

Abstract—Soft error rates are an increasing problem in

modern VLSI circuits. Commonly used error correcting codes
reduce soft error rates in large memories and second level caches
but are not suited to small fast memories such as first level caches,
due to the area and speed penalties they entail. Here, an error
detection and correction scheme that is appropriate for use in low
latency first level caches and other small, fast memories such as
register files is presented. The scheme allows fine, e.g., byte write
granularity with acceptable storage overhead. Analysis
demonstrates that the proposed method provides adequate soft
error rate reduction with improved latency and area cost.

Index Terms—Error detection and correction, memory soft
errors, error correcting codes.

I. INTRODUCTION
ingle event upset (SEU) due to charge injected at Si
junctions by impinging ionizing radiation is an increasing
problem in modern integrated circuits and particularly

microprocessors, which employ large static random access
memories (SRAM’s) for cache memory. Process scaling
reduces the critical charge needed to upset storage nodes and
increasing SRAM bits per chip exacerbates the problem [1].
Reported values for SRAM per bit soft error rate (SER) vary
substantially with technology details, ranging from 0.01 to
0.0001 FIT/bit. One failure in time (FIT) is commonly defined
as 1 failure in 109 hours of device operation [1]-[4].

Soft errors have driven designers to add error correcting
codes (ECC) or parity protection to caches in order to meet
SER requirements [5]-[9]. Conventional ECC protection
imposes significant area and cycle time penalties, making it
practical only for large embedded memories and second-level
(L2) caches where the increased latency has less impact on
performance. To maintain low latency, first level (L1) caches
tend to employ parity checking that allows single bit error
detection, but no correction. This is adequate for instruction
caches, as the SRAM is never modified and another copy
exists elsewhere in the memory hierarchy. For data caches,
parity protection alone mandates a write-through policy so two
copies of the written data exist.

This work was sponsored by AFRL/VSSE at Kirtland AFB, in

Albuquerque, NM under contract F29601-00-D-0244 0020.

Granularity of the protection is also an issue. Typically,
microprocessor instruction sets allow loads and stores with
byte granularity. Where a parity bit is stored with each byte, a
byte write updates just the corresponding parity bit, which is
calculated as the data is delivered to the data array. With
standard ECC the large number of check bits result in a cost
that is impractically high for such small granularities. Arrays
with ECC usually employ a write buffer, where data writes at
less than a line width are combined with the old data. This is
accomplished by reading the cached line, merging it with the
new data and recalculating the ECC bits for storage in a multi-
cycle operation [9]. L1 caches with write buffering can use
similar techniques [5][6].

In this paper a novel “lightweight” error detection and
correction (LEDAC) scheme with overhead and timing similar
to standard parity protection is proposed. Based on two
dimensional parity checking, it imposes a minimal increase in
circuit area and latency and is thus appropriate for high-speed
memory structures such as L1 caches. Two dimensional parity
schemes date back decades [10], but have heretofore not been
used for cache or SRAM EDAC. Here, the operation,
necessary circuits, and correction operations are outlined. With
a combined memory read-write cycle, the scheme can be
supported with minimal timing penalty.

A. Microprocessor Cache EDAC
Many modern microprocessors employ ECC to protect the

L2 caches. L1 caches commonly employ parity protection
without correction capabilities, although some employ ECC at
the cost of additional cycles of latency. This is beneficial in the
case that the L2 is non-inclusive, i.e., the L1 contents are not
replicated in the L2. Although parity can be effective for
instruction and write-through data caches, it is ineffective for
write-back data caches where the only valid (dirty) data resides
in the L1. Write-back caches reduce memory traffic to the L2
cache and so are less likely to stall the machine when a large
number of back-to-back load/store operations are executed. In
small, embedded processors, there is not always an L2 cache
and hence the performance penalty for write-through operation
is higher.

ECC’s used in microprocessors have been based on two
related schemes, the Hamming and the Hsiao or odd-weight-
column code [11][12]. They work in a similar way in that they
add r check bits for every bundle of k data bits, which when

Karl C. Mohr and Lawrence T. Clark
Arizona State University Dept. of Electrical Engineering

Tempe, AZ USA
{karl.mohr,lawrence.clark}@asu.edu

Delay and Area Efficient First-level Cache Soft
Error Detection and Correction

S

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

decoded allow a single bit error to be corrected and any two
bit error to be detected within the bundle. When data is written
into the memory the check bits are calculated and stored along
with the data bits (although as a practical matter they are
sometimes stored in a separate array). After data is read the
check bits are recalculated and exclusive-ORed with the stored
check bits to generate a “syndrome” that is also r bits in
length. If the syndrome contains all zeros then no single or
double bit error has occurred and the data is assumed to be
correct. If any bits in the syndrome are ones at least one data
bit has been corrupted.

