
Improving Scalability and Complexity of Dynamic
Scheduler through Wakeup-based Scheduling

Kuo-Su Hsiao and Chung-Ho Chen

Department of Electrical Engineering, National Cheng Kung University
No.1, Ta-Hsueh Road, Tainan 701, Taiwan

newjimmy@ee.ncku.edu.tw, chchen@mail.ncku.edu.tw

Abstract
This paper presents a new scheduling technique to improve

the speed, power, and scalability of a dynamic scheduler. In a
high-performance superscalar processor, the instruction
scheduler comes with poor scalability and high complexity due
to the inefficient and costly instruction wakeup operation. From
simulation-based analyses, we find that 98% of the wakeup
activities are useless in the conventional wakeup logic. These
useless activities consume a lot of power and slowdown the
scheduling speed. To address this problem, the proposed
technique schedules the instructions into the segmented issue
window based on their wakeup addresses. During the wakeup
process, the wakeup operation is only performed in the segment
selected by the wakeup address of the result tag. The other
segments are excluded from the wakeup operation to reduce the
useless wakeup activities. The experimental results show that the
proposed technique saves 50-61% of the power consumption,
reduces 42-76% in the wakeup latency compared to the
conventional design.

1. Introduction

The power consumption and latency of a dynamic
scheduler are two of the important issues for designing high
performance microprocessors. The wakeup logic contributes
the most limiting factors to the dynamic scheduler. In the
dynamic scheduler, the wakeup logic traces the instruction
dependence and wakes the instructions up when their source
operands become available.

In current schedulers, the wakeup logic is implemented by
using the content-addressable memory (CAM) that fully
matches all the source tags in the issue window with the
result tags. However, the CAM structures result in large
power consumption and long wakeup latency due to
considerable circuit activities and heavy load capacitance.

In an effort to extract more instruction level parallelism,
scheduler designs often employ a larger window and
aggressive issue width. In other words, scheduler designs
employ accordingly larger and more complex wakeup logic
that deteriorates the power consumption and wakeup latency.

For the scheduling speed, the complexity of the wakeup
logic leads to the major critical path, which limits the clock
cycle time, of the pipeline stages. Although a pipelined
dynamic scheduler can increase the clock frequency, the
operations of instruction wakeup and instruction selection
should be an atomic operation to avoid significant
performance degradation. Recent study has shown that the
latencies associated with the wakeup and selection form the

critical path of the pipeline stages [1]. The wakeup latency
increases significantly with both the issue width and window
size, and the wakeup logic dominates the latency for the
scheduler [1]. Increasing the window size will continue to
increase the burden to the clock cycle time.

As for the power consideration, the power consumption
associated with the CAM-based scheduler constitutes a
significant portion of the processor power consumption and
may lead to costly cooling system. For example, the issue
logic is the most power hungry component of the Compaq
Alpha 21464 processor; it is responsible for 46% of the total
processor power [2]. Similarly, the out-of-order scheduler of
the Intel Pentium 4 processor accounts for 40% of the total
power consumption [23]. The wakeup logic dominates the
most power consumption of the dynamic scheduler. As a
result, the wakeup logic not only slows down the clock speed
but also shifts more power budget to the scheduler.

Our analyses reveal that most wakeup activities are
unnecessary for the instruction wakeup operations. During
the wakeup process, 95% of the wakeup operations wake up
only two or less instruction(s) in the issue window as shown
in Figure 1. Clearly, most activities of the wakeup operations
are useless; however, these activities consume a lot of energy
and may lead to a slower clock cycle time.

In this paper, we propose a scheduling technique that
improves the power, speed, and scalability of the dynamic
scheduler. The proposed technique classifies the issue
window into multiple segments according to the wakeup
address, which is defined as the high-order bits of the source
tags or result tags. Each segment handles the wakeup
operations only for the instructions that have the same
wakeup address. The instructions that have the same wakeup
address are inserted into the same segment. During the
wakeup process, the result tag is only matched with the
source tags in the segment that is indexed by the wakeup
address of the result tag. The other segments are avoided

Figure 1: Number of instructions woken up per
wakeup operation in a 4-wide 128-entry processor.

