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Abstract 
This paper presents a new scheduling technique to improve 

the speed, power, and scalability of a dynamic scheduler. In a 
high-performance superscalar processor, the instruction 
scheduler comes with poor scalability and high complexity due 
to the inefficient and costly instruction wakeup operation. From 
simulation-based analyses, we find that 98% of the wakeup 
activities are useless in the conventional wakeup logic. These 
useless activities consume a lot of power and slowdown the 
scheduling speed. To address this problem, the proposed 
technique schedules the instructions into the segmented issue 
window based on their wakeup addresses. During the wakeup 
process, the wakeup operation is only performed in the segment 
selected by the wakeup address of the result tag. The other 
segments are excluded from the wakeup operation to reduce the 
useless wakeup activities. The experimental results show that the 
proposed technique saves 50-61% of the power consumption, 
reduces 42-76% in the wakeup latency compared to the 
conventional design. 

1. Introduction 

The power consumption and latency of a dynamic 
scheduler are two of the important issues for designing high 
performance microprocessors. The wakeup logic contributes 
the most limiting factors to the dynamic scheduler. In the 
dynamic scheduler, the wakeup logic traces the instruction 
dependence and wakes the instructions up when their source 
operands become available.  

In current schedulers, the wakeup logic is implemented by 
using the content-addressable memory (CAM) that fully 
matches all the source tags in the issue window with the 
result tags. However, the CAM structures result in large 
power consumption and long wakeup latency due to 
considerable circuit activities and heavy load capacitance. 

In an effort to extract more instruction level parallelism, 
scheduler designs often employ a larger window and 
aggressive issue width. In other words, scheduler designs 
employ accordingly larger and more complex wakeup logic 
that deteriorates the power consumption and wakeup latency. 

For the scheduling speed, the complexity of the wakeup 
logic leads to the major critical path, which limits the clock 
cycle time, of the pipeline stages. Although a pipelined 
dynamic scheduler can increase the clock frequency, the 
operations of instruction wakeup and instruction selection 
should be an atomic operation to avoid significant 
performance degradation. Recent study has shown that the 
latencies associated with the wakeup and selection form the 

critical path of the pipeline stages [1]. The wakeup latency 
increases significantly with both the issue width and window 
size, and the wakeup logic dominates the latency for the 
scheduler [1]. Increasing the window size will continue to 
increase the burden to the clock cycle time. 

As for the power consideration, the power consumption 
associated with the CAM-based scheduler constitutes a 
significant portion of the processor power consumption and 
may lead to costly cooling system. For example, the issue 
logic is the most power hungry component of the Compaq 
Alpha 21464 processor; it is responsible for 46% of the total 
processor power [2]. Similarly, the out-of-order scheduler of 
the Intel Pentium 4 processor accounts for 40% of the total 
power consumption [23]. The wakeup logic dominates the 
most power consumption of the dynamic scheduler. As a 
result, the wakeup logic not only slows down the clock speed 
but also shifts more power budget to the scheduler.  

Our analyses reveal that most wakeup activities are 
unnecessary for the instruction wakeup operations. During 
the wakeup process, 95% of the wakeup operations wake up 
only two or less instruction(s) in the issue window as shown 
in Figure 1. Clearly, most activities of the wakeup operations 
are useless; however, these activities consume a lot of energy 
and may lead to a slower clock cycle time.  

In this paper, we propose a scheduling technique that 
improves the power, speed, and scalability of the dynamic 
scheduler. The proposed technique classifies the issue 
window into multiple segments according to the wakeup 
address, which is defined as the high-order bits of the source 
tags or result tags. Each segment handles the wakeup 
operations only for the instructions that have the same 
wakeup address. The instructions that have the same wakeup 
address are inserted into the same segment. During the 
wakeup process, the result tag is only matched with the 
source tags in the segment that is indexed by the wakeup 
address of the result tag. The other segments are avoided 

Figure 1: Number of instructions woken up per 
wakeup operation in a 4-wide 128-entry processor. 
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from the costly wakeup operations. 
The remainder of this paper is organized as follows. 

Section 2 surveys the wakeup logic of the dynamic 
schedulers used in superscalar processors and discusses the 
related wakeup designs. Section 3 details the proposed 
scheduling technique. Section 4 presents the experimental 
methodology and the evaluation results. Finally, Section 5 
concludes this paper. 