Double bit errors produce a quasi-unique syndrome that
allows for the detection but not correction of the error. Thus
these codes can allow double error detection (DED) but not
correction. An example of the data and check bit storage for an
N word x 32-bit memory is shown in Fig. 1. Note that the
bundle size for this Nx32 array is 32 and thus it contains N 32-
bit bundles, one on each row, and each bundle is stored with
seven check bits. For the Hamming/Hsiao codes each bundle
can have one error and all the errors are correctable, i.e., they
are independent. For a write width less than the bundle size,
e.g., to write a byte, the entire bundle must be read, the data to
be written inserted into the bundle, and the ECC check bits
recalculated. Due to the width and depth of the parity trees
required, this implies a multi-cycle operation. Where
supported, this is handled by a fully-associative write buffer.
Alternatively an 8-bit bundle could be used (not shown) with

five check bits. While this would remove the need for a write
buffer it requires 62.5% area overhead for check bit storage.

II. LIGHTWEIGHT EDAC

A. Checking Scheme
The LEDAC scheme provides speed and area benefits for

small fast memories, such as L1 caches, compared to standard
ECC’s. As mentioned, the method is based on two-
dimensional parity checking [10]. As illustrated in Fig. 2, one
row check bit is added to every k bit bundle. The row check bit
is a simple parity bit and thus the check bit calculation incurs
the same latency as parity only protection. Row check bits are
calculated as

For sb = 0…B-1
For row = 0…N-1

1kksbrow2ksbrow

1ksbrow0ksbrowsbrow

bb
bbCR

−++

++

⊕

⊕⊕=

,,

,,,

...

Here, N is the number of rows in the super-bundle, brow,col

indicates the bit in row (row) and column (col) of the array,
CRrow,sb is the row check bit for row (row) and super-bundle
(sb), and B is the number of super-bundles in the array. Here
we defined the term super-bundle to be the set of data bits that
have an associated set of k column check bits and N row check
bits. The CRrow,sb bit indicates which k bit bundle has an error.
To determine which of the k bits in the bundle has been upset c
column check bits CC are added, at least one for each column
in the array. The CC is simply a parity bit calculated column-
wise and is calculated by XORing of all bits in the column.
The CC bit storage and generation logic incurs a small
overhead as will be shown. Unlike conventional ECC, repair is
through a multi-cycle error correction routine, which can be
implemented in software or hardware. The memory must also
be initialized to a known state at reset.

Column check bits CC are calculated as
For sb = 0…B-1

For col = 0..k-1

1Ncolksb2colksb

1colksb0colksbcolksb

bb
bbCC

−++

+++

⊕

⊕⊕=

,*,*

,*,**

...

For the N x 32 array of Fig. 2, k = 8 and there are a total of
4N bundles, and 4 super-bundles. Each super-bundle has N

Bits 31-24

= check bit= data bit

Row

0
1
2

N

Bits 23-16 Bits 15-8 Bits 7-0

= mismatched check bit= corrupted data bit

CRrow,3 CRrow,0CRrow,1CRrow,2

CCcol

Fig. 2 N x 32 bit memory array with LEDAC (k=8, r=1, c=32, d=32). A SEU is shown in bit 20 of row 2.

Bits 31-0 7 check bits

= check bit

= data bit

Row

0
1
2

N

Fig. 1. N x 32b memory with conventional EDAC protection
(k = 32, r = 7).

rows of 8 bits. Every super-bundle is independent, i.e., any
single error in each can be corrected.

B. Number of Check Bits
As few as k column check-bits can be used, but k should not

be less than d, the maximum data width that can be read or
written in a single cycle. For example, if k = 8, and d can be 8,
16, or 32 bits, then c should not be less than max(k, d) = 32. A
smaller value increases the depth of the column check
generation logic, which is generally in a timing critical path.
On every read the row check-bits are generated from the read
data and compared to the CR stored in the array. If the
calculated and stored CR match, then no single bit error has
occurred and the data is assumed to be correct. A discrepancy
between the calculated and stored row CR indicates an error
whereupon an error correction routine is invoked.

