
 

  
Abstract—In-place flipping of rectangular blocks/cells can 

potentially reduce the wirelength of a floorplan/placement 
solution without changing the chip area, In a recent work [Hao 
05], the flipping optimization is solved through a binary decision 
diagram (BDD) based approach. However, the BDD-based 
approach is not scalable for large SOC designs with many blocks 
due to memory and runtime blow-up. This paper presents a new 
approach using the partitioned ordered partial decision diagrams 
(POPDD) for wirelength minimization. POPDD is based on a 
novel compact partial functional representation between flip 
configurations and corresponding wirelengths. By controlling the 
number of nodes allowed per POPDD and the iterations, easy 
trade-off between runtime/memory and accuracy/optimality can 
be achieved. Experimental results clearly demonstrate the 
efficiency of the proposed approach. 
 

Index Terms—OPDD, wirelength minimization, BDD, 
Symbolic algorithm 
 

I. INTRODUCTION 
 During floorplanning, both location and orientation of a set of 
rectangular blocks are decided such that no blocks overlap. 
The area of a floorplan is determined by the area of the 
rectangular bounding box containing all the blocks. The wire 
length is determined by the sum of the lengths of all the nets. 
Typically half perimeter wire length (HPWL) is used as an 
estimate of the total wire length since accurate wire length 
information is not available during floorplanning. In 
[Shahooker 91] it was shown that the orientations of the macro 
cells can greatly impact the total wire-length. Flip operation 
on blocks can be performed either along x-axis or y-axis or 
both unless the orientations of the blocks are pre-specified. In 
this paper we use HPWL as a measure of wire-length for each 
net.  

One approach to minimize wire-length is to flip each block 
successively and keep the floorplan with a smaller HPWL. 
Such greedy algorithms [Yao 90] usually produce poor results 
[Hao 05]. Better heuristic approaches, e.g., simulated 
annealing [Kim 91], genetic algorithm [Yan 96] typically 
provide better solutions. [Funabiki 98] introduced an 
evolutionary neural network based solution. Another heuristic 
approach using a fuzzy c-means clustering was presented in 
[Yan 91]. However since the search space is typically very 
large, it is difficult to derive parameters to properly guide the 

 
.  
 

search using these heuristics. Since only a small set of 
configurations provide optimal solutions, heuristic approaches 
may still fail to provide good solutions. 

In [Cheng 91], [Yan 93], the block flipping problem has 
been proved to be NP-complete. Pure enumeration based 
approaches are not applicable because the total number of  flip 
configurations is exponential in the number of blocks and even 
for a moderate number of blocks this approach is intractable. 
Several other algorithms have been proposed e.g., graph 
decomposition [Cheng 91], shortest path computation on the 
directed acyclic graph representation of the floorplan [Chong 
93].  All these algorithms are heuristics. 

In [Jeong 91] an integer linear programming based optimal 
solution was presented which could provide an optimal 
solution up to 33 blocks. However the runtime complexity was 
not reported. Another optimal solution was presented in 
[Yamada 88]. 

In [Hao 05] an optimal solution was presented based on a 
compact representation of different flip configurations using a 
binary decision diagram (BDD) [Bryant 86]. This approach 
can provide a flip-optimal wire-length solution for up to 20-30 
blocks. In [Kim 91] it was observed that some pins can not be 
corner of a net in any flip configuration. [Hao 05] uses this 
information to further reduce the BDD size. There are several 
advantages of the method proposed in [Hao 05] compared to 
the previous approaches. By compactly representing the flip 
configurations using the BDDs, it avoids repeated 
computations. The HPWL values of a net corresponding to the 
different configurations are computed in parallel during BDD 
traversal. It also allows dynamic pruning of the unpromising 
solutions by first computing the HPWL at a lower resolution 
and later on at a higher resolution only for the promising 
solutions. To apply the algorithm in [Hao 05] for large 
floorplans, the number of blocks considered for flipping has to 
be limited to avoid runtime and memory blowup.  