2. Background 

This section gives the background of the wakeup logics, 
including the current design and related works. 

2.1. Conventional Wakeup Logic 

The wakeup logic of a dynamic scheduler is responsible for 
handling the wakeup operations for the instructions in the 
issue window. When an instruction is issued for execution, its 
result (destination) tag is used to wake up the instructions that 
need the result as their source operand. 

The conventional implementation of wakeup logic is based 
on the CAM structure [1]. This design employs two 
monolithic CAM structures to match the result tags with the 
left and right source tags. The nature of the CAM-based 
wakeup logic is inefficient in terms of energy and latency. 
The load capacitance on the tag bus line is heavy for driving 
the long tag bus and all the match circuits of the CAM 
structure. Additionally, all the match circuits are activated in 
the wakeup operation no matter it is a match or not. As a 
consequence, the tag driving and tag matching consume a lot 
of energy and slow down the wakeup speed. 

In an effort to improve the instructions per cycle (IPC), 
scheduler designs often employ a larger window and 
aggressive issue width. In other words, a larger window leads 
to larger wakeup logic and this leads to heavier load 
capacitances and more match activities. Wider issue width 
leads to driving more tag buses into the wakeup logic. We 
can see that increasing the window size and issue width leads 
to larger power consumption and slower scheduling speed. 
As a result, the scheduler can not scale well with the 
increasing of window size and issue width. 

2.2. Related Works 

There have been many other efforts to reduce the 
complexity of dynamic schedulers, many of which can be 
used in combination with our proposed wakeup-based 
scheduling. 

The bank design in [1], which is most similar to our design, 
segments the monolithic issue window into multiple banks to 
improve wakeup delay; however the result tags still need to 
be broadcast to all the banks. This design induces extra 
wakeup delay and power consumption due to the additional 
driver-transistors and tag buses. 

Hrishikesh et al. proposed a pipelined-wakeup design that 
segments the issue window and wakes up the instructions in 

the segments in multiple sequential cycles [3]. Nonetheless, 
all the segments stills need to be searched; besides the 
dependent instructions can be issued back to back only if they 
are in the first segment.  

In [4], Folegnani and González presented a gate-off 
technique that disables the useless (empty and ready) entries 
of the issue window from tag matching. Besides, Ramirez et 
al. proposed a similar gate-off mechanism based on a multi-
bank issue window to improve the power consumption of the 
scheduler [5].  However, this mechanism employs an extra 
large RAM structure that may slow down the wakeup speed. 

Several approaches dynamically manage the sizes of the 
issue window and turn off the useless entries [4] [6] [7] [8] [9] 
[10]. These designs improve the power consumption of the 
scheduler with extra dynamic managers that may complicate 
the scheduler. 

Ernst and Austin proposed a tag-elimination scheduler that 
employs less tag comparators to reduce the complexity of the 
scheduler. This scheduler also has a last tag speculator to 
reduce the frequency of tag matching [11]. Based on the same 
observation, Sharkey et al. presented an instruction-packing 
technique. This technique schedules the two instructions, 
which have only one non-available source operand, into the 
same entry of issue window [12]. 

Kim and Lipasti proposed a sequential wakeup mechanism 
to reduce the complexity of scheduler [13]. This mechanism 
places the last-arrival operand into the fast wakeup logic and 
wakes up the left and right source operands of an instruction 
in two sequential steps. Besides, Aggarwal et al. proposed a 
reduced wakeup width scheduler to reduce the complexity of 
the scheduler by reducing the maximum number of input 
result tags for the wakeup logic [14]. 

The wakeup-free schedulers [15] [16] predict the issue 
latency of the instructions and then issue the instructions into 
a FIFO-based issue queue. These schedulers replace the 
complex wakeup logic with a simple FIFO queue. On the 
other hand, Brown et al. presents the select-free scheduler 
[17]. This scheduler removes the instruction-selection process 
from the scheduling critical path. 

Some works [18] [19] [20] employ two-level issue window 
to reduce the complexity of the scheduler. The critical 
instructions are dispatched to the small and first issue 
window and the non-critical instructions, for example: the 
instruction waiting for a load that misses in cache, are 
dispatched to the large and slow window. 