60%
65%
70%
75%
80%
85%
90%
95%

100%

gz
ip vp

r
gcc mcf

pas
er

vo
rte

x
bzi

p2

wupw
ise

sw
im

mgri
d

app
lu

mesa art

eq
ua

ke
am

mp
ap

ic

Avera
ge

D
is

tri
bu

tio
n

of
 w

ak
eu

p
in

st
ru

ct
io

n 1 instruction 2 instructions 3 instructions 4 instructions 5 instructions+

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

from the costly wakeup operations.
The remainder of this paper is organized as follows.

Section 2 surveys the wakeup logic of the dynamic
schedulers used in superscalar processors and discusses the
related wakeup designs. Section 3 details the proposed
scheduling technique. Section 4 presents the experimental
methodology and the evaluation results. Finally, Section 5
concludes this paper.

2. Background

This section gives the background of the wakeup logics,
including the current design and related works.

2.1. Conventional Wakeup Logic

The wakeup logic of a dynamic scheduler is responsible for
handling the wakeup operations for the instructions in the
issue window. When an instruction is issued for execution, its
result (destination) tag is used to wake up the instructions that
need the result as their source operand.

The conventional implementation of wakeup logic is based
on the CAM structure [1]. This design employs two
monolithic CAM structures to match the result tags with the
left and right source tags. The nature of the CAM-based
wakeup logic is inefficient in terms of energy and latency.
The load capacitance on the tag bus line is heavy for driving
the long tag bus and all the match circuits of the CAM
structure. Additionally, all the match circuits are activated in
the wakeup operation no matter it is a match or not. As a
consequence, the tag driving and tag matching consume a lot
of energy and slow down the wakeup speed.

In an effort to improve the instructions per cycle (IPC),
scheduler designs often employ a larger window and
aggressive issue width. In other words, a larger window leads
to larger wakeup logic and this leads to heavier load
capacitances and more match activities. Wider issue width
leads to driving more tag buses into the wakeup logic. We
can see that increasing the window size and issue width leads
to larger power consumption and slower scheduling speed.
As a result, the scheduler can not scale well with the
increasing of window size and issue width.

2.2. Related Works

There have been many other efforts to reduce the
complexity of dynamic schedulers, many of which can be
used in combination with our proposed wakeup-based
scheduling.

The bank design in [1], which is most similar to our design,
segments the monolithic issue window into multiple banks to
improve wakeup delay; however the result tags still need to
be broadcast to all the banks. This design induces extra
wakeup delay and power consumption due to the additional
driver-transistors and tag buses.

Hrishikesh et al. proposed a pipelined-wakeup design that
segments the issue window and wakes up the instructions in

the segments in multiple sequential cycles [3]. Nonetheless,
all the segments stills need to be searched; besides the
dependent instructions can be issued back to back only if they
are in the first segment.

In [4], Folegnani and González presented a gate-off
technique that disables the useless (empty and ready) entries
of the issue window from tag matching. Besides, Ramirez et
al. proposed a similar gate-off mechanism based on a multi-
bank issue window to improve the power consumption of the
scheduler [5]. However, this mechanism employs an extra
large RAM structure that may slow down the wakeup speed.

Several approaches dynamically manage the sizes of the
issue window and turn off the useless entries [4] [6] [7] [8] [9]
[10]. These designs improve the power consumption of the
scheduler with extra dynamic managers that may complicate
the scheduler.

Ernst and Austin proposed a tag-elimination scheduler that
employs less tag comparators to reduce the complexity of the
scheduler. This scheduler also has a last tag speculator to
reduce the frequency of tag matching [11]. Based on the same
observation, Sharkey et al. presented an instruction-packing
technique. This technique schedules the two instructions,
which have only one non-available source operand, into the
same entry of issue window [12].

Kim and Lipasti proposed a sequential wakeup mechanism
to reduce the complexity of scheduler [13]. This mechanism
places the last-arrival operand into the fast wakeup logic and
wakes up the left and right source operands of an instruction
in two sequential steps. Besides, Aggarwal et al. proposed a
reduced wakeup width scheduler to reduce the complexity of
the scheduler by reducing the maximum number of input
result tags for the wakeup logic [14].

The wakeup-free schedulers [15] [16] predict the issue
latency of the instructions and then issue the instructions into
a FIFO-based issue queue. These schedulers replace the
complex wakeup logic with a simple FIFO queue. On the
other hand, Brown et al. presents the select-free scheduler
[17]. This scheduler removes the instruction-selection process
from the scheduling critical path.

