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Abstract— The influence of interconnects on processor
performance and cost is becoming increasingly pronounced
with technology scaling. In this paper, we present a fast
compression scheme that exploits the spatial and temporal lo-
cality of addresses to dynamically compress them to different
extents depending upon the extent to which they match the
higher-order portions of recently-occurring addresses saved
in a very small “compression cache” of capacity less than
500 bits. When a maximal match occurs, the address is
compressed to the maximum extent and is transmitted on
a narrow bus in one cycle. When a partial match occurs, one
or more extra cycles are required for address transmission
depending upon the extent of the partial match. To mini-
mize this transmission cycle penalty (TCP), we use an efficient
algorithm to determine the optimal set of partial matches to
be supported in our partial match compression (PMC) scheme—
we refer to this scheme as performance-optimized PMC (PO-
PMC). A previously-proposed scheme called bus expander
(BE) supports only a single, fixed-size match for compression.
We show that all addresses that result in (maximal) matches
in BE also result in the same in PMC, but the remaining
addresses that are considered “no matches” in BE frequently
result in partial matches in PMC, thus helping curtail
the latter’s TCP significantly. Across many SPEC CPU2000
integer and floating-point benchmarks, we find that average
program performance improves by 3% when using PO-PMC
compared to that when using BE. Further, we investigate how
area slack arising from compression can be exploited for bus
latency improvement by increasing inter-wire spacing. We
find that, on the average, it can reduce bus latency by up to
84.63% and thereby improve program performance by about
16%.

I. INTRODUCTION

Since on-chip wiring complexity grows exponentially
with gate count, chip design is becoming increasingly
interconnect-centric with technology scaling. Trends also
show that IC pin count is growing at 8% to 11% per
year, necessitating more and more on-chip I/O pads,
which makes die area pad-limited [1]. Further, wire
delays are severely limiting the use of higher clock
frequencies in high-performance designs. For instance,
in the Pentium 4 microprocessor, designers found that
inter-wire capacitive coupling in global wires limited the
clock frequency by 50 MHz from the maximum possible
for that technology (0.18 µm) [2]. Also, in the Pentium
4 microarchitecture, two out of twenty pipeline stages

are devoted exclusively to carrying signals on buses [3].
Thus, wires pose major performance and cost problems
as technology scales. This will be more so in the future.

Various approaches have been adopted at different
levels of abstraction to keep problems due to wire delay
in check. Some of them include: new materials such
as copper interconnect and low-K dielectric insulators;
high-aspect ratio (tall and thin) wires at the process level;
use of timing- instead of area-driven routing algorithms
at the layout level; and repeater and flip-flop insertion
and simultaneous wire and driver sizing at the circuit
level. But, in spite of applying these techniques, wires
still pose a major problem for current designs [4]. An
effective solution to alleviate these problems may be to
consider microarchitecture-level techniques which pro-
vide more room for optimization. This paper explores
such an approach in which addresses are dynamically
compressed and transmitted on narrower buses and area
slack arising from compression is exploited to improve
bus latency by increasing inter-wire spacing. Conse-
quently, interconnect cost and interconnect and program
performance can simultaneously improve.

The organization of the rest of this paper is as follows.
We review related work and outline our contributions
in Sec. II. Next, in Sec. III, we discuss our proposed
technique and its optimization. Then, in Sec. IV, we
describe our simulation environment and methodology.
In Sec. V, we present results and discussions. Following
that, we briefly discuss compression and decompression
latency issues in Sec. VI. Finally, we conclude in Sec. VII.

II. RELATED WORK

Address buses have been studied widely in previ-
ous work and schemes have been proposed to reduce
their energy and/or area/cost. The dynamic compres-
sion schemes dynamic base register caching (DBRC)
and bus expander (BE) were first proposed in [5], [6].
They use small compression caches at the sending end
and register files at the receiving end of a processor-
to-memory address bus and were meant to reduce off-
chip bus widths and pin counts. They were subsequently
used for compressing instruction and data buses in [7].
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A recent attempt at using compression to reduce on-chip
wire delay was presented in [8]. However, in that work,
wire delay reduction was treated in an ad hoc manner
and performance impact was estimated with first-order
approximation and not using simulations [8]. Most re-
cently, a comprehensive analysis and comparison results
for DBRC and BE, from the perspective of optimizing
performance, energy, and cost, were presented in [9].
Also, a number of techniques that can be used with
BE for address buses to improve energy efficiency when
transmitting compressed addresses over narrower-width
buses were presented in [10].