Full functional representations, e.g., BDDs inevitably suffer 
from the problems of blow-up both in the memory and the 
runtime. The number of nodes required can be exponential in 
the number of the variables in the worst case. For the method 
proposed in [Hao 05], the BDDs  corresponding to all the nets 
have to be kept in the memory to calculate the final 
summation and for selecting the floorplan with the mimimum 
wire-length. The BDDs for the individual nets can also be 
large for nets having a large number of boundary-terminals. 
The terminals which appear at a boundary (of the bounding 
box of the net) in at least one of the configurations are referred 
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to as the boundary terminals. Due to these limitations, the full 
BDD based method may not be applicable for larger 
floorplans with a large number of flippable blocks. 

In [Ross 90] the ordered partial decision diagram [OPDD] 
was introduced. Unlike a BDD the number of nodes in an 
OPDD is bounded by a constant. An extra terminus called the 
unknown (U) terminus is introduced. In this paper, to avoid 
the problem of memory blowup associated with the BDDs, the 
OPDD representation is explored. The block orientations that 
can not be represented within the memory limit are 
represented by the paths ending at the U-terminus. The paths 
ending at the 1-terminus denote the valid orientations which 
can be represented under the memory constraint. 

In this paper we propose a method to compactly represent 
HPWLs of each net corresponding to the different flip 
configurations of the blocks using the zero suppressed 
partitioned ordered partial decision diagram (POPDD). The 0-
paths in the OPDD are not included to make it zero suppressed 
thereby saving on memory. Furthermore, the variable set is 
partitioned into two groups i.e., the block variables and the 
coordinate variables. Due to the partitioning not all possible 
variable orderings are possible. Same variable order is 
maintained along every path from the root to a terminal node 
(ordered). We present a depth first search (DFS) based 
ordering scheme to iteratively build POPDDs for each net 
representing a partial set of flip configurations and the 
corresponding HPWLs. The bound on the number of nodes 
and the number of the iterations determine the accuracy of the 
method. Unlike the method in [Hao 05] the memory 
requirement is constant as the OPDD sizes are bounded and 
also the proposed approach does not require the number of the 
flippable blocks to be bounded. At the same time the proposed 
method retains all the advantages of the method proposed in 
[Hao 05]. 

II. PROPOSED ALGORITHM 
In this section we describe our proposed approach to 

minimize the wirelength of a floorplan consisting of 
rectangular blocks using only the flip operation. First we 
describe the main steps involved in the optimization process 
and a few basic definitions. Next we show how the POPDDs 
compactly represent several flip configurations and how they 
differ from the BDD based approach. We also present a 
partitioning and a variable ordering scheme based on depth 
first search (DFS) and gate input ordering. 

To calculate the HPWL of a floorplan for a given block 
orientation, for each net all the vertex positions are calculated 
and the corresponding HPWLs are calculated. Next the 
HPWLs of all the nets are added to get the total HPWL. These 
steps have to be repeated for each flip configuration of the 
blocks to find out the minimal cost configurations. The HPWL 
is defined as the sum of HPWLX and HPWLY where: 

HPWLX = Σi(maxj(Xi,j) – minj(Xi,j)) 
HPWLY = Σi(maxj(Yi,j) – minj(Yi,j)) 
where i is the index of each net and j is the index of each 

terminal. The terminals could either be connected to the frame 

(pad) or to the blocks (pin). The block or the frame to which 
the terminal is connected is called the host of the terminal. For 
each block the bottom left coordinate, the height and the width 
of the host can be found from the initial floorplan. Given the 
relative position of the terminal in the block, the actual 
coordinate of the terminals can simply be calculated as:   