Some works [18] [19] [20] employ two-level issue window
to reduce the complexity of the scheduler. The critical
instructions are dispatched to the small and first issue
window and the non-critical instructions, for example: the
instruction waiting for a load that misses in cache, are
dispatched to the large and slow window.

On the other hand, many wakeup designs employ the
custom components instead of the CAM structures. Goshima
et al. presented a wakeup design that uses bit matrix
structures [21]. Henry et al. presented a cyclic segmented
prefix (CSP) circuit to improve the performance of the
wakeup logic [22]. We presented a wakeup design, which
pre-decodes the source tags and matches the decoded outputs
directly with the grant lines, to improve the wakeup speed
and power consumption [23]. Ponomarev et al. used three
techniques, efficient comparators, 0-B encoding, and bitline
segmentation, to reduce the energy dissipation of the issue
window [24].

Several designs reduce issue logic complexity through
index-based techniques, using pointers to connect the

producer instructions and consumer instructions [25] [26]
[27]. Some works reduce the complexity of scheduler by pre-
scheduling dependent instructions into a data-flow based
issue window [28] [29] [30].

3. Wakeup-based Scheduling

The conventional wakeup design matches the result tags
with all the source tags in the issue window only to wakeup a
few instructions. It is inefficient in terms of both energy and
wakeup speed. To alleviate these useless wakeup operations,
the proposed technique schedules instructions into the issue
window based on the wakeup address, which is defined as the
high-order bits of the source tag or result tag. In this way,
during the wakeup process, the result tag is compared with
only the source tags that have the wakeup address the same as
the wakeup address of the result tag.

The structure of the proposed design is a multi-bank issue
window as shown in Figure 2. Each segment is assigned a
number as its wakeup address, and the wakeup logic in the
segment is the two CAM structures, which are used to handle
the wakeup operations for the left and right source operands.
To access the segments, the bits of the tag, source tag or
result tag, are divided into two parts: index (wakeup address)
and reduced tag. The index is the high-order bits of the tag
that are used to select a segment. The other part, reduced tag,
is the low-order bits of the tag that are used as input for the
wakeup logic.

In the example of Figure 2, the 16 segments are numbered
from 0-15 (0000-1111b) as their wakeup addresses. The four
high-order bits of the source (result) tag are used as the
wakeup address to index the segments. Since the high-order
bits of the source tag are used as the wakeup address, the tag
fields in the wakeup logic for storing the source tags can be
reduced to store only the four low-order bits of the source
tags. In the same way, the input (result tag) of the wakeup
logic is also reduced to the four low-order bits of the result
tags.

After rename, the instruction’s wakeup address is used as
index to select one of the segments. In the selected segment,
an entry of the wakeup logic is allocated for storing the four
low-order bits of the left and right source tags. In this way,
the instructions that have the same wakeup address are
dispatched to the same segment.

During the wakeup process, the wakeup operation is
performed only in the selected segment. The high-order bits
(wakeup address) of the result tag are used to select one of
the segments. The low-order bits of the result tag are used as
the input for the wakeup logic to match with the source tags
in this segment. The source tags in the other segments are not
involved in this wakeup operation.

While inserting instructions into the issue window, two
situations will lead to that the instruction can not be
dispatched to the selected segment. First, the instruction has
the two wakeup addresses that index to two different
segments. That is, the two wakeup addresses (high-order bits)
of the instruction’s left and right source operands are not
identical to each other. Second, the segment selected by the

wakeup address of the instruction is full; no more available
entry of this segment can be allocated for the incoming
instruction.

We employ an extra backup segment to handle these two
situations. The backup segment is the segment that employs
the conventional wakeup logic, of which the source tag fields
and the bit length of the input tag are not reduced. When the
scheduler encounters the instruction that has two different
wakeup addresses or the instruction that indexes to a full
segment, these instructions are inserted into the backup
segment. During the wakeup process, the backup segment is
always searched.

In addition, we employ a ready segment for the instructions
that come with both their two source operands available.
When instructions are inserted into the issue window, some
instructions have already both their left and right source
operands ready. These instructions are dispatched into the
ready segment. Since these instructions are ready for
execution, the source tags in the ready segment need not be
compared with the result tags during the wakeup process. If
there is no available entry for the incoming ready instruction,
the scheduler will assign this instruction to the other
segments or the backup segment.