A. Contributions

In this paper, we present a fast compression scheme
that exploits the spatial and temporal locality of ad-
dresses to dynamically compress them to different ex-
tents depending upon the extent to which they match
the higher-order portions of recently-occurring addresses
saved in a very small “compression cache” of capacity
less than 500 bits. To minimize the transmission cycle
penalty (TCP) that results when a maximal match does
not occur, we use an efficient algorithm to determine
the optimal set of partial matches to be supported in
our partial match compression (PMC) scheme—we refer
to this scheme as performance-optimized PMC (PO-PMC).
We show that all addresses that result in (maximal)
matches in BE also result in the same in PMC, but the
remaining addresses that are considered “no matches”
in BE frequently result in partial matches in PMC, thus
helping curtail the latter’s TCP significantly. Further, we
investigate how area slack arising from compression can
be exploited for bus latency improvement by increasing
inter-wire spacing. Thus by using a combination of
compression and wire spacing, interconnect cost and
interconnect and program performance can be simul-
taneously improved. Our work is perhaps the first to
examine the impact of compression and wire spacing on
overall program performance using a realistic simulator
and real-world benchmark programs.

III. PARTIAL MATCH COMPRESSION AND ITS
PERFORMANCE OPTIMIZATION

In the next subsection, we first describe how bus com-
pression works and discuss the shortcomings of existing
schemes in order to motivate our new techniques which
will be discussed after that. The details of previous bus
compression techniques can be found in [5], [6], [9], [10].

A. Limitations of Previous Bus Compression Schemes

The structure and working of a dynamic bus compres-
sion technique, such as BE, is explained next. As shown
in Fig. 1(a), the higher-order portion of an address is
compressed by the compressor which is implemented
as a small compression cache. The lower-order portion,
which is not very compressible due to its highly-varying

nature (U field in Fig. 1(b)), is transmitted as is on the
compressed bus. The width of the compressed bus is
equal to the width of the compressed address. At the re-
ceiving end, the original address is retrieved by looking
up a register file present in the decompresser hardware.
The small compression cache stores the higher-order
portion, called tag field (T field in Fig. 1(b)), of recently
transmitted addresses in its tag-RAM.

To compress addresses, a set of bits from the incoming
address, called the index (I field in Fig. 1(b)), is used to
search the compression cache. Note that, in this paper,
we always refer to tag and index fields for the compres-
sion cache, and this is not related to the tag and index
fields of conventional (L1 or L2) caches in the memory
system. If the compression cache is a-way set-associative,
then one of a tags stored in the set indexed by the I field
can potentially fully match the tag from the incoming
address, and provide the way bits (W field in Fig. 1(b)).

In the case of a hit, the I and W fields, along with the
hit control bit (the 1-bit CH field in Fig. 1(b)), which is 1
for a hit, and the U field will form a compressed address
with a combined bit width less than the original. The
compressed bus width is equal to the sum of the widths
of the CH, I, W, and U fields. So in the hit case, there is
no performance penalty due to the transmission of the
compressed address. In case of a miss at the sending
end in the compression cache, the tag corresponding to
the least recently used (LRU) entry in the set indexed by
the I field is replaced by the tag of the new address.
The CH field, which is 0 for a miss, and the entire
address (starting from the higher-order to lower-order
bits), which is wider than the compressed bus width, is
transmitted in more than one cycle. The decompresser
will be updated at the receiving end accordingly. The
miss in the compression cache causes transmission cycle
penalty for transmission because extra cycles will be
needed for transferring the control bits and also the
entire address.
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Fig. 1. Bus Compression Scheme: (a) General organization of a
bus compression scheme. (b) Figure depicting how compressed
addresses are formed.

In our earlier work, we applied BE to the L1→L2 ad-
dress bus with the simulation setup described in Sec. IV



and reported the optimal compression cache parameters
and proposed a number of transmission techniques to
improve the original BE address compression scheme
by considering trade-offs between performance, on-chip
and off-chip energy consumption, and cost [9], [10]. We
shall refer to this as optimized BE (O-BE) and will use
it as the basis for comparison. The L1→L2 address bus
considered for compression has an uncompressed width
of 38 bits. Results for optimized BE are summarized in
Table I. Results for three categories of bus widths were
reported: narrow (compressed buses with 8, 10, or 12
lines), medium (compressed buses with 14 to 16 lines),
and wide (compressed buses with 19 to 32 lines). The
same compression cache parameters will be used in our
experiments to collect comparison results.

