[Bryant 86] Bryant, R. E. “Graph Based Algorithms for Boolean Function

Manipulation,“ IEEE Transactions on Computers, Vol c-35, No. 8,
August 1986, pp. 677-691.

 [Cheng 91] Cheng, C.K., S.Z. Yao, and T.C. Hu, “The orientation of modules
based on graph decompositions,” IEEE Transactions on Computers,
40(6):774.780, Jun 1991.

[Chong 93] Chong, K., and S. Sahni, “Minimizing total wire length by flipping
modules,” Computer-Aided Design of Integrated Circuits and
Systems,IEEE Transactions on, 12(1):167.175, Jan 1993.

[Funabiki 98] Funabiki. N., J. Kitamichi, and S. Nishikawa,”An evolutionary
neural network approach for module orientationproblems,”IEEE
Transactions on Systems, Man and Cybernetics, 28(6):pp. 849-855, Dec
1998.

[Hao 05] Hao, Xin, and Forrest Brewer, “Wirelength Optimization by Optimal
Block Placement,” ICCAD, 2005.

[Jeong 91] Jeong, J.C. and C.-M. Kyung,”Finding optimal module orientation
in macro cell placement circuits and systems,”In Circuits and Systems,
ISCAS. IEEE International Symposium on, pages 3118-3121 vol.5, 1991.

[Kim 91] Kim, S. and C.M. Kyung,”Module orientation algorithm using
reconstruction of nets and meanfield annealing,” Electronics Letters,
27(13):1198-1200, Jun 1991.

[Murata 96] Murata, H., K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Vlsi
module placement based on rectangle-packing by the sequence-pair,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 15(12):1518-1524, Dec 1996.

 [Ross 90] Ross, D. E., “Functional Calculation Using Ordered Partial Multi
Decision Diagrams,” Ph. D. dissertation. University of Texas, Austin,
August 1990.

 [Shahookar 91] Shahookar, K. and P. Mazumder, “VLSI cell placement
techniques,” ACM Computing Surveys (CSUR) archive, 23(2):143-220,
Jun 1991.

 [Yamada 88] Yamada, M., and C. L. Liu, “An analytical method for optimal
module orientation,” In Circuits and Systems, ISCAS. IEEE International
Symposium on, pages 1679-1682, vol.2, 1988.

[Yan 93] Yan, J.-T., and P.-Y. Hsiao, “The module orientation problem based
on Manhattan wire measure is still NP-complete”, In Circuits and
Systems, MWSCAS. The Midwest Symposium on, pages 526-529 vol.1,
1993.

[Yan 95] Yan, J.-T., and P.-Y. Hsiao, “Orientation assignment of standard cells
using a fuzzy mathematical transformation,” Proc. of Computers and
Digital Techniques, 142(2):157.164, Mar 1995.

[Yan 96] Yan, Jin-Tai, “A simple yet effective genetic approach for the
orientation assignment on cell-based layout,” In International Conference
on VLSI Design: VLSI in Mobile Communication, pages 33.36, 1996.

[Yao 90] Yao, Xianjin, and C. L. Liu, “Solution of a module orientation and
rotation problem,” In Design Automation Conference, EDAC.
Proceedings of the European, pages 594 -588, 1990.