Compared to the conventional design, the proposed design
has three major advantages: smaller load capacitance on the
tag buses, fewer match activities during the wakeup process,
and fewer bits for the source tag fields and the result tag
inputs. Another advantage of this design is the excellent
scalability. No matter what the issue window size is, the
wakeup operation is performed only in one segment and the
backup segment.

4. Experimental Evaluation and
Analysis

This section presents the experimental methodology and
discusses the results of performance, power consumption, and
latency for the proposed design and some related designs.

Index
<4>

Result (source) Tag

0000

<4>

0001

Wakeup
address

R-tag

1111

0001

Rdy LTag L <4>

Rdy LTag L <4>
= OR

= OR
Rdy R Tag R <4>

=OR

Rdy R Tag R <4>
=OR

Rdy LTag L <4>

Rdy LTag L <4>
= OR

= OR
Rdy R Tag R <4>

=OR

Rdy R Tag R <4>
=OR

Rdy LTag L <4>

Rdy LTag L <4>
= OR

= OR
Rdy R Tag R <4>

=OR

Rdy R Tag R <4>
=OR

...

Issue window

Figure 2: An example of the wakeup-based scheduling
design for a 256-entry window.

4.1. Experimental Methodology

The power consumption and IPC results of the evaluated
designs were obtained through architectural simulation,
which was conducted by using Wattch [31] and SimpleScalar
[32] toolsets. These execution-driven simulators simulate a
superscalar processor with two-level caches, branch
predictors, dynamic scheduler, and et al. by performing cycle
by cycle instruction-level simulation, including execution
down any speculative path until a branch misprediction is
detected.

Table 1 lists the architectural parameters for the 4-wide and
8-wide superscalar processors. In Wattch, the CAM cell of
the evaluated designs was based on the CAM model in [1].
The other configurations for the Wattch include 1GHz clock
frequency, 1.8V voltage, and 0.18µm technology process.

The simulation results were collected from seven integer
and nine floating point programs of the SPEC2000
benchmark suite. All the selected benchmark programs were
compiled with full optimization (-O4). The test input set was
used for the benchmark programs. The programs were fast-
forwarded the first 50 million instructions and the following
500 million instructions were simulated.

To understand the effects on the wakeup delay, the circuit
characteristics of the evaluated designs must be examined.
The circuit models were extended from the one proposed by
Ernst and Austin [11] and the timing results for the evaluated
designs were extracted by using the Avant! Hspice tool.
Finally, the CMOS transistors and wires were all conformed
to the parameters of the TSMC 0.18µm process.

4.2. Performance Comparison

Figure 3 presents the IPC results of the 4-wide and 8-wide
processors that employ different wakeup logics. These results
are normalized to the IPC of the baseline processor, which
employs the conventional wakeup logic.

The first two bars show the IPC drops of the tag
elimination design and the sequential wakeup design. The tag
elimination design, configured as 32 two-tag stations, 64 one-
tag stations, and 32 zero-tag stations for the 4-wide processor
and twice the stations for the 8-wide processor, loses 6% of
IPC on average. On the other hand, the IPC drop of the
sequential wakeup design is measured to be 6.5% in the 4-
wide processor and 12% in the 8-wide processor. Obviously,
waking instructions up in two sequential cycles induces non-
negligible performance degradation in the wide-issue and
large-window processor.

Table 1: Processor configurations.
 4-wide 8-wide

Out-of-order
Execution

4-wide fetch/issue/commit,
 128 RUU, 64 LSQ.

8-wide fetch/issue/commit,
 256 RUU, 128 LSQ.

Functional
units

4 IALU, 1 IMUL, 2 FALU, 1
FMUL, 2 LSU.

8 IALU, 2 IMUL, 4 FALU, 2
FMUL, 4 LSU.

L1 I-cache
L1 D-cache

4-way, 64KB, 32-byte line, 2-cycle latency.
4-way, 64KB, 32-byte line, 2-cycle latency.

L2 cache
TLB

4-way, 512KB, 64-byte line, 10-cycle latency.
4-way, 128-entry, 4KB page size.