B. Partial Match Address Compression

In this subsection, we describe the partial match com-
pression (PMC) scheme [11]. As the name suggests, par-
tial matches are allowed in the compression cache. Thus,
the longest match between the tag portion stored in the
compression cache and the tag portion of the incoming
address is used for compression. Since there is more
redundancy in the higher-order portion of the address,
k possible groups of bits, ending at the most significant
bit (MSB) of the incoming address, are considered as
candidates for partial match (shown in Fig. 2 as partition
1, partition 2, and partition 3, for k = 3). Note that
partition 0 corresponds to complete hit (or the hit case
in BE) and partition k + 1 corresponds to complete miss
(or the miss case in BE). There are three main hit/miss
cases in PMC as explained next.

1) Complete hit: If the tag matches fully, PMC per-
forms exactly the same as the BE scheme studied
in prior work [7], [9], [10]. The hit control bit CH is
set 1 to indicate a complete hit. If not, it is set 0.

2) Partial hit: If a partial match in any of the k
groups occurs, the partial match control bit pattern
corresponding to the longest match is transmitted
to indicate a partial hit. For example, when k = 3,
partial match control bit pattern C1C0 will be 00, 01,
or 10 for partition 1 hit, partition 2 hit, or partition
3 hit, respectively. The remaining portion of the
higher-order part of the address (that did not match
the tag), Tmiss, is sent in uncompressed form as
is the lower-order portion of the address. In this
case, less bits are transmitted over the compressed
bus than would have been in optimized BE; this
reduces the transmission cycle penalty.

3) Complete miss: In case of a complete miss in
PMC compression cache, when none of the partial
matches succeed, the entire address is sent along
with the control bits CH and C1C0 = 11. Even
though more bits need to be transferred in PMC
than in the case of optimized BE—due to the partial

match control bits for indicating a complete miss—
the performance will not be affected much because
the number of complete misses will be much less
in PMC than in the case of optimized BE.

It is to be noted that PMC cache’s tag field is updated
whenever complete matches do not occur, which is
the same as in the BE compression cache. So the tags
stored in PMC and optimized BE compression caches
are identical when running the same program. Hence,
the compression cache power consumption and latencies
are also likely to be identical for similar-sized units.
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Fig. 2. Partial Match Address Compression.

C. Optimizing Performance

In this subsection, we discuss how we partition the
tag field to obtain the best performance. For performance
optimized partial match compression (PO-PMC), less cy-
cles required for transmitting an address will lead to less
performance penalty. Therefore, in PO-PMC, we choose
a combination of partitions that minimizes the average
transmission cycle penalty (ATCP) across n benchmark
programs, which is given by:

ATCP =
∑n

i=1 CTCPi

n
;

here, CTCPi is the transmission cycle penalty for a
combination of partitions for benchmark program i. For
a combination of k partitions for any benchmark:

CTCP =
k+1∑

j=1

(TCPj × MFj),

where TCPj is the transmission cycle penalty for the
jth partition (i.e., the number of extra cycles required
for transmission due to partial hit or complete miss,
including the unmatched tag portion and control bits)
and MFj is the match frequency for the jth partition—
partitions are numbered from 0 (corresponding to the
complete hit case and the largest partition with width



TABLE I
COMPRESSION CACHES AND COMPRESSED BUSES FOR ADDRESS COMPRESSION USING BE SCHEME. ALL COMPRESSION

CACHES ARE 2-WAY SET-ASSOCIATIVE.

Compressed Bus Width (Original Address Width: 38 bits)
Narrow Medium Wide

8 10 12 14 16 20 24 28 32
Index (I field) (bits) 1 2 3 2 2 1 1 1 1
Tag (T field) (bits) 32 30 28 26 24 20 16 12 8
Miss Rate 0.39 0.28 0.21 0.15 0.10 0.00 0.00 0.00 0.00
Miss Penalty (cycles) 4 3 3 2 2 1 1 1 1
Perf. Penalty(%) 4.98 2.34 1.62 0.83 0.46 0.07 0.00 0.0 0.0
Comp. Cache Size (bits) 156 256 480 224 208 88 72 56 40

equal to the tag field width) to k + 1 (corresponding
to the complete miss case and the smallest partition
with width equal to 0) as shown in Fig. 2. In order
to determine the optimal combination of partitions to
use in PO-PMC for a given compressed bus width, we
consider all possible values for the number of partitions
k. For each value of k, the TCP value for any partition
can be easily determined based on the number of extra
bits to be transmitted in case of a partial match at that
partition—these bits are the unmatched tag bits and the
extra control bits. The only other set of values needed
to determine the combination of partitions to use in PO-
PMC are the partition MF values; the way we determine
these is discussed next.