X = xhost + width * px   
Y = yhost + height * py 
If the block is flipped along X-axis then  
X  = xhost + width * (1 – px) 
If the block is flipped along Y-axis then 
Y = yhost + height * (1 – py) 
where px and py are the relative x and y coordinates of the 

terminal with respect to the host block and can be any real 
number in the range (0,1). For the case when only in place flip 
operation is allowed, the HPWLX and HPWLY are 
independent of each other and can be calculated separately. 
For the rest of the paper we will only consider HPWLX. 
HPWLY can be computed the same way. [Hao 05] introduced 
a compact way to compute HPWL for all the flip 
configurations using BDDs. Consider the floorplan shown in 
Fig. 1 with 4 blocks and 2 nets. Each block is identified with a 
variable (w0 through w3). If a block is flipped along the x-
axis, it is represented by the same variable complemented. Let 
x0 through x3 be the variables representing the binary values 
of each coordinate of the terminals of each net. Note than only 
boundary terminals have to be considered. Non-boundary 
terminals do not impact the HPWLX of the nets. The following 
equations represent the relationship between the terminal 
coordinates and the flip configuration of the host blocks: 

Fnet1 = w0(4)+(!w0)(6)+w1(11)+(!w1)(14)+ 
w2(3)+(!w2)(2) +(10)  

 = (w0)(!x3)(x2)(!x1)(!x0) + (!w0)(!x3)(x2)(x1)(!x0) +     
(w1)(x3)(!x2)(x1)(x0) + (!w1)(x3)(x2)(x1)(!x0) + 
(w2)(!x3)(!x2)(x1)(x0) + (!w2)(!x3)(!x2)(x1)(!x0) 
+(x3)(!x2)(x1)(!x0)                                                       (1) 

Fnet2 = w0(2)+(!w0)(8)+w1(13)+(!w1)(12)  
= (w0)(!x3)(!x2)(x1)(!x0) + (!w0)(x3)(!x2)(!x1)(!x0) + 

(w1)(x3)(x2)(!x1)(x0) + (!w1)(x3)(x2)(!x1)(!x0)           (2) 
 
Note that block 3 (w3) does not appear in the equation for 

net1. This is because the corresponding terminal coordinate 
appears exactly at the middle of the block w3 and hence is 
independent of the flip configuration of the block. 

 



 

 
Figure 1.  An example floorplan with 2-nets. 

 
These equations can be compactly represented using BDDs. 

Figure 2 shows the BDD representing the ON-set of Eqn. (2). 
The dashed lines represent the 0-arcs and 1-arcs are 
represented with solid lines. Each node is tagged with the 
variable on which shanon-decomposition [Bryant 86] is 
performed. The OBDD for Eqn. 2 has 16 nodes. The OBDD 
for Eqn. 1 has 24 nodes. For reasonably large floorplans 
maintaining full BDDs simultaneously for each net is not 
feasible due to memory constraints. Figures 3 and 4 show the 
POPDDs exploring different regions of the ON-set of Eqn. (2) 
which maintain a bound of 10 and 8 on the number of nodes 
respectively. Similarly POPDDs can be constructed for net1 
(Eqn. 1). Only one POPDD for each net is active in memory at 
anytime. The POPDDs are constructed in the following 
manner. First, the set of variables is partitioned into two 
groups, i.e., block variables and coordinate variables. The 
block variables are processed before the coordinate variables. 
The equations representing the flip configurations and the 
terminal coordinates can be viewed as a combinational 
network. The combinational network representing Eqn. 2 is 
shown in Fig. 5. The POPDD is constructed while traversing 
the network in DFS manner starting from the output. The 
partial solution space targeted by the POPDD of Fig. 3 is 
given by: 

 (!w0)(x3)(!x2)(!x1)(!x0) + (w1)(x3)(x2)(!x1)(x0) 
+(!w1)(x3)(x2)(!x1)(!x0)                                           (3) 
While building the POPDD, the AND nodes in the 

combinational network as shown in Fig. 5 are visited in the 
following order: <M2,M4,M3,M1>. Note that Eqn. (3) does 
not contain all minterms of the entire solution space 
corresponding to w0=1. It only contains a partial set of 
minterms corresponding to w0=1. Due to this, the HPWLX 
corresponding to any configuration having w0=1 can not be 
computed from the POPDD of Fig. 3. All the paths 
corresponding to w0=1 is terminated at the unknown (U) 
terminus. This allows further saving on the memory and 
reduces computation time. Eqn. (3) fully represents the ON-set 
(solution space) corresponding to w0=0, w1=0 and w0=0, 
w1=1. Hence the HPWLX corresponding to the configurations 
(!w0)(!w1) and (!w0)(w1) can be computed from the POPDD 
of Fig. 3. 