C. Circuits and Operation
On every write CR is calculated and written into the array

for each k bit bundle. For example, when a 32-bit word is
written with one row check bit for each byte (k = 8) then four
row CR are calculated and written into the array along with the
32 data bits. The CC are also updated to reflect the new data
being written into the array. This requires that the data bits to
be written be exclusive-ORed with the old data bits to be over-
written and the result exclusive-ORed with the presently stored
CC bit. The CC update circuit is shown in Fig. 3. The need to
use the data being replaced to update the state of the column
check bit requires a read of the old data before the write can
occur. An appropriate single-cycle read before write scheme
identical to that presently used in virtually tagged
microprocessors [13] can be used. The XOR path from the
sense amplifier to the CC storage does not comprise a timing
critical path since the new CC will not be used for at least
another clock phase, i.e., at the next write. While the CC
storage is shown as a flip-flop in Fig. 3, SRAM storage can
also be used.

D. Correction Algorithm
An error correction routine must be run to correct an error

in the SRAM once it is found. Fig. 4 illustrates one erroneous
bit to show the correction procedure. For simplicity, and with
no loss of generality, the array contains all 0’s except for the
error bit. The bit in row 1 and column 1 (which shows a logic
1 state) is the bit in error since the corresponding row and
column parity are incorrect. During a read of row 1, the
calculated and stored CR bits mis-match, invoking the
correction routine. The first step is to store CC to a temporary
register. In subsequent steps, the bits in adjacent rows are
exclusive-ORed and stored in the CC bits, which are used as a
local temporary register giving (by step)

Step 1: Store CC to a temporary register.
Step 2: CC = 0 1 0 0, XOR row 1 and row 2.
Step 3: CC = 0 1 0 0, XOR result and row 3.
Step 4: CC = 0 1 0 0, XOR result and row 0.
Step 5: Syndrome = CC = 0 1 0 0, XOR result and temporary register.
For the final step, the resulting CC bits are exclusive-ORed
CLOCK

WRITE
DATA

D Q

WRITE
ENABLE

Sense Amplifier,
bit line multiplexer

and isolateSAE

delay

Column
check bit

CC

Fig. 3. CC bit update circuitry. The XNOR gates are not in the
critical timing path.
with the temporary register containing the original column
parity bits. The result is the syndrome where a 1 points to the
incorrect bit in column 1.

To ensure that multi-bit errors are corrected, a second pass
is made through the array exclusive-ORing the syndrome bits
with the data for each k bit bundle where the row check bit
(parity) indicates an error has occurred, i.e., a scrub of the
entire array is performed. At this time the CR are recalculated
and written back into the array. The CR must be recalculated
in case the bit that is in error is in the row-check bits rather
than the data. While the checking and updating is much faster
than with conventional ECC approaches, the correction, when
required, requires N+1 cycles, depending on whether or not
the block (super-bundle) contains multiple errors. However,
LEDAC requires little additional hardware. The LEDAC error
correction routine is more complex than for either the
Hamming or Hsiao codes but can rely on the microprocessor
CPU. The error correction procedure will run infrequently as
SEU are rare events and so will not affect throughput.

The example demonstrates that the proposed LEDAC
scheme can handle SEC cases. For DED the correction routine
must be modified to detect multiple row and/or column bit
upsets. If more than one row or column check-bit error is
detected by the error correction routine in any one super-
bundle then more than one error has occurred and the errors
are not correctable. A difference between the DED for the
LEDAC scheme compared to the standard Hsiao/Hamming
approach is where there are two errors in the same row of a
super-bundle. In this case a double error will not be detected
when the data is read, but will be discovered when scrubbing,
since two CC mis-matches will be found. All schemes require
proper physical interleaving of the bits to avoid a single strike
causing multiple upsets as shown below.

III. AREA AND SPEED
EDAC requires extra area for check bit storage and parity

trees, and the time needed to calculate check bits can cause an

increase in latency, as mentioned. Hsiao codes are slightly
faster than Hamming codes and require the same number of
check bits [14] so here only the Hsiao, and LEDAC schemes
are compared.

A. Area Overhead
For a Hsiao code the relation between the number of

check-bits r and number bits in a bundle k is

 kr
i
rrii

oddi
1i

+≥

∑

≤≤

=

=

min
min . (1) (4)

For the LEDAC approach the relationship between the number
of column-check bits c, bits per bundle k, and the number of
row check-bits r for any value of k is

 1, =≥ rkc (2)

The number of column bits should not be set to less than 16 *
max(k,d) to avoid problems with particle strikes that cause
multi-bit errors giving

1),,max(16 =⋅= rdkc (3)

This relationship can be used to calculate the minimum area
overhead, i.e., check bits vs. k, with the results shown in Table
I for a 32kB memory. The parity tree depth is calculated
assuming the use of 2 input XOR gates. If XOR gates with a
greater number of inputs are used then this number is reduced
but it is reduced for all methods equally.