Let the jth partition’s least significant bit (LSB) posi-
tion within the tag be denoted by LSBj ; in this discus-
sion, LSB positions of partitions are given relative to the
LSB of the tag field, which mean LSB0 = 0. It is clear
that MFj depends upon both LSBj and LSBj−1, since
only those PMC cache references that do not result in a
match in the (j−1)th or earlier partition may result in a
match at the jth partition. To determine the MF values
of partitions in a general implementation of PMC, we
consider and simulate a special “maximal” partitioning
scenario in PMC in which there are as many partitions
as possible, i.e., partition j is one bit wider than partition
j + 1 and the number of partitions (including complete
hit and complete miss cases) is equal to one more than
the width of the tag field; this version of PMC is de-
noted as MAX-PMC. From this simulation, we obtain the
match frequencies of all possible partitions and denote
the match frequency—referred to as individual match
frequency in this special maximal partitioning scenario—
of the jth partition as IMFj . Once the IMF values are
obtained from MAX-PMC, the MF value of the jth
partition in a general implementation of PMC can be
determined from:

MFj =
LSBj∑

l=LSBj−1+1

IMFl,

where IMFl is the individual match frequency of the
partition starting at the lth bit and ending at MSB of the
tag in MAX-PMC. If the entire tag field in the current

address hits in the PMC cache, it is a complete hit. If the
matching length is greater than 0 and less than the tag
field width, it is a partial hit. In the partial hit case, out
of all entries in a set pointed to by the address index,
the entry that has the longest matching length is the hit
entry. If the matching length is 0, it is a complete miss.
For example, Fig. 3 lists the IMFs and TCPs of all possible
partitions for an 8-bit compressed bus for MAX-PMC.

We can see why PO-PMC can achieve lower miss rate
and transmission cycle penalty compared to O-BE. In
a scheme like DBRC, BE, or O-BE, there are only two
outcomes for a compression cache lookup: hit and miss.
So even if the tag field from the incoming address and
the stored tag differ in one bit, a miss occurs and the
entire tag field will be transmitted over the compressed
bus in multiple cycles. In PO-PMC, only the unmatched
tag bits need to be transferred if a partial hit occurs
during the lookup, and this reduces the number of extra
bits needed to be transferred. For example, for the 8-
bit compressed bus, in which the higher-order 32 bits
are used as tag for compression, the complete hit rate
(column labeled 0th in Fig. 3) is 68.15% for both O-BE
and PO-PMC, which means the complete miss rate for
O-BE is 31.85%. However, in PMC, if LSB1 = 1, 9% of the
misses in O-BE can be eliminated by partial hit at the first
partition (IMF1 = 2.83% in column labeled 1st in Fig. 3),
and if LSB1 = 5, 30% of the misses can be eliminated by
partial hit at the first partition (

∑5
l=1 IMFl = 2.83% +

1.95% + 1.39% + 1.56% + 1.98% = 9.71% in columns
labeled 1st, 2nd, 3rd, 4th, and 5th in Fig. 3). As is evident
from Fig. 3, a complete miss will be a very unlikely event
when partial hits are considered. Therefore, if PMC is
applied with LSB1 = 5, just 5 tag bits and control bits
need to be transferred for 30% of the complete misses
in O-BE, which is much fewer than the original tag field
width of 32 bits.

We devised an efficient algorithm to determine the
optimal combination of partitions to minimize ATCP
in PO-PMC. Table II lists partitions, their LSBs, and
corresponding transmission cycle penalties for each com-
pressed bus width for which we obtained performance-
optimized designs.



TABLE II
PARTITION POINTS FOR PO-PMC: LSB IS THE PERFORMANCE-OPTIMIZED PARTITION LSB. TCP IS THE TRANSMISSION CYCLE

PENALTY THAT IS INCURRED IN THE CASE OF PARTIAL HIT/MISS.