On the other hand, many wakeup designs employ the 
custom components instead of the CAM structures. Goshima 
et al. presented a wakeup design that uses bit matrix 
structures [21]. Henry et al. presented a cyclic segmented 
prefix (CSP) circuit to improve the performance of the 
wakeup logic [22]. We presented a wakeup design, which 
pre-decodes the source tags and matches the decoded outputs 
directly with the grant lines, to improve the wakeup speed 
and power consumption [23]. Ponomarev et al. used three 
techniques, efficient comparators, 0-B encoding, and bitline 
segmentation, to reduce the energy dissipation of the issue 
window [24]. 

Several designs reduce issue logic complexity through 
index-based techniques, using pointers to connect the 



producer instructions and consumer instructions [25] [26] 
[27]. Some works reduce the complexity of scheduler by pre-
scheduling dependent instructions into a data-flow based 
issue window [28] [29] [30]. 

3. Wakeup-based Scheduling 

The conventional wakeup design matches the result tags 
with all the source tags in the issue window only to wakeup a 
few instructions. It is inefficient in terms of both energy and 
wakeup speed. To alleviate these useless wakeup operations, 
the proposed technique schedules instructions into the issue 
window based on the wakeup address, which is defined as the 
high-order bits of the source tag or result tag. In this way, 
during the wakeup process, the result tag is compared with 
only the source tags that have the wakeup address the same as 
the wakeup address of the result tag. 

The structure of the proposed design is a multi-bank issue 
window as shown in Figure 2. Each segment is assigned a 
number as its wakeup address, and the wakeup logic in the 
segment is the two CAM structures, which are used to handle 
the wakeup operations for the left and right source operands. 
To access the segments, the bits of the tag, source tag or 
result tag, are divided into two parts: index (wakeup address) 
and reduced tag. The index is the high-order bits of the tag 
that are used to select a segment. The other part, reduced tag, 
is the low-order bits of the tag that are used as input for the 
wakeup logic.  

In the example of Figure 2, the 16 segments are numbered 
from 0-15 (0000-1111b) as their wakeup addresses. The four 
high-order bits of the source (result) tag are used as the 
wakeup address to index the segments. Since the high-order 
bits of the source tag are used as the wakeup address, the tag 
fields in the wakeup logic for storing the source tags can be 
reduced to store only the four low-order bits of the source 
tags. In the same way, the input (result tag) of the wakeup 
logic is also reduced to the four low-order bits of the result 
tags. 

After rename, the instruction’s wakeup address is used as 
index to select one of the segments. In the selected segment, 
an entry of the wakeup logic is allocated for storing the four 
low-order bits of the left and right source tags. In this way, 
the instructions that have the same wakeup address are 
dispatched to the same segment.  

During the wakeup process, the wakeup operation is 
performed only in the selected segment. The high-order bits 
(wakeup address) of the result tag are used to select one of 
the segments. The low-order bits of the result tag are used as 
the input for the wakeup logic to match with the source tags 
in this segment. The source tags in the other segments are not 
involved in this wakeup operation. 

While inserting instructions into the issue window, two 
situations will lead to that the instruction can not be 
dispatched to the selected segment. First, the instruction has 
the two wakeup addresses that index to two different 
segments. That is, the two wakeup addresses (high-order bits) 
of the instruction’s left and right source operands are not 
identical to each other. Second, the segment selected by the 

wakeup address of the instruction is full; no more available 
entry of this segment can be allocated for the incoming 
instruction. 

We employ an extra backup segment to handle these two 
situations. The backup segment is the segment that employs 
the conventional wakeup logic, of which the source tag fields 
and the bit length of the input tag are not reduced. When the 
scheduler encounters the instruction that has two different 
wakeup addresses or the instruction that indexes to a full 
segment, these instructions are inserted into the backup 
segment. During the wakeup process, the backup segment is 
always searched. 

In addition, we employ a ready segment for the instructions 
that come with both their two source operands available. 
When instructions are inserted into the issue window, some 
instructions have already both their left and right source 
operands ready.  These instructions are dispatched into the 
ready segment. Since these instructions are ready for 
execution, the source tags in the ready segment need not be 
compared with the result tags during the wakeup process. If 
there is no available entry for the incoming ready instruction, 
the scheduler will assign this instruction to the other 
segments or the backup segment. 

Compared to the conventional design, the proposed design 
has three major advantages: smaller load capacitance on the 
tag buses, fewer match activities during the wakeup process, 
and fewer bits for the source tag fields and the result tag 
inputs. Another advantage of this design is the excellent 
scalability. No matter what the issue window size is, the 
wakeup operation is performed only in one segment and the 
backup segment. 