The partial solution space targeted by the POPDD of Fig. 4 

is given by: 
(w0)(!x3)(!x2)(x1)(!x0)+(!w1)(x3)(x2)(!x1)(!x0)           ( 4) 
Using similar reasoning as the above, it can be seen that the 

HPWLX corresponding to w0=0 and w1=1 (i.e., (!w0)(!w1), 
(!w0)(w1) and (w0)(w1)) can not be computed from the 
POPDD of Fig. 4 and the corresponding paths are directed to 
the unknown (U) terminus. Only the HPWLX corresponding to 
the configuration (w0)(!w1) can be computed from the 
POPDD of Fig. 4. Thus the input ordering in this case is 
<M1,M4,M3,M2>. Based on the order in which the inputs to 
the OR gate (combinational network representation) are 
processed and the bound on the number of nodes, different 
regions of the ON-set of the equation can be explored. 
Ordering should be such that the overlap between the explored 
solution spaces in different iterations is minimized. In both 
cases the base variable ordering is <w0,w1,w2,w3 | 
x3,x2,x1,x0>. This helps in maximizing sharing of OPDD 
nodes. A different input ordering is used for each of the 
iterations. The POPDDs built this way represent a partial set 
of flip configurations and the HPWL of the floorplan can be 
computed for those partial set of flip configurations in each 
iteration. 

 

 
Figure 2.  Zero-suppressed OBDD for Eqn. (2). 

 

A. Computing HPWL from POPDD 
Note that the same input-ordering (for OR gate) and base 

ordering have to be used for every net in any one iteration. 
This ensures that in any one iteration, the number of 
compatible flip-configurations across all nets is maximized. 
However these orderings will vary from one iteration to the 
next. This is required to explore hitherto unexplored regions of 
the solution space (i.e., flip conditions). While building the 
POPDD, whenever the bound on the number of nodes is 
reached, all the remaining paths are directed to the unknown 
(U) terminus. Paths terminating at the U-terminus represent 
the unexplored solution space. 
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Figure 3.  Zero-suppressed POPDD of Eqn. 2 (node limit 10: 

input ordering for the OR gate<2,4,3,1>) 

 
Figure 4.  Zero-suppressed POPDD of Eqn 2 (node limit 8: 

input ordering for the OR gate<1,4,3,2>) 
 

The HPWLX of the floorplan can be calculated after each 
iteration by adding up the HPWLX of the individual nets 
corresponding to the compatible configurations. Each path 
from from the root to the 1-terminus of the POPDD represents 
a cube of the ON-set of the corresponding function. The cubes 
can be extracted in parallel while traversing the POPDD. If 
there are m block variables and k coordinate variables then 
there are m+k entries in each cube. Absence of a variable is 
denoted by a x in that position. All the paths to the 1-terminus 
represent the explored portion of the ON-set as a set of disjoint 
cubes. Table 1 and Table 2 shows the cubes encoded by the 
paths to the 1-terminus and corresponding configurations, 
coordinates and HPWLX (maxX – minX) computed from the 
coordinates for each of the configurations for 2 iterations 
(Eqn. 2). Finally the HPWLX of every net corresponding to 
the compatible configurations are added to obtain the HPWLX 
for the floorplan. Note that even though in the worst case the 
number of the distinct configurations is exponential in the 

number of the blocks, due to a compact POPDD based 
representation the actual number of distinct configurations to 
be considered is typically much less.  