Compressed bus width (bits) [Bus cost savings] [Tag width] (bits)
Original bus width: 38 bits

8 [79%] [32] 10 [74%] [30] 12 [68%] [28] 14 [63%] [26] 16 [58%] [24]
LSB TCP LSB TCP LSB TCP LSB TCP LSB TCP
6th 2 9th 2 11th 2 13th 2 15th 2
14th 3 18th 3 28th 4 26th 3 24th 3
22nd 4 30th 5 - - - - - -
32nd 6 - - - - - - - -
18 [53%] [22] 19 [50%] [21] 20 [47%] [20] 24 [37%] [16] 32 [16%] [8]
LSB TCP LSB TCP LSB TCP LSB TCP LSB TCP
17th 2 18th 2 20th 2 16th 2 8th 2
22nd 3 21st 3 - - - - - -

LSB 0th 1st 2nd 3rd 4th 5th 6th 7th 8th

IMF 68.15% 2.83% 1.95% 1.39% 1.56% 1.98% 2.42% 2.95% 2.56%

TCP 0 1 1 1 1 1 1 1 1

LSB 9th 10th 11th 12th 13th 14th 15th 16th 17th

IMF 4.05% 6.23% 1.95% 1.11% 0.43% 0.00% 0.00% 0.19% 0.00%

TCP 2 2 2 2 22 2 2 2 3

LSB 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

IMF 0.00% 0.00% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00%
TCP 3 3 3 3 3 3 3 4 4

LSB 27th 28th 29th 30th 31st 32nd

IMF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
TCP 4 4 4 4 4 5

32-bit Tag Field

(Compressed Bus Width: 8 bits; Bus Cost Savings: 79%)

Fig. 3. Individual Match Frequencies and Transmission Cycle
Penalties for All Partitions in MAX-PMC. LSB refers to the
position of the LSB of a partition. In MAX-PMC, LSB of the
jth partition is j. TCP refers to the transmission cycle penalty
for a partition.

IV. METHODOLOGY

We used sim-alpha, the validated Alpha 21264 simula-
tor based on the SimpleScalar tool, as the platform for
our experiments [12] and benchmarks from the SPEC
CPU2000 suite. We ran the benchmark programs using
reference input sets provided with the SPEC2000 suite
and to limit the execution times of our simulations we
used a methodology similar to the one described by
Skadron, et al. [13]. Their research shows that accurate
simulation results can be obtained by avoiding unrepre-
sentative behavior at the beginning of a benchmark pro-
gram’s execution and by using a single, short simulation
window of 50 million instructions. In our experiments,
we simulate (but do not collect results for) instructions
before the representative segment (warm-up window)
and use a sampling window of 50 million instructions to
collect our results. The sizes of the warm-up windows
are also different for different SPEC programs [13]. We
simulated address compression and transmission and
collected performance and bus energy results for 50

million committed instructions for 7 integer benchmarks
and 7 floating-point benchmarks randomly chosen from
the SPEC CPU2000 suite: gcc, gzip, parser, vpr, twolf, mcf ,
crafty, applu, swim, wupwise, lucas, art, ammp, and equake.

We implemented our bus compression scheme for the
38-bit address bus between the L1 and L2 caches, in a
memory hierarchy with two levels of caches and a main
memory. In our simulated system, the L1→L2 address
bus carries physical addresses and both instruction and
data addresses are carried on the same bus. In order
to compare our design with optimized BE, we used
the optimal compression cache parameters from our
earlier work [9], summarized in Table I, for different
compressed buses ranging from 8 to 32 bits.

The execution time of a benchmark program running
on the target system was collected in terms of processor
cycles. Since we used an execution-driven simulator,
our calculation of performance included any latencies
due to pipeline stalls too and not just the latencies
due to address transmission. We report the performance
improvement (PI) for n benchmarks which is defined as
follows:

PI =
∑n

i=1(ti,O−BE − ti,PO−PMC)∑n
i=1 ti,O−BE

,

where ti,PO−PMC is the total time (processor cycles) for
execution of program i on the modified target system
with PO-PMC and ti,O−BE is the total time for execution
of the same program on the target system with O-BE.

A. Delay Model

Next, we describe the wire delay model used in this
work. Delay characteristics of buses depend on self and
coupling transitions occurring in individual wires and
pairs of adjacent wires, respectively, constituting the
bus. Self transitions are of two types: charge (0 → 1)
and discharge (1 → 0), and coupling transitions in a
pair of adjacent wires are of three types: coupling charge



transitions (00 → 011, 00 → 10, 01 → 11, and 10 → 11),
coupling discharge transitions (01 → 00, 10 → 00, 11 → 01,
and 11 → 10), and toggle transitions (01 → 10 and
10 → 01).