Memory 64-bit wide, 75 cycle latency, 4-cycle burst.

Branch
predictor

Combination of bimodal (2k entries) and 2-level global predictor
(2k entries, 8-bit history), 1024-entry chooser, 1024-entry (4-way)
BTB, 16-entry RAS (return address stack), 8-cycle penalty.

Figure 3: The normalized performance of the evaluated designs for the 4-wide (upper part) and 8-wide (lower part)
processors.

6 0 %

6 5 %

7 0 %

7 5 %

8 0 %

8 5 %

9 0 %

9 5 %

10 0 %

g z ip vp r g cc m cf p ase r v or tex bz ip 2 w u pw ise s w im m g rid app lu m es a a rt eq u ake am m p ap ic av erage

T ag e l im in a tio n S eq w akeup W sche _16 x1 6 W sch e_16 x1 6-aged iss ue W s che_ 16 x24 W s che_ 8x3 2 W s che_8 x4 8

6 0 %

6 5 %

7 0 %

7 5 %

8 0 %

8 5 %

9 0 %

9 5 %

1 00 %

g z ip v pr g cc m cf pase r vo rtex bz ip 2 w u p w ise s w im m grid app lu m esa a rt equ ake am m p ap ic av e rage

T ag e l im in a tio n S eq w akeup W sch e_16 x8 W sch e_ 16 x8-ag ed is sue W sche_ 16 x12 W sche_ 8x 16 W sche_ 8x2 4

The other bars show the performance of the proposed
design in different configurations. The configuration “x × y”
indicates that this scheduler has x segments and each segment
consists of y entries. Besides, the backup window and the
ready window both have one fourth of x segments.

The performance degradation of the proposed design is
measured to be 2.5-5% for the 4-wide and 8-wide processors.
This slight IPC drop comes mainly from the issue policy used
in the proposed design in which the instruction order is not
maintained in the issue window and the select logic can not
do an age-based issue easily. Without complicating the select
logic, the instructions are issued based on the first-come first-
served policy in the proposed design. If the proposed design
employs an age-based issue policy, the performance
degradation can be decreased within 0.5% as shown in the
fourth bars. Besides, the last three bars show that enlarging
the capacity of the segments benefits only 1% performance
gain; this is because the performance degradation comes
mainly from the issue policy but not capacity conflict.

4.3. Power Consumption
Figure 4 presents the power consumption for the wakeup

logics in the 4-wide and 8-wide processors. The left most
bars show that the conventional wakeup design consumes a
lot of power due to the heavy load capacitance and the
surplus activities of the monolithic CAM structure.

The followed three bars show the power consumption for
the banked wakeup design. Overall, the banked design
improves the power consumption by reducing the load
capacitance of tag driving in the CAM structures. However,

the overhead for the extra tag line and driver transistors
becomes significant in the wider-banked design. This
overhead deteriorates 16% power consumption of the
conventional design in the 4-wide 16-bank issue window.

The power consumption of the tag elimination and
sequential wakeup designs is shown in the fifth and sixth bars.
The configuration of the tag elimination design is equivalent
to half of the entries of the conventional scheme; thus this
design saves 44-48% power consumption of the conventional
design. In contrast, although the sequential wakeup design
wakes up instructions in two phases, this design still drives
two monolithic CAM structures as the conventional design
does. It is measured that the sequential wakeup design
improves only 7-8% power consumption.

The power consumption of the proposed design with
different configurations is shown in the last four bars. It is
measured to be only 39-50% that of the conventional CAM
scheme. This excellent energy saving comes from the
wakeup-based scheduling. Most needless wakeup operations
are avoided; thus this design is highly efficient in terms of
energy usage. Obviously, the proposed design is more energy
saving than other designs.

4.4. Wakeup Latency

Figure 5 shows the wakeup latencies of the evaluated
wakeup designs. The wakeup latencies of the conventional
design are presented in the first bars. Compared to the
conventional design, the banked design improves 36-40%
wakeup latency in the 4-wide processor and improves 72-

Figure 4: Power consumption of the evaluated designs (w).

Figure 5: Wakeup latencies of different wakeup approaches (ns).