Further the reduction in the number of distinct 
configurations per net is achieved by merging configurations 
yielding same HPWLX for the net. Moreover configurations 
resulting in poor cost can be thrown away from further 
consideration. While adding up the HPWLX of the nets 
corresponding to a configuration if the sum exceeds 
previously found best HPWLX (minimum) for the floorplan 
then the configuration can be immediately removed from 
consideration. In this example, for iteration 1, only 2 
configurations had to be considered (000X, 001X) out of 
possible 16 configurations. The same holds for iteration 2. As 
can be seen, in this case optimal solution can be achieved after 
2 iterations. The peak memory requirement is 20 nodes. For 
the BDD based approach the peak memory requirement would 
be 40 nodes. The quality of the solutions obtained depends on 
the input ordering, the bound on the number of the POPDD 
nodes and the number of iterations. From each of the iterations 
only the configurations yielding the minimum HPWLX is 
retained. Performing addition at lower resolution (in terms of 
the number of coordinate bits being used ) can be used to 
prune the unpromising solutions in the first-place. Next 
addition can be performed at a higher resolution using a larger 
number of coordinate variables. The final solution is the 
minimum across all the iterations. The bound on the number 
of the nodes can also be varied across iterations. The number 
of iterations can be increased at some cost of runtime to 
explore other configurations. Note that by bounding the 
maximum number of nodes per net, the total number of nodes 
required to represent the HPWL for the entire floorplan is also 
bounded. The POPDD nodes having same functional 
representation are shared across the different OPDDs 
corresponding to the different nets. So the actual number of 
OPDD nodes required for all the nets is much less than (max 
number of nodes per net × #nets).  

In our proposed approach, sub-optimality is introduced 
because configurations across iterations can not be considered 
together. However as our experimental results suggest, by 
maximizing compatible configurations among nets per 
iteration and by exploring the unexplored solution space in 
successive iterations, very high quality solution in terms of 
minimized wirelength can be obtained while maintaining a 
bound on the memory requirement and fast runtime.  
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Table 1.  Iteration 1  
Net Cubes Config Coordinate 

(int) 
HPWLX 
max-min 

CONFIG 
(ΣHPWLX) 

000XXX10 000X XX10=> 
2,6,10,14 

(14-2)=12 1 

001XX110 
001X0011 
001X1010 

001X X110=>6,14 
0011=>3 
1010->10 

(14-3)=11 

2 00XX1X00 00XX 1X00=>8,12 (12-8)=4 

CONFIG=  
001X,00XX 
   =>001X  
  (ΣHPWLX)= 
(11+4=15) 

Table 2.  Iteration 2  
Net Cubes Config Coordinate 

(int) 
HPWLX 
max-min 

CONFIG 
(ΣHPWLX) 

010X101X 
010X0010 
010X0110 

010X 101X=> 
10,11 
0010=>2 
0110=>6 

(11-2)=9 1 

011X101X 
011X0011 
011X0110 

011X 101X=> 
10,11 
0011=>3 
0110=>6 

(11-3)=8 

2 01XX1000 
01XX1101 

01XX 1000=8 
1101=13 

(13-8)=5 

 CONFIG= 
011X,01XX 
=>011X 
(ΣHPWLX)=   
(8+5=13) 

 

 
Figure 5.  Combinational Network Representation of Eq.2 

In [Hao 05] several strategies were presented to reduce the 
sizes of the BDDs. All those strategies can be applied without 
modification to the POPDDs.  For the larger floorplans, the 
algorithm in [Hao 05] can be applied by limiting the number 
of blocks. A block weighting stategy was proposed to choose a 
set of flipping blocks. In our proposed algorithm we don’t 
limit the number of flipping blocks rather we explore different 
set of flip configurations iteratively in different iterations. 
Experimental results show that our proposed agorithm 
consistently achieves better result when compared with the 
block limiting approach of [Hao 05] for large floorplans. 

III. EXPERIMENTAL RESULTS 
We performed two sets of experiments to demonstrate the 

efficiency of our proposed approach: one with randomly 
generated large floorplans and the other one with some of the 
MCNC benchmarks. We compare our results with another 
boolean symbolic approach [Hao 05] based on the BDDs. In 
all the experiments, the maximum number of OPDD nodes per 
net was kept at 500. Table 3 shows the floorplan information 
for the randomly generated floorplans. 