Due to inter-wire capacitive coupling, the propagation
delay of the kth-wire in a bus, which is a function of
transitions in its neighboring wires k−1 and k+1, can be
expressed as follows [1]: tp,k = g ·Cw ·(0.38Rw +0.69RD),
where Cw is the self capacitance (capacitance to ground)
and Rw and RD are the resistances of the wire and
driver, respectively; g is the delay correction factor due
to crosstalk between adjacent wires separated by the
minimum spacing distance and is a function of the
capacitance ratio r = Cc/Cw and adjacent wire activity
(see Table III), where Cc is the coupling capacitance
between two adjacent wires.

TABLE III
WIRE DELAY CORRECTION FACTORS.

k − 1,k,k + 1 Delay factor (g)
↑,↑,↑ 1
↑,↑,– 1+r
↑,↑,↓ 1+2r
–,↑,– 1+2r
–,↑,↓ 1+3r
↓,↑,↓ 1+4r

Note that the value of r depends on technology and
the layer of metal being considered. For our simulations,
we used r ≈ 5 which was obtained for topmost metal
layer (M6) in TSMC 0.18 µm technology considering the
substrate layer as the ground plane. The effect of non-
standard wire spacings can be captured in the above
model by introducing a spacing correction factor for r in
the above equations and Table III. Thus, if v0 is the
minimum allowable spacing between two wires and v
is the new spacing (v ≥ v0), then the new capacitance
ratio will be: r · ( v0

v ). In this case, the worst-case delay
of a wire (which occurs when there are toggles on both
adjacent coupling capacitances of the wire–bottommost
row in Table III) will improve by a factor of 1+4r

1+4r·( v0
v )

.

V. RESULTS AND DISCUSSION

In this section we present results showing how PO-
PMC performs compared to bus expander proposed in
prior work.

A. Performance Comparison of PO-PMC and O-BE

We report the transmission cycle penalties incurred
during O-BE and PO-PMC address compression to facil-
itate a side-by-side comparison. Since there are several
partitions in PO-PMC, as listed in Table II, the PO-
PMC transmission cycle penalty is calculated as the
weighted average of the cycle penalties of all partitions

1For two lines i and j, this notation represents the transition:
V initial

i V initial
j → V final

i V final
j .

(the weights depending upon the frequencies of different
partial hits) for a given bus width. As shown in Fig. 4(a),
compared to O-BE, the transmission cycle penalty can
be reduced by 50%-66% with PO-PMC, especially for
narrower compressed buses. Next, in Fig. 4(b), we show
the average percentage of extra cycles taken to complete
program execution for O-BE and PO-PMC compared to
that for the original default system without compres-
sion for different bus widths. Again, as we see, the
performance overhead due to compression reduces sig-
nificantly (0.13% – 3.13%) by using PO-PMC instead of
O-BE, especially at narrower bus widths. Since, there was
not much improvement for wider compressed buses,
these results are not shown. This is expected since PO-
PMC is designed for improving compression cache per-
formance for narrower compressed buses for which O-
BE’s miss rates are significant.

B. Bus Latency vs. Bus Area

Using compressed buses grants an extra degree of
freedom while performing global wire routing for high-
performance designs. Common optimizations like net
shielding (inserting power or ground wires on both sides
to protect a wire on the critical path from inter-wire cou-
plings) and soft spacing (a technique that automatically
maximizes spacing between tightly packed wires within
given area constraints) can be greatly facilitated by using
compressed buses. Such optimizations go a long way in
achieving signal integrity and timing closure in current
nanometer designs [4]. Although these techniques have
been used in the VLSI design community for a long time,
our work is the first to examine their implications in
the context of compressed buses. In the simplest appli-
cation of wire spacing in bus compression, the individual
wires can be spaced further apart while maintaining
the same area footprint as the original bus. Due to
the increased inter-wire distance, coupling capacitances
will have lower values. Also, wire spacing involves no
additional cost.