B. Latency Overhead
To calculate the worst-case path through the check-bit

generation logic for Hsiao code we find the smallest value of
min(i) such that (1) is satisfied and

is used to calculate the check-bit generation logic depth. The
ceiling function rounds the result up to the nearest integer. For
the case where c = 16 max(k, d) the depth of the column and
row parity tree depth for LEDAC is one XOR gate and

() k2log , respectively. The latter is not in the critical timing
path. The extra time to read before writing is however, and
increases the timing critical path length by 2 gate delays.

C. Latency Overhead
All EDAC schemes present an area and latency trade-off. As

k is increased the area overhead decreases but the check-bit
generation logic width and depth increases. Longer L2 cache
pipelines provide time for deep check bit generation logic
supporting large bundle sizes with low area overhead, e.g.,
with k = 256 and r = 10 using a Hsiao code, the bit area
overhead is 3.9% and check-bit logic depth is 7 XOR gates (14
inversions). A 32-Kbyte cache using a LEDAC code with k =
8, and a 32 bit column has an area overhead of 12.7%, which
is similar to the value required for parity based single-bit error
detection. The row and column check bit generation logic
depth is 3 and 1 respectively for a LEDAC bundle size of 8
(only the time after sensing is counted). The former is the same
as for parity protection and the latter is timing non-critical.

Thus, LEDAC provides a significant latency advantage over
the conventional ECC approaches. This is significant since the
total number of gate delays (inversions) in one clock cycle for
high performance microprocessors ranges from 10-20. Table I
compares area overhead and check-bit generation logic depth

0

0
0
0

0

0
0
1

0

0
0
0

0

0
0
0

0

0
0
0

0 0 0 0 0

Row
0
1
2
3

CCcol

Fig. 4. Example error in a four by four bit array.

=HD

Logic
delay

tRead + tWrite
+ tXOR

tRead +
tWrite +
6 tXOR

– 5 tXOR
– clock
cycle

 (4)

−++

∑ ∑

−<

=

=

−<

=

=

1ii

oddi
1i

1ii

oddi
1i

2 i
r

kr
r

i
i
r

r
imin min

minlog
Table I. LEDAC (k = 8) vs. Hsiao code for k = 8, 32, 64, 128 supporting
a byte write.
 LEDAC Hsaio Difference

Area cost
(%)

12.7 62.5 -49.8 Hsaio
k=8

Logic
delay

tRead + tWrite
+ tXOR

tWrite +
3 tXOR

tRead –
2 tXOR

Area cost
(%)

12.7 21.9 -9.2 Hsaio
k=32

Logic
delay

tRead + tWrite
+ tXOR

tRead +
tWrite +
4 tXOR

– 3 tXOR
– clock
cycle

Area cost
(%)

12.7 12.5 0.2 Hsaio
k=64

Logic
delay

tRead + tWrite
+ tXOR

tRead +
tWrite +
5 tXOR

– 4 tXOR
– clock
cycle

Area cost
(%)

12.7 7 5.5 Hsaio
k=128
for a LEDAC code with k = 8 compared to Hsiao codes for
various values of k. The last column shows the difference in
area and gate delays. A negative value favors LEDAC.

A Hsiao code with k = 8 is likely faster than the LEDAC
approach (depending on the speed of the read vs. XOR gate
delay) but has a much larger area overhead due to the need to

add 5 check bits for every 8 data buts. Once k > 8 the need to
support byte writes forces a multi-cycle read-modify-write
operation using the Hsiao approach and its speed drops
significantly below that of LEDAC. Increasing k improves area
efficiency at the cost of speed. Thus LEDAC with k = 8
represents a good compromise for L1 caches.

IV. CONCLUSIONS
The point of adding EDAC is to improve the SER so that it

becomes unimportant to the overall device MTTF. Assuming
that SEU cause only single bit errors, which is ensured by
proper layout then

CB

t
B
Mt

B
M

e
B
Me

tMTTF
⋅

⋅⋅−⋅⋅−

⋅⋅+

=
λλ

λ-1

 (5)

where t is the interval between scrubbing, C number of
memory arrays per die, λ is bit failure rate, M is the array size
in bits, and B is number of super-bundles in each memory. An
example MTTF for a bit failure rate of 0.01 FIT/bit, a die with
32 cores, where each core contains one 64kB SRAM data
array can be calculated. It is assumed that no code is being
executed between scrub cycles. In reality, normal code
execution would result in greatly reducing the effective scrub
time and consequently the SER. Even for a large scrubbing
interval of 1 day the MTTF is increased to well over 100,000
years assuming terrestrial neutrons cause all upsets.