Table 3. Randomly generated floorplans 

Block# Net# Pin# pins/net 
Ckt1 10 100 300 2-4 
Ckt2 20 200 1000 2-10 
Ckt3 50 1000 3000 2-4 
Ckt4 50 1000 5000 2-10 
Ckt5 100 500 1500 2-4 
Ckt6 300 1200 6000 2-10 

 

Table 4.  Comparison (Proposed:#iter=3) 
 Hao[05] Proposed 
 Run 

Time 
(s) 

#bdd 
nodes 

hpwlx Run 
Time 
(s) 

#opdd 
nodes 

hpwlx 

Ckt1 3 5040 2450 3.2 2520 2450 
Ckt2 7 26100 7100 8 17500 7300 
Ckt3 13 33500 35000 12.2 24900 34000 
Ckt4 15 53500 42000 14.8 43500 42000 
Ckt5 21 25450 17500 24.1 24900 17000 
Ckt6 228 170400 44980 194 156600 42793 

 
Table 4 compares the [Hao 05] with our proposed approach 

for the randomly generated floorplans. Wirelength 
minimization based on in place flipping is targeted. For [Hao 
05] the maximum number of flipping blocks is limited to 25 
(due to memory constraint). For ckt1 and ckt2 optimum 
wirelength can be obtained using [Hao 05]. In these cases, 
close to optimum solution can be obtained using the proposed 
approach while using much less memory and a comparable 
runtime. The 5th column of Table 4 shows the total runtime for 
3 iterations for the proposed approach. Figure 6 shows 
accuracy vs no of POPDD nodes (memory) for ckt2. It also 
shows how the accuracy is affected by the number of the 
iterations. The x-axis plots ((obtained (proposed) − optimum) / 
optimum)*100% and y-axis plots the maximum number of 
POPDD nodes for any iteration. For larger floorplans, 
consistently better solutions can be obtained using the 
proposed method both in terms of reduction in the wirelength 
and the memory (#nodes).  

The details of the MCNC benchmarks are shown in Table 5. 
Table 6 compares the result with that of [Hao 05]. Same 
resolution is used for all the experiments. 1st column of Table 
6 reports ((runtime per iteration (proposed) − runtime (Hao 
05)) / runtime (Hao 05))×100%. 2nd column of Table 6 
reports ((memory (proposed) − memory (Hao 05))/ memory 
(Hao 05))×100%. 3rd column of Table 6 reports ((HPWLX 
(proposed) − HPWLX (Hao 05)) / HPWLX (Hao 05))×100%.  
For the smaller floorplans an optimal solution is obtained 
using [Hao 05]. In these cases, the proposed algorithm can 
obtain a near optimal solution using only a fraction of the 
memory required by [Hao 05] and the runtime is comparable. 
For the larger floorplans the proposed algorithm outperforms 
the BDD based block limiting (#max flippable blocks= 20) 
approach both in terms of the reduction in wirelength and the 
memory requirement. 
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Figure 6.  Trade-off characteristics (ckt2) 

Table 5. MCNC Benchmarks 
 Block# Net# Pin# Pad# 

Apte 9 97 214 73 
Xerox 10 203 696 2 

Hp 11 83 264 45 
Ami33 33 123 480 42 
Ami49 49 408 931 22 

Table 6. Comparison  with [Hao 05]  (Proposed:#iter=3, 
resolution = 1000) 

 ∆(runtime) ∆(memory) ∆(HPWLX) 
Apte -7.5% -45% +4.2% 

Xerox -8% -40% +5.0% 
Hp -12% -50% 0.0% 

Ami33 -20% -30% -2.0% 
Ami49 -40% -40% -12.0% 

IV. CONCLUSION 
A compact partial functional representation based algorithm 

is presented for wirelength minimization with in-place 
cell/macro flipping in large-scale system-on-chip floorplans. 
The proposed algorithm provides smooth tradeoff between the 
accuracy and the memory requirement and consistently 
outperforms the full Boolean symbolic representation based 
methods both in terms of reduction in wirelength and memory 
requirement for floorplans with a large number of blocks. 
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