The reduction in peak crosstalk delay (bus latency)
with wire spacing applied is plotted for different com-
pressed bus widths in Fig. 5. The bus delay model
described in Sec. IV-A was used. In Fig. 5, the vertical
bars denote wire delay ratios for the compressed bus
using the proposed PO-PMC compression scheme and
the x-axis labels (20%, 30%, . . ., 100%) denote how much
of the area footprint of the original bus is used for
the compressed bus as a whole (100% means that the
original and the compressed buses occupy the same total
routing area). Since the delay ratio for the compressed
bus with minimum spacing is unity, it is not reported
in this figure. The results for all compressed buses
we considered, 8-bit, 10-bit, 12-bit, 14-bit, 16-bit, 19-bit,
20-bit, 24-bit, and 32-bit, show that bus delay can be
reduced, on the average, when the original bus area is
used to do wire spacing, by about 84.63% for narrow
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Fig. 4. Performance Comparison of PO-PMC and O-BE Address Compression Across Different Bus Widths: (a) Average
transmission cycle penalty. (b) Average extra cycle penalty.
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address bus is assumed to have a latency of i CPU cycles in the default system without compression and j CPU cycles for the
compressed bus in the target system with PO-PMC based on the wire delay ratio.)

(8 to 12 bits) buses, 75.18% for medium (14 to 16 bits)
buses, and by about 52.80% for wide (19 to 32 bits)
compressed buses using PO-PMC with wire spacing. A
maximum of 88% bus delay reduction can be obtained
for an 8-bit bus. Fig. 5(b) shows the performance im-
provement that is obtained when PO-PMC with wire
spacing (corresponding to “100%” in Fig. 5(a) is used.
If the entire area footprint of the original bus is used
to increase wire spacing, on the average, performance
can be improved by up to 16% compared to the default
system without any compression (e.g., for compressed
bus width equal to 12 in Fig. 5(b)). Here, the L1→L2
address bus is assumed to have a latency of i CPU cycles
in the default system without compression and j CPU

cycles for the compressed bus based on the delay ratio
for the bus width in Fig. 5 when PO-PMC is used.

VI. COMPRESSION AND DECOMPRESSION LATENCIES

When compression/decompression schemes are used
in buses, a major concern is the impact on latency. We
explain next why compression/decompression latencies
will be minimal and may even be lower than bus en-
coding/decoding latencies in actual design. We use the
simplest low power encoding scheme, bus-invert (BI)
[14], as a representative scheme to justify this. In BI,
encoding consists of three steps. First, the Hamming
distance is computed. This step requires a constant time
operation for bitwise XOR and O(m) to O(log m) time



for counting transitions depending upon the counter
structure used, where m is the number of bits in the
address. In the second step, the Hamming distance is
compared with m

2 to check which is greater; this can be
completed in O(m) to O(log m) time, again depending
on the hardware structure used. Finally, the current
pattern is inverted or sent as-is and this takes constant
time. Thus, BI encoding takes at least O(log m) time.
In contrast, our optimized address compression scheme,
which uses a 480-bit compression cache, has an access
latency of well under one cycle according to CACTI
estimates [15]. Hence, compression schemes are more
performance-efficient compared to encoding.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented techniques to help re-
duce the growing impact of interconnects on wire delay
and cost of systems. By using a new performance-
optimized partial-match compression (PO-PMC) tech-
nique that uses a small cache of size not bigger than
500 bits at the sending end and registers at the re-
ceiving end, we compress addresses dynamically. This
helps reduce the number of on-chip address-carrying
lines significantly. In order to achieve best performance,
we devised an efficient partitioning algorithm for our
compression scheme, called Min-ATCP, which takes all
possible partial match cases into account and provides
the best partial match partition solution for performance
optimization. We showed that compression cache miss
rate, wire delay, and costs can also be reduced signif-
icantly using our technique. Compared to BE, average
program performance can be improved by up to 3%
when addresses are compressed with our technique. We
also investigated wire spacing to exploit the area slack
created due to compression, and found that, on the
average, it can reduce bus latencies by up to 84.63% and
consequently improve program performance by about
16%.

The PO-PMC scheme presented in this work is some-
what tailored to address buses. However, the scheme
can be modified and applied to instruction and data
buses, too. We chose to apply our scheme only to address
buses in this work to demonstrate its effectiveness and
the utility of our methodology. Even otherwise, schemes
proposed in this work are applicable to instruction and
data buses. Also, even better results can be obtained
if PO-PMC can be tailored to the characteristics of the
information streams that it operates on. In future work,
we intend to develop such schemes for instruction and
data buses.
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