0

0.4

0.8

1.2

1.6

2

2.4
Po

w
er

 c
on

su
m

pt
io

n
(w

)

0

2

4

6

8

10

Po
w

er
 c

on
su

m
pt

io
n

(w
)

CAM

4-bank

8-bank

16-bank

Tag elimination

Seq wakeup

Wsche_16x8

Wsche_16x12

Wsche_8x16

Wsche_8x24

CAM

4-bank

8-bank

16-bank

Tag elimination

Seq wakeup

Wsche_16x16

Wsche_16x24

Wsche_8x32

Wsche_8x48

8-wide4-wide

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4-wide

W
ak

eu
p

de
la

y
(n

s)

CAM

4-bank

8-bank

16-bank

Tag elimination

Seq wakeup

Wsche_16x8

W sche_16x12

Wsche_8x16

Wsche_8x24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8-wide

W
ak

eu
p

de
la

y
(n

s)

CAM

4-bank

8-bank

16-bank

Tag elimination

Seq wakeup

Wsche_16x16

Wsche_16x24

Wsche_8x32

Wsche_8x48

77% wakeup latency in the 8-wide processor. This
improvement comes from that the smaller banked segments
performs wakeup operations in parallel. For the similar
reason, the tag elimination design improves 57% wakeup
latency of the conventional design for the 8-wide 256-entry
processor. In the 4-wide 128-entry processor, the
improvement is not as significant as that in the 8-wide
processor. In contrast to the banked design and tag
elimination design, the sequential wakeup design has almost
the same wakeup latency as that of the conventional design
because the critical path of the sequential wakeup design is
the same to that of the conventional design.

The proposed design also performs much faster than the
conventional design. Compared to the banked design, the
proposed design is measured to be 6% faster in both the 4-
wide and 8-wide processors. This advantage comes from that
only necessary segments are activated during the wakeup
process. Compared to the tag elimination design, the
proposed design is about 50% faster in the 8-wide processor.
We can observe that the proposed design suits for
sophisticated scheduler in the wide-issue large-window
processor.

5. Conclusion

The latency and power consumption of the dynamic
scheduler become the important problems for designing a
high-performance superscalar processor. Most of the latency
and power consumption of the scheduler result from the
complex wakeup logic. In this paper, we propose a wakeup-
based scheduler that schedules the instructions into the issue
window based on their wakeup addresses. During the wakeup
process, only the segment, which has the same wakeup
address of the result tags, is involved for wakeup operation.
This technique avoids most of the useless and inefficient
wakeup operations. The proposed design has the following
advantages: smaller load capacitance on the tag buses, fewer
match activities during wakeup process, reduced bit length of
tag fields and for the input of the wakeup logic. Another
advantage of this design is the excellent scalability. No matter
what the issue window size is, only one segment and the
backup segments are activated during the wakeup process.
The proposed design improves 50-61% power consumption
and 42-76% wakeup latency of the conventional design with
only 3-5% IPC degradation. In conclusion, the proposed
wakeup design removes the complexity from the dynamic
scheduler and enables the processor to employ a more
sophisticated scheduler.

Acknowledgments
This work was supported in part by the National Science

Council, Taiwan under Grant No. NSC 94-2220-E-006-008.

References
[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the

Complexity of Superscalar Processors,” University of Wisconsin-
Madison, Tech. Rep. CS-1328, May 1997.

[2] K. Wilcox and S. Manne. “Alpha processors: A history of power
issues and a look to the future,” Cool Chips Tutorial, 32nd Annu. Int.
Symp. Microarchitecture, Nov. 1999.

[3] M. S. Hrishikesh, N. P. Jouppi, and K. I. Farkas, “The optimal useful
logic depth per pipeline stages is 6-8 FO4,” in Proc. ISCA, May 2002,
pp. 14-24.

[4] D. Folegnani and A. Gonzalez, “Energy-Effective Issue Logic”, in
Proc. ISCA, Jul. 2001, pp. 230-239.

[5] M. A. Ramírez et al., "A Simple Low-Energy Instruction Wakeup
Mechanism," in International Symposium on High-Performance
Computing (ISHPC), Oct. 2003, pp. 99-112.

[6] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing Power
Requirements of Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources,” in Proc. MICRO, Dec.
2001, pp. 90-101.

[7] J. Abella and A. González, “Power-Aware Adaptive Issue Queue and
Register File,” in Proc. Int. Conf. High-Performance Computing
(HiPC), Dec. 2003.