The Hamming and Hsiao codes become slower and more
space efficient with increased bundle size. They fit well with
the relatively long latency requirements of L2 caches and are
thus commonly used. For L1 caches, which are usually byte
writable, traditional EDAC with byte-sized bundles is
sufficiently fast, but requires 62.5% area overhead.
Consequently, it is only used in concert with write buffering,
where larger bundles can be accommodated. The LEDAC
scheme proposed here has been shown to support the

necessary byte write granularity with a low area overhead of
approximately 12%. A multi-cycle read-modify-write is not
required. A single-cycle read-write is required, but has been
used in microprocessor L1 caches and is readily adaptable to
this purpose.

REFERENCES
[1] R. Baumann, “The Impact of Technology Scaling on soft Error Rate

Performance and Limits to the Efficacy of Error Correction”, IEDM
Tech. Dig., pp. 329- 332, 2002.

[2] H. Kobayashi, et al., “Comparison Between Neutron-Induced System-
SER and Accelerated-SER in SRAMs”, Proc. IRPS, pp. 288-293, 2004.

[3] D. Lambert, et al., “Neutron-Induced SEU in Bulk SRAMs in Terrestrial
Environment: Simulations and Experiments”, IEEE Trans. Nuc. Sci.,
51, 6, pp. 3435-3441, Dec. 2004.

[4] T. Granlund, B. Granbom, N. Olsson, “Soft Error Rate Increase for New
Generations of SRAMs”, IEEE Trans. Nuc. Sci., 50, 6, pp. 2065-2068,
Dec. 2003.

[5] Online: AMD Opteron Product Data Sheet, http://www.amd.com, June
2004.

[6] Online: Intel Pentium Processor Extreme Edition 840 Datasheet,
http://intel.com, April 2005.

[7] J. Tendler, et al., “POWER4 System Microarchitecture”, IBM J. Res. &
Dev., 46, 1, pp. 5-25, Jan 2002.

[8] N. Seifert, D. Moyer, N. Leland, R. Hokinson, “Historical Trend in
Alpha-particle induced soft Error Rates of the Alpha Microprocessor”,
Proc. IRPS, pp. 259-265, 2001.

[9] F. Ricci, et al., “A 1.5 GHz 90nm Embedded Microprocessor Core”,
Symp. VLSI Circ. Tech. Dig., pp. 12-15, 2005.

[10] P. Calingaert, “Two-Dimensional Parity Checking”, J. ACM, 8, 2, pp.
186-200, 1961.

[11] M. Hsiao, “A Class of Optimal Minimum Odd-weight-column SEC-
DEC Codes”, IBM J. Res. Dev., 14, pp. 395-401, July 1970.

[12] C. Chen, M. Hsiao, “Error-Correcting Codes for Semiconductor
Memory Applications: A State-of-the-Art Review”, IBM J. Res. & Dev.,
28, 2, pp. 124-134, Mar. 1984.

[13] L. Clark, et al., “An Embedded Microprocessor Core for High
Performance and Low Power Applications”, IEEE J. Solid-state
Circuits, 36, pp. 1599-1608, Nov. 2001.

[14] J. Maiz, S. Hareland, K. Zhang, P. Armstrong, “Characterization of
Multi-bit soft Error Events in Advanced SRAMs”, IEDM Tech. Dig.,
pp. 945-948, Dec., 2004.

a

a
c

b

b
d

b

b
d

a b
c d

a

a
c

c d dc

S
en

se
/w

rit
e

b3
1

S
en

se
/w

rit
e

b3
0

S
en

se
/w

rit
e

b2
9

S
en

se
/w

rit
e

b2
4

S
en

se
/w

rit
e

C
R

3

S
en

se
/w

rit
e

b2
3

S
en

se
/w

rit
e

b2
2

S
en

se
/w

rit
e

b2
1

S
en

se
/w

rit
e

b1
6

S
en

se
/w

rit
e

C
R

2

Row
0
1
2

N

CC0,col,,

3

CC1,col,,

N-1

Bits 31-24 CRrow,3 Bits 23-16 CRrow,2

Fig. 5. Layout with row and column interleaving. Bits a and b are in different words, as are bits c and d.