4. Experimental Evaluation and 
Analysis 

This section presents the experimental methodology and 
discusses the results of performance, power consumption, and 
latency for the proposed design and some related designs. 
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Figure 2: An example of the wakeup-based scheduling 
design for a 256-entry window. 



4.1. Experimental Methodology 

The power consumption and IPC results of the evaluated 
designs were obtained through architectural simulation, 
which was conducted by using Wattch [31] and SimpleScalar 
[32] toolsets. These execution-driven simulators simulate a 
superscalar processor with two-level caches, branch 
predictors, dynamic scheduler, and et al. by performing cycle 
by cycle instruction-level simulation, including execution 
down any speculative path until a branch misprediction is 
detected.  

Table 1 lists the architectural parameters for the 4-wide and 
8-wide superscalar processors. In Wattch, the CAM cell of 
the evaluated designs was based on the CAM model in [1]. 
The other configurations for the Wattch include 1GHz clock 
frequency, 1.8V voltage, and 0.18µm technology process. 

The simulation results were collected from seven integer 
and nine floating point programs of the SPEC2000 
benchmark suite. All the selected benchmark programs were 
compiled with full optimization (-O4). The test input set was 
used for the benchmark programs. The programs were fast-
forwarded the first 50 million instructions and the following 
500 million instructions were simulated.  

To understand the effects on the wakeup delay, the circuit 
characteristics of the evaluated designs must be examined. 
The circuit models were extended from the one proposed by 
Ernst and Austin [11] and the timing results for the evaluated 
designs were extracted by using the Avant! Hspice tool. 
Finally, the CMOS transistors and wires were all conformed 
to the parameters of the TSMC 0.18µm process. 

4.2. Performance Comparison  

Figure 3 presents the IPC results of the 4-wide and 8-wide 
processors that employ different wakeup logics. These results 
are normalized to the IPC of the baseline processor, which 
employs the conventional wakeup logic.  

The first two bars show the IPC drops of the tag 
elimination design and the sequential wakeup design. The tag 
elimination design, configured as 32 two-tag stations, 64 one-
tag stations, and 32 zero-tag stations for the 4-wide processor 
and twice the stations for the 8-wide processor, loses 6% of 
IPC on average. On the other hand, the IPC drop of the 
sequential wakeup design is measured to be 6.5% in the 4-
wide processor and 12% in the 8-wide processor. Obviously, 
waking instructions up in two sequential cycles induces non-
negligible performance degradation in the wide-issue and 
large-window processor.  

Table 1: Processor configurations. 
 4-wide 8-wide 

Out-of-order 
Execution 

4-wide fetch/issue/commit, 
 128 RUU, 64 LSQ. 

8-wide fetch/issue/commit, 
 256 RUU, 128 LSQ. 

Functional 
units 

4 IALU, 1 IMUL, 2 FALU, 1 
FMUL, 2 LSU. 

8 IALU, 2 IMUL, 4 FALU, 2 
FMUL, 4 LSU. 

L1 I-cache  
L1 D-cache 

4-way, 64KB, 32-byte line, 2-cycle latency. 
4-way, 64KB, 32-byte line, 2-cycle latency. 

L2 cache 
TLB 

4-way, 512KB, 64-byte line, 10-cycle latency. 
4-way, 128-entry, 4KB page size. 

Memory  64-bit wide, 75 cycle latency, 4-cycle burst. 

Branch 
predictor 

Combination of bimodal (2k entries) and 2-level global predictor 
(2k entries, 8-bit history), 1024-entry chooser, 1024-entry (4-way) 
BTB, 16-entry RAS (return address stack), 8-cycle penalty. 

Figure 3: The normalized performance of the evaluated designs for the 4-wide (upper part) and 8-wide (lower part) 
processors. 
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The other bars show the performance of the proposed 
design in different configurations. The configuration “x × y” 
indicates that this scheduler has x segments and each segment 
consists of y entries. Besides, the backup window and the 
ready window both have one fourth of x segments.  