[8] David H. Albonesi. “Dynamic IPC/Clock Rate Optimization,” in Proc.
ISCA, June 1998, pp. 282–292.

[9] A. Buyuktosunoglu et al., ”A Circuit Level Implementation of an
Adaptive Issue Queue for Poweraware microprocessors,” in Proc
GLVSLSI, Mar. 2001, pp. 73-83.

[10] S. Dropsho et al., “Integrating Adaptive On- Chip Storage Structures
for Reduced Dynamic Power,” in Proc. 11th Parallel Architectures
and Compilation Techniques, Sep. 2002, pp. 141-152.

[11] D. Ernst and T. M. Austin, “Efficient dynamic scheduling through tag
elimination,” in Proc. ISCA, May 2002, pp. 37-46.

[12] J. J. Sharkey et al., “Instruction packing: reducing power and delay of
the dynamic scheduling logic,” in Proc. ISLPED, Aug. 2005, pp. 30-
35.

[13] I. Kim and M. H. Lipasti, “Half-Price Architecture,” in Proc. ISCA,
Jun. 2003, pp. 28-38.

[14] A. Aggarwal, et al., “Defining Wakeup Width for Efficient Dynamic
Scheduling,” in Proc. ICCD, Oct. 2004, pp. 36-41.

[15] D. Ernst, A. Hamel, and T. Austin, “Cyclone: A Broadcast-Free
Dynamic Instruction Scheduler with Selective Replay,” in Proc.
ISCA, Jun. 2003, pp. 253-262.

[16] J. Hu, N. Vijaykrishnan, M. Irwin, “Exploring Wakeup-Free
Instruction Scheduling,” in Proc. HPCA, Feb. 2004, pp. 232-241.

[17] M. Brown, J. Stark, Y. Patt. “Select-Free Instruction Scheduling
Logic,” in Proc. MICRO, Dec. 2001, pp. 204-213.

[18] A.R. Lebeck et al., “A Large, Fast Instruction Window for Tolerating
Cache Misses,” in Proc. ISCA, May 2002, pp. 59-70.

[19] B. Fields, S. Rubin, and R. Bodík, “Focusing Processor Policies via
Critical-Path Prediction,” in Proc. ISCA, Jul. 2001, pp. 74-85.

[20] E. Brekelbaum et al., “Hierarchical Scheduling Windows,” in Proc.
MICRO, Nov. 2002, pp. 27-36.

[21] M. Goshima et al., “A High-Speed Dynamic Instruction Scheduling
Scheme for Superscalar Processors,” in Proc. MICRO, Dec. 2001, pp.
225-236.

[22] D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami, “Circuits for
Wide-Window Superscalar Processors,” in Proc. ISCA, Jun. 2000, pp.
236-247.

[23] K. S. Hsiao and C. H. Chen, "An Efficient Wakeup Design for
Energy Reduction in High-Performance Superscalar Processors," in
Int. Con. Computing Frontiers (CF), May 2005. pp. 353-360.

[24] D. V. Ponomarev et al., “Energy-Efficient Issue Queue Design,” in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, Oct. 2003, pp. 789-800.

[25] M. Huang, J. Renau, and J. Torrellas, “Energy-Efficient Hybrid
Wakeup Logic,” in Proc. ISLPED, Aug. 2002, pp. 196-201.

[26] R. Canal and A. González, “A Low-Complexity Issue Logic,” in Proc.
ICS, May 2000, pp. 327-335

[27] R. Canal and A. Gonzalez, “Reducing the Complexity of the Issue
Logic,” in Proc. ICS, Jun. 2001, pp. 312-320.

[28] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” in Proc. ISCA, Jun. 1997, pp. 206-218.

[29] P. Michaud and A. Seznec, “Data-flow prescheduling for large
instruction windows in out-of-order processors,” in Proc. HPCA, Jan.
2001, pp. 27-36.

[30] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A Scalable
Instruction Queue Design Using Dependence Chains,” in Proc. ISCA,
May 2002, pp. 318-329.

[31] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. ISCA,
Jun. 2000, pp. 83-94.

[32] D. Burger and T. M. Austin,”The SimpleScalar tool set, version 2.0,”
University of Wisconsin-Madison, Tech. Rep. CS-1342, Jun. 1997.