The performance degradation of the proposed design is 
measured to be 2.5-5% for the 4-wide and 8-wide processors. 
This slight IPC drop comes mainly from the issue policy used 
in the proposed design in which the instruction order is not 
maintained in the issue window and the select logic can not 
do an age-based issue easily. Without complicating the select 
logic, the instructions are issued based on the first-come first-
served policy in the proposed design. If the proposed design 
employs an age-based issue policy, the performance 
degradation can be decreased within 0.5% as shown in the 
fourth bars. Besides, the last three bars show that enlarging 
the capacity of the segments benefits only 1% performance 
gain; this is because the performance degradation comes 
mainly from the issue policy but not capacity conflict. 

4.3. Power Consumption  
Figure 4 presents the power consumption for the wakeup 

logics in the 4-wide and 8-wide processors. The left most 
bars show that the conventional wakeup design consumes a 
lot of power due to the heavy load capacitance and the 
surplus activities of the monolithic CAM structure.  

The followed three bars show the power consumption for 
the banked wakeup design. Overall, the banked design 
improves the power consumption by reducing the load 
capacitance of tag driving in the CAM structures. However, 

the overhead for the extra tag line and driver transistors 
becomes significant in the wider-banked design. This 
overhead deteriorates 16% power consumption of the 
conventional design in the 4-wide 16-bank issue window. 

The power consumption of the tag elimination and 
sequential wakeup designs is shown in the fifth and sixth bars. 
The configuration of the tag elimination design is equivalent 
to half of the entries of the conventional scheme; thus this 
design saves 44-48% power consumption of the conventional 
design. In contrast, although the sequential wakeup design 
wakes up instructions in two phases, this design still drives 
two monolithic CAM structures as the conventional design 
does. It is measured that the sequential wakeup design 
improves only 7-8% power consumption.  

The power consumption of the proposed design with 
different configurations is shown in the last four bars. It is 
measured to be only 39-50% that of the conventional CAM 
scheme. This excellent energy saving comes from the 
wakeup-based scheduling. Most needless wakeup operations 
are avoided; thus this design is highly efficient in terms of 
energy usage. Obviously, the proposed design is more energy 
saving than other designs.  

4.4. Wakeup Latency  

Figure 5 shows the wakeup latencies of the evaluated 
wakeup designs. The wakeup latencies of the conventional 
design are presented in the first bars. Compared to the 
conventional design, the banked design improves 36-40% 
wakeup latency in the 4-wide processor and improves 72-

Figure 4: Power consumption of the evaluated designs (w). 

Figure 5: Wakeup latencies of different wakeup approaches (ns). 
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77% wakeup latency in the 8-wide processor. This 
improvement comes from that the smaller banked segments 
performs wakeup operations in parallel. For the similar 
reason, the tag elimination design improves 57% wakeup 
latency of the conventional design for the 8-wide 256-entry 
processor. In the 4-wide 128-entry processor, the 
improvement is not as significant as that in the 8-wide 
processor. In contrast to the banked design and tag 
elimination design, the sequential wakeup design has almost 
the same wakeup latency as that of the conventional design 
because the critical path of the sequential wakeup design is 
the same to that of the conventional design.  

The proposed design also performs much faster than the 
conventional design. Compared to the banked design, the 
proposed design is measured to be 6% faster in both the 4-
wide and 8-wide processors. This advantage comes from that 
only necessary segments are activated during the wakeup 
process. Compared to the tag elimination design, the 
proposed design is about 50% faster in the 8-wide processor. 
We can observe that the proposed design suits for 
sophisticated scheduler in the wide-issue large-window 
processor. 

5. Conclusion 

The latency and power consumption of the dynamic 
scheduler become the important problems for designing a 
high-performance superscalar processor. Most of the latency 
and power consumption of the scheduler result from the 
complex wakeup logic. In this paper, we propose a wakeup-
based scheduler that schedules the instructions into the issue 
window based on their wakeup addresses. During the wakeup 
process, only the segment, which has the same wakeup 
address of the result tags, is involved for wakeup operation. 
This technique avoids most of the useless and inefficient 
wakeup operations. The proposed design has the following 
advantages: smaller load capacitance on the tag buses, fewer 
match activities during wakeup process, reduced bit length of 
tag fields and for the input of the wakeup logic. Another 
advantage of this design is the excellent scalability. No matter 
what the issue window size is, only one segment and the 
backup segments are activated during the wakeup process. 
The proposed design improves 50-61% power consumption 
and 42-76% wakeup latency of the conventional design with 
only 3-5% IPC degradation. In conclusion, the proposed 
wakeup design removes the complexity from the dynamic 
scheduler and enables the processor to employ a more 
sophisticated scheduler. 